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Why a splitting in the final state cannot explain the “GSI oscillations” measured at the
GSI Experimental Storage Ring
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In this article, I provide a pedagogical discussion of the GSI anomaly. Using two different formulations, namely
the intuitive quantum-field-theory language of the second quantized picture as well as the language of amplitudes,
I clear up the analogies and differences between the GSI anomaly and other processes (the double-slit experiment
using photons, e+e− → µ+µ− scattering, and charged-pion decay). In both formulations, the conclusion is
reached that the decay rate measured at GSI cannot oscillate if only standard model physics is involved and
the initial hydrogen-like ion is no coherent superposition of more than one state (in case there is no new, yet
unknown, mechanism at work). Furthermore, a discussion of the quantum beat phenomenon will be given, which
is often assumed to be able to cause the observed oscillations. This is, however, not possible for a splitting in the
final state only.
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I. INTRODUCTION

In the last few months, a measurement of the lifetime of
several highly charged ions with respect to electron capture
(EC) decays at the Experimental Storage Ring (ESR) at GSI
Darmstadt [1] has caused a lot of discussion: Instead of seeing
only the exponential decay law, a superimposed oscillation has
been observed. The cause of this phenomenon, often referred to
as Darmstadt oscillations or GSI anomaly, is not yet clear, and
a huge debate has arisen regarding whether it could be related
to neutrino mixing [2–16] or not [17–28]. Alternative attempts
for an explanation involve spin-rotation coupling [29–32], the
interference of the final states [33], or hyperfine excitation [34].
From the experimental side, two test experiments (with, how-
ever, different systematics [35]) have been performed [36,37].

Several times in this discussion, the analogy of the GSI
experiment to the famous historical double-slit experiment
using, for example, photons [38], has been drawn [6,19,26],
which also has led to lively debates at several meetings [39].
In this article, I show that the intuitive quantum-field-theory
(QFT) formulation of the problem always leads to the correct
result. As a lot of discussion is still taking place in part of
the community, it might be useful to give one more detailed
explanation of the quantum mechanics (QM) involved. This
can be done best by presenting easy and familiar examples
that are not necessarily directly related to the GSI anomaly
but do involve the same logical steps and are not under
dispute. To do this, I start with the superposition principle
and discuss the double-slit experiment with photons, e+e− →
µ+µ− scattering, and the experiment performed at GSI.
Afterward, the language of amplitudes is used to further
justify the QFT treatment by carefully considering several
cases, where π+ decay serves as an additional example before
the considerations also are applied to the GSI experiment.
Furthermore, the so-called quantum beats (QBs) [40] will
be discussed, which is a well-known phenomenon that could
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indeed cause oscillatory decay rates. This has been argued
to motivate the observation at GSI in several places (see,
e.g., [2,12,13]). It will, however, be shown that this cannot
cause the observed behavior if a splitting is only present in the
final state.

In the course of this article, we will see that all three
languages naturally lead to the same result, namely that a
splitting in the final state cannot explain the GSI anomaly.
Depending on the field of the reader, one or the other part
may be clearer, but in the end, it turns out that the intuitive
QFT picture is correct and in perfect agreement with the
results obtained using probability amplitudes or the language
of QBs, which are just different formulations of the same basic
principles.

II. THE QUANTUM-FIELD-THEORY FORMULATION OF
THE PROBLEM

The starting point for the discussion is the superposition
principle in QM. One common formulation is [41]: “When a
process can happen in alternative ways, we add the amplitudes
for each possible way.” The problem in the interpretation arises
in the term “alternative ways” because it is not a priori clear
what the word “way” actually means, as well as in the word
“process,” which exhibits similar ambiguities.

Let us use the following terminology: Process means a
reaction with a well-defined initial and final state, whereas way
is a particular intermediate state of a process. For example,
the scattering reaction e+e− → µ+µ− is one process, no
matter by which way [γ -, Z0-, or H 0-exchange at the tree
level in the standard model (SM) of elementary particles] it
is mediated. Z0 → νeνe and Z0 → νµνµ are, however, two
distinct processes.

Using this terminology, the superposition principle can be
formulated in the following way:

(i) If different ways lead from the same initial to the same
final state in one particular process, then one has to
add the respective partial amplitudes to obtain the total
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amplitude. The absolute square of this total amplitude
is then proportional to the probability of the process to
happen (coherent summation).

(ii) If a reaction leads to physically distinct final states,
then one has to add the probabilities for the different
processes (incoherent summation).

If a certain situation belongs to category 1, an interference
pattern will be visible (or oscillations, in case the interfering
terms have different phases as functions of time), whereas if
it belongs to category 2, there will be no interference. The
remaining question is at which point the measurement comes
in. This can be trivially said for point 2: The experimental
apparatus is sufficiently good to distinguish between the
different final states (2A); then no summation whatsoever is
necessary simply because one can divide the data set into two
(or more), one for each of the different final states. If this is
not the case (2B), the experiment will be able to lead to either
of the final states, but one would not know which one had
been the actual result; then one would simply have to add the
probabilities for the different final states to occur in order to
obtain the total probability.

What if we do such a measurement for category 1? If we
can indeed distinguish several ways that a process can happen,
then this has to be done by some measurement. Because this
measurement then has selected one particular way, we have
actually transformed a situation belonging to category 1 into a
situation of category 2. However, then there would be no terms
to interfere with: The interference would have been “killed.”

Let us now turn to Table I, which illustrates how our three
examples fit into the categories 1, 2A, and 2B. These three
cases will be discussed one by one in the following.

A. The double-slit experiment with photons

This is the “classical” situation of an experiment that reveals
the nature of QM. It was first performed by Young [38] and
was later the major example for illustrating the laws of QM.
Its basic procedure is as follows: Light emitted coherently by
some source (e.g., a laser) hits a wall with two slits, both
with widths comparable to the wavelength of the light. If it
hits a screen behind the wall, one will observe an interference
pattern, as characteristic for wave-like objects (category 1).
There is, however, the interpretation of light as photons (i.e.,
quanta of a well-defined energy). Naturally, one could ask
which path such a photon has taken, meaning through which
of the two slits it has traveled. The amazing observation is
that as soon as one can resolve this by monitoring the slits
accurately enough, the interference pattern will vanish, no
matter whether one actually reads out the information of the

monitoring (2A) or not (2B). The reason is that, regardless
of using the information or not, the measurement itself has
disturbed the QM process in such a way that the interference
pattern is destroyed [42].

The key point is that one cannot even say that the photon
takes only one way: In the QM formulation, amplitudes are
added (and not probabilities), and hence, the photon does not
take one way or the other (and we simply sum over the results),
but it has a total amplitude that includes a partial amplitude
to take way 1 as well as another partial amplitude way 2.
By taking the absolute square of this sum of amplitudes,
interference terms appear.

A QFT formulation involving elementary fields only
would be much more complicated: One would sum over
the amplitudes for the photon to interact with each electron
and each quark in the matter the slits are made of, after
having propagated to this particular particle and before further
propagating to a certain point on the screen. Of course, by
using an effective formulation of the theory, one can find a
much more economical description, and the easiest one is to
simply comprise all possible interactions into two amplitudes,
one for going through the first and one for going through the
second slit.

Let us go back to this effective formulation: If there is
monitoring, one actually “kills” one of these two amplitudes,
the other one remains, and the interference is destroyed. When-
ever there has been such a measurement, the interference will
vanish. As we will see, the question is if in a certain situation
a measurement has been performed (or is implicitly included
in the process considered), no matter if the corresponding
information is read out or not.

B. e+e− → µ+µ− scattering at a collider

Let us now consider the scattering of e+e− to form a
pair of muons. This is, unlike the double-slit experiment, a
fundamental process where only a small number of elementary
particles is involved. If one wants to calculate the scattering
probability, the amplitude for the process is again decisive. In
the SM, there are only three possibilities for this process to
happen at the tree level, and in all three of them, the e+e−
pair annihilates to some intermediate (virtual) boson that in
the end decays again, but this time into a µ+µ− pair. The
intermediate particle can either be a photon, a Z0 boson, or a
Higgs scalar (see Fig. 1). Here, we have three different ways to
form the process. The difference to the double-slit experiment,
however, is that these three ways cannot be separated easily.
In a real collider experiment, we are not able to say that the
reaction e+e− → µ+µ− has taken place by the exchange of,
for example, a photon only, but it will always be the sum of

TABLE I. The classification of the three examples.

Category Double-slit e+e− → µ+µ− GSI experiment

1 No slit-monitoring at all e+e−-collider N/A
2A Monitoring and readout N/A GSI-like experiment with more

kinematical accuracy
2B Monitoring without readout N/A Actual GSI experiment
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γ Z 0 H 0 FIG. 1. The diagrams contributing to
e+e− → µ+µ− in the SM.

the three diagrams (and a lot more, in case we include higher
orders). Hence, this process will always fall into category 1
and interference terms will appear.

This is an easy and familiar example for the appearance of
interference terms in a real experiment. In the next subsection,
it will be shown exactly what is different in the case of the GSI
experiment.

C. The GSI experiment

The remaining question is what the situation looks like
for the GSI experiment. Even though the QFT calculation
of what happens is pretty straightforward, fitting everything
in the language used above might be a bit more subtle. We
will, however, see in Sec. III B that the formulation in terms
of amplitudes additionally justifies the result obtained here.
Let us at first consider the Feynman diagram of the process
involved in the GSI experiment in Fig. 2 [17]: Here, in the
absence of extreme kinematics (meaning that the Q value
of the reaction is large enough so that all neutrino mass
eigenstates can be emitted), the neutrino is produced as an
electron neutrino. What happens to this neutrino? As it is
not detected, it escapes to infinity in the view of QFT (in
the picture of second quantization). Physically, it loses its
coherence after some propagation distance and travels as a
unique mass eigenstate. The key point is as follows: Because
the neutrino will not interact before it loses its coherence, it
must be asymptotically a mass eigenstate. This can be shown
easily: The coherence length of a (relativistic) neutrino is given
by [43]

Lcoh = 2
√

2σx × 2p2

(�m2)�
, (1)

where σx is the size of the neutrino wave packet, p is
the momentum of the mean-value neutrino momentum in
the limit mν = 0, and (�m2)� = 7.67 × 10−5 eV2 [44] is the
solar neutrino mass-square difference as known from neutrino
oscillation experiments. The question is how to obtain an
estimate for σx : If the nucleus was inside a lattice, one
could estimate a width like the typical interatomic distance,
σx ∼ 1 Å, which would lead to Lcoh ∼ 2 × 108 m. Of course,
this precision cannot be reached in the GSI experiment.
However, at least during the electron cooling [45], the nucleus
will be localized to some precision. Because the velocity of
the nucleus is known, this information could in principle be

undetected neutrino
mass eigenstate

parent ion

daughter ion

νi

FIG. 2. The Feynman diagram for the GSI experiment.

extrapolated for each run. A fair estimate would then be the
average distance between two electrons in the cooling process,
which is roughly given by 1/ 3

√
n ∼ 0.1 mm, where n is the

electron density [46]. This leads to a more realistic coherence
length of Lcoh ∼ 2 × 1014 m. The pessimistic case, where σx

is taken to be the approximate diameter 108.36 m/π [47] of
the ESR produces Lcoh ∼ 6 × 1019 m. The mean free path of a
neutrino in our galaxy, however, is roughly 1 × 1040 m (for an
assumed matter density in the Milky Way of 1 × 10−23 g/cm3),
so the assumption that the neutrino does not interact before
losing its coherence is completely safe.

Even if we do not know in which of the three mass
eigenstates the neutrino actually is, we know that it has to
be in one of them. This knowledge is somehow obtained
a posteriori because the mass eigenstate only reveals its
identity after some propagation. But, by conservation of
energy and momentum, one could treat the process as if
the kinematical selection had already been present at the
production point of the neutrino. This “measurement” is
enforced by the physical conservation laws.

An analogous reasoning is given by Feynman and Hibbs
[42], using the example of neutron scattering: Neutrons
prepared to have all spin up scatter on a crystal. If one of
the scattered neutrons turns out to have spin down, one knows
by angular momentum conservation that it must have been
scattered by a certain nucleus. In principle, by noting down
the spin state of every nucleus in the crystal before and after
the measurement, one could find the corresponding scattering
partner of the neutron without disturbing it. No matter whether
this would be difficult practically, by a physical conservation
law, one knows that a particular scattering must have been
present, even if the corresponding nucleus is not “read out.”
Accordingly, the corresponding interference vanishes and the
neutrons that have spin down after the scattering come out
diffusely in all directions.

This can also be formulated in the language of wave packets:
We have complete four-momentum conservation for each
component (which is a plane wave) of the wave packets, but if
we consider the whole wave packet, its central momentum
does not have to be conserved [48,49]. However, all the
different components can produce both possible neutrino
mass eigenstates, but for a certain kinematical configuration
of parent and daughter components, only one of the mass
eigenstates will actually be produced.

The rest is easy: If the GSI experiment had infinite
kinematical precision, one could read out which of the mass
eigenstates has been produced and it would clearly fall into
category 2A. Because, however, this information is not read
out but could in principle have been obtained (e.g., by detecting
the escaping neutrino), the GSI experiment falls into category
2B and one has to sum over probabilities. This logic works
because we know that the neutrino is, after some propagation,
no superposition of mass eigenstates anymore, but just one
particular eigenstate with a completely fixed mass.

054616-3



ALEXANDER MERLE PHYSICAL REVIEW C 80, 054616 (2009)

A viewpoint closer to the amplitude formulation would be
as follows: If the neutrino finally interacts, it has to “decide”
which mass eigenstate it has, even if it was a superposition of
several mass eigenstates before. This is then equivalent to the
image of having produced one particular mass eigenstate from
the beginning on.

III. AMPLITUDES—PROBABLY THE EASIEST
LANGUAGE TO USE

In this section, I use time-dependent amplitudes for the
different basis states to describe another example, namely
charged-pion decay, which I compare then with neutrino
oscillations (with referring to the actual situation in the
GSI experiment). The logical steps needed to understand the
familiar example of pion decay are exactly the same as the ones
needed to understand what is going on at GSI. This description
is clear enough to account for very different situations and
allows for an easy and nearly intuitive understanding of
the various cases. Furthermore, it yields an a posteriori
justification of the view used in the preceding section.

A. Charged pion decay

It is well known that a charged pion (e.g., π+) can decay
into either a positron in combination with an electron neutrino
or the corresponding pair of µ-like particles. Let us consider
the case of a pure (and normalized) initial state pion |π+〉.
As this state evolves with time (and is not monitored), it will
become a coherent superposition of the parent state, as well as
all possible daughter states:

|π+(t)〉 = Aπ (t)|π+〉 + Aµ(t)|µ+νµ〉 + Ae(t)|e+νe〉, (2)

where all time dependence is inside the partial amplitudes Ai .
Of course, this state has to be normalized correctly:

|Aπ (t)|2 + |Aµ(t)|2 + |Ae(t)|2 = 1, (3)

with Aπ (0) = 1 and Aµ(0) = Ae(0) = 0. One can understand
Eq. (2) in the following way: The state at time t is a coherent
superposition of the basis states {|π+〉, |µ+νµ〉, |e+νe〉} with
time-dependent coefficients. Note that the basis states are
orthogonal. The outcome of a certain measurement is some
state |�〉: All that a detector does is projecting on just this state
|�〉. Of course, different detectors will in general be described
by projections on different |�〉’s, which is a reflection of the
influence of the process of measurement on the measurement
itself. If one wants to know the probability for measuring that
particular state, one has to calculate it according to the standard
formula

P (�) = |〈�|π+(t)〉|2. (4)

The question is what |�〉 looks like. To make that clear, let us
discuss several cases:

(i) The (trivial) case is that there has been no detection at
all: Then we have gained no information. This means
that the projected state is just the time-evolved state
itself (we do not know anything except for the time

passed since the experiment started), and we get

|〈�|π+(t)〉|2 = |〈π+(t)|π+(t)〉|2 = 1. (5)

This result is trivial because the probability for anything
to happen must be equal to 1.

(ii) The next situation is when our experimental apparatus
can provide us the information that the pion has
decayed, but we do not know the final state. Then,
it can be either |µ+νµ〉 or |e+νe〉 and we remain with a
superposition of these two states. The only information
that we have gained is that the amplitude for the initial
pion to be still there is now zero, Aπ = 0 in Eq. (2).
Then, the properly normalized state |�〉 is

|�〉 = Aµ(t)|µ+νµ〉 + Ae(t)|e+νe〉√|Aµ(t)|2 + |Ae(t)|2 . (6)

The absolute value square of the corresponding projec-
tion is

|〈�|π+(t)〉|2 = |Aµ(t)|2 + |Ae(t)|2, (7)

and if there is any oscillatory phase in the amplitudes,
Ak(t) = Ãk(t)eiωkt , it will have no effect because of the
absolute values.

(iii) What if we know that the initial pion is still
present? This sets Aµ(t) = Ae(t) = 0, and |�〉 is just
Aπ (t)|π+〉/

√
|Aπ (t)|2. The projection gives

|〈�|π+(t)〉|2 = |Aπ (t)|2, (8)

which again does not oscillate.
(iv) If one particular final state, let us say |e+νe〉, is detected,

then Aπ (t) = Aµ(t) = 0 and we get another term free
of oscillations:

|〈�|π+(t)〉|2 = |Ae(t)|2. (9)

The question remains of when we do get oscillations at all. The
answer is as follows: It depends on what our detector measures.
If, for example, the detector measures not exactly the state
|µ+νµ〉 or |e+νe〉 but instead some (hypothetical) superposition
(e.g., some quantum number that is not yet known, under which
neither µ+ nor e+ is an eigenstate, but some superposition
of them), then one could measure the following (correctly
normalized) state:

|�〉 = 1√
2

(|µ+νµ〉 + |e+νe〉). (10)

The squared overlap is

|〈�|π+(t)〉|2 = 1
2 {|Aµ(t)|2 + |Ae(t)|2 + 2�[A∗

µ(t)Ae(t)]},
where the 2�[A∗

µ(t)Ae(t)] piece will, in general, lead to
oscillatory terms. What has been done differently than before?
This time, we have done more than simply killing one or more
amplitudes in Eq. (2), and this is the cause of oscillations:
Whenever we are in a situation in which the state playing the
role of |�〉 in Eq. (10) is physical, the corresponding projection
will yield oscillatory terms. As we will see in a moment, this
is exactly what happens in neutrino oscillations.
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B. Neutrino oscillations and the GSI experiment

Let us now turn to neutrino oscillations. Here, as we will
see, a state like |�〉 in Eq. (10) can indeed be physical in some
situations. To draw a clean analogy to the experiment done
at GSI, we consider a hydrogen-like ion as initial state |M〉
that can decay to the state |Dνe〉 via EC. Because there was
an electron in the initial state, we know that the amplitude
for producing the mass eigenstate |νi〉 is just Uei . If there
is no relative phase between the two mass eigenstates, the
neutrino produced in the decay is exactly the particle that
we call electron neutrino. In any case, because of different
kinematics, the two mass eigenstates will in general develop
different phases in the time evolution. This means that, despite
the mixing matrix elements Uei being time independent, there
will be a phase between the two neutrino mass eigenstates.
Completely analogous to Eq. (2), the time evolution of the
initial state will be given by

|M(t)〉 = AM (t)|M〉 + Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉,
(11)

with |AM (t)|2 + |Ue1A1(t)|2 + |Ue2A2(t)|2 = 1 and
AM (0) = 1. We can immediately look at different cases:

(i) The parent ion is seen in the experiment: This kills all
daughter amplitudes, A1,2(t) = 0. The only remaining
amplitude is AM (t), which is very similar to Eq. (8).
With the proper normalization for |�〉, one gets no
oscillation again:

|〈�|M(t)〉|2 = |AM (t)|2. (12)

(ii) The next case corresponds to the GSI experiment: One
sees only the decay but cannot tell which of the two
neutrino mass eigenstates has been produced. This leads
to AM (t) = 0, and one has to perform a projection on
the state

|�〉 = Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉√
|Ue1A1(t)|2 + |Ue2A2(t)|2

. (13)

Doing this with |M(t)〉 from Eq. (11) yields

|〈�|M(t)〉|2 =
∣∣∣∣∣
|Ue1A1(t)|2 × 1 + |Ue2A2(t)|2 × 1√

|Ue1A1(t)|2 + |Ue2A2(t)|2

∣∣∣∣∣
2

= |Ue1A1(t)|2 + |Ue2A2(t)|2, (14)

which exhibits no oscillations but is an incoherent sum
over probabilities. This result is the justification of the
intuitive treatment in Sec. II C: The elementary QM
discussion using probability amplitudes gives us just the
correct prescription for how to sum up the amplitudes
for the final states.

(iii) The GSI experiment with infinite kinematical precision:
In this case, one could actually distinguish the states
|Dν1〉 and |Dν2〉. If one knows that |Dν1〉 is produced
(e.g., by having very precise information about the
kinematics), one will again have no oscillation,

|〈�|M(t)〉|2 = |A1(t)Ue1|2, (15)

just as in Eq. (9).

These are in principle all cases that can appear. One can,
however, have a closer look at the realistic situation in the GSI
experiment. Let us reconsider Eq. (11): In reality, the parent
ion will be described by a wave packet with a finite size or,
equivalently, a finite spreading in momentum space, caused
by the Heisenberg uncertainty relation. If this wave packet is
broad enough that each component can equivalently decay into
|Dν1〉 or |Dν2〉, then both of the corresponding amplitudes will
actually have the same phase [A1(t) = A2(t)], because they
have the same energy, and one can write Eq. (11) as

|M(t)〉 = AM (t)|M〉 + A(t) [Ue1|Dν1〉 + Ue2|Dν2〉]︸ ︷︷ ︸
=|Dνe〉

. (16)

Because the knowledge of the momentum of the parent ion
is not accurate enough at the GSI experiment to make a
distinction between both final states |Dνk〉, this is a realistic
situation. Of course, this does not at all change the above
argumentation, because the final state |�〉 will experience
the same modification. The neutrino produced is an electron
neutrino, as to be expected.

The following question remains: Why do some authors
come to the conclusion that there should be oscillations?
The answer is simple: If the correspondence between the
time-evolved initial state and the detected state is wrong, then
oscillations may appear. As an example, we will consider the
situation in which the kinematics of the parent and daughter
are fixed so tightly that indeed the production amplitudes
for |Dν1〉 and |Dν2〉 are not equal. This would correspond
to an extremely narrow wave packet in momentum space.
Let us, for example, have in mind the extreme case when
by kinematics only the production of ν1 is possible. This
is no problem in principle, and we would be used to it if
neutrinos had higher masses, so that the Q value of the capture
was only sufficient to produce the lightest neutrino mass
eigenstates. If only the disappearance of the parent is seen,
the corresponding state |�〉, which is detected, is given by
Eq. (13) [with A2(t) = 0 in the extreme case, but anyway with
A1(t) 	= A2(t)]. The corresponding neutrino is, however, no
electron neutrino anymore (which would be Ue1|ν1〉 + Ue2|ν2〉,
with the same phase for both states)! Indeed this is no surprise
at all because the kinematics in the situation considered is so
tight that it changes the neutrino state, which is emitted. This is
a clear consequence of QM because for obtaining the necessary
preknowledge (namely the very accurate information about
the kinematics), one has to do a measurement that is precise
enough to have an impact on the QM state.

If one considers the state from Eq. (13) as being the one
emitted but then projects onto an electron neutrino state,
oscillations will appear:

|〈D, νe|M(t)〉|2 = |(U ∗
e1〈Dν1| + U ∗

e2〈Dν2|)[AM (t)|M〉
+Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉]|2

= |A1(t)|2 + |A2(t)|2 + 2�[A1(t)A∗
2(t)].

(17)

This is, however, wrong: One has not used all the information
that could in principle have been obtained. But nature does
not care about whether one uses information or not, so this
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treatment does simply not correspond to what has happened in
the actual experiment. The oscillations, however, only arise be-
cause of the incorrect projection and have no physical meaning.

The remaining question to obtain a complete understanding
of the situation is if the neutrino that is emitted in the GSI
experiment oscillates. The answer is yes, of course. But to see
that, we will have to modify our formalism a bit. Knowing
that an electron neutrino has been emitted corresponds to
AM (t) = 0 in Eq. (16), and the remaining (normalized) state
is as follows:

|�〉 = A(t)

|A(t)| [Ue1|Dν1〉 + Ue2|Dν2〉] . (18)

Rephasing this state and measuring the time from t on gives
as the initial state

|�〉 = Ue1|Dν1〉 + Ue2|Dν2〉. (19)

This is the state that will undergo some evolution in time
according to

|�(t ′)〉 = A′
1(t ′)Ue1|Dν1〉 + A′

2(t ′)Ue2|Dν2〉, (20)

with |A′
1(t ′)Ue1|2 + |A′

2(t ′)Ue2|2 = 1 and A′
1(0) =

A′
2(0) = 1. If we ask what happens to this neutrino if it is

detected after some macroscopic distance, it is necessary to
take into account what has happened to the daughter nucleus
that has been produced together with the neutrino, because
of entanglement. The daughter nucleus, which is accurately
described by a wave packet, is detected but not with sufficient
kinematical accuracy to distinguish the different components
|D〉 of the wave packet. The effect of such a nonmeasurement
is studied most easily in the density matrix formalism. The
density matrix ρ ′ corresponding to Eq. (20) is given by

|�(t ′)〉〈�(t ′)|
= |B1(t ′)|2|D〉|ν1〉〈ν1|〈D| + |B2(t ′)|2|D〉|ν2〉〈ν2|〈D|

+ [B1(t ′)B∗
2(t ′)|D〉|ν1〉〈ν2|〈D| + H.c.], (21)

where Bk(t ′) = A′
k(t ′)Uek . If the exact kinematics of the

daughter is not measured, then one has to calculate the trace
over the corresponding states. It gives

ρ ≡
∫

dD〈D|ρ ′|D〉 = |B1(t ′)|2|ν1〉〈ν1| + |B2(t ′)|2|ν2〉〈ν2|
+ [B1(t ′)B∗

2(t ′)|ν1〉〈ν2| + H.c.]. (22)

If we want to know the probability to detect, for example, a
muon neutrino, |νµ〉 = Uµ1|ν1〉 + Uµ2|ν2〉, the corresponding
projection operator is given by

Pµ = |νµ〉〈νµ|, (23)

and the probability to detect this state is

Pµ = Tr(Pµρ) = 〈ν1|Pµρ|ν1〉 + 〈ν2|Pµρ|ν2〉. (24)

Note, however, that the neutrino states |ν1,2〉 will always be
orthogonal because they correspond to eigenstates of different
masses (like an electron is in that sense orthogonal to a muon).
The result is

Pµ = |Uµ1|2|B1(t ′)|2 + |Uµ2|2|B2(t ′)|2
+ [Uµ1U

∗
µ2B∗

1(t ′)B2(t ′) + c.c.], (25)

whose second line contains oscillatory contributions. These
oscillation are indeed physical: Eq. (23) is a description of a
detector that is sensitive to νµ’s only. If it could not distin-
guish different neutrino flavors, the oscillation would vanish
again.

IV. QUANTUM BEATS

The last point to discuss are the so-called QBs [40]. This
phenomenon is known from quantum optics and has often been
mentioned as a possible explanation for the GSI anomaly. As
we will see, the corresponding language can be equally used
to describe the GSI experiment and (of course) yields the same
result as already obtained. Still, it is also useful to consider the
experiment from this point of view in order not to be misled
by claims that erroneously make QBs arising from a splitting
in the final state responsible for the observation at GSI.

Normally, one considers atomic levels for this discussion,
and we will stick to that here for illustrative purposes and
give the relation to the GSI experiment at the end of each
section. This way also easily clarifies the analogies to the
quantum-optics formulation.

A. Single atom of type I

Let us start with the classic example of QBs, namely an
atom in a coherent superposition of three states |a〉, |b〉, and
|c〉, where the first two states are above and closely spaced
compared with |c〉. This setting is drawn on the left panel
of Fig. 3 and is referred to as “type I.” First note that the
three levels correspond to different (but fixed) eigenvalues
of the energy and are hence orthogonal vectors in Hilbert
space. This is not at all changed by an energy uncertainty that,
however, makes it possible to have a coherent superposition of
the three states. Initially, we assume the atom to be in such a
superposition of these states but having emitted no photon yet.
Accordingly, the photon state can only be the vacuum |0〉γ .
Then, the initial state of this system can be written as

|�(0)〉 = A0|a〉|0〉γ + B0|b〉|0〉γ + C0|c〉|0〉γ , (26)

where |A0|2 + |B0|2 + |C0|2 = 1. If this system undergoes
a time evolution, the lower state might be populated by
deexcitation of the upper ones, which is done by photon
emission. If the state |1x〉γ = a

†
x |0〉γ is assumed to describe a

a
b

c

ωac ωbc

a

b
c

ωab ωac

FIG. 3. Type I (left) and type II (right) of the QBs settings.
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state with one photon of frequency ωx , then the state at time t

can be written as

|�(t)〉 = A(t)|a〉|0〉γ + B(t)|b〉|0〉γ + C(t)|c〉|0〉γ
+ C1(t)|c〉|1ac〉γ + C2(t)|c〉|1bc〉γ , (27)

where A(0) = A0, B(0) = B0, C(0) = C0, C1,2(0) = 0,
and |A(t)|2 + |B(t)|2 + |C(t)|2 + |C1(t)|2 + |C2(t)|2 = 1. Un-
der the assumption that all levels are equally populated, the
radiated intensity will be proportional to 〈�(t)|E2(0, t)|�(t)〉,
where

E(x, t) =
∑
k,λ

εk,λ(ak,λe
−ikx + a

†
k,λe

+ikx) (28)

is the electric field operator and εk,λ is the electric field per
photon of momentum k and polarization λ. Note that the
creation and annihilation operators have only one nontrivial
commutation relation, namely [ak,λ, a

†
k′,λ′ ] = δk,k′δλ,λ′ . In our

case, we obtain effectively

E(0, t)2 = ε2
ac(1 + 2a†

acaac) + ε2
bc(1 + 2a

†
bcabc)

+ 2εacεbc(a†
acabce

i�t + a
†
bcaace

−i�t ), (29)

where � = ωac − ωbc. Here, we have already used that terms
like, for example, a2

ac give no contribution with |�〉 from
Eq. (27). Remember now that the atomic states are orthonor-
mal. This means that one can, for example, combine a term
proportional to 〈b| in 〈�(t)| only with the corresponding term
|b〉 in |�(t)〉. The corresponding combination of amplitudes
|B(t)|2 does, however, not oscillate because any phase will
be killed by the absolute value. This is also true for every
term involving one of the constant parts of Eq. (29): For
example, the term proportional to C∗(t)C1(t) can involve
a factor

γ 〈0|a†
acaaca

†
ac|0〉γ = 0, (30)

because of a
†
ac acting on the left. There are, however, remaining

oscillatory terms such as C∗
1 (t)C2(t)ei�t , which is proportional

to

γ 〈0|aaca
†
acabca

†
bc|0〉γ = γ 〈0|(1 + a†

acaac)(1 + a
†
bcabc)|0〉γ = 1.

These terms cause the QBs for a type I atom. Actually,
one could have expected this result intuitively: Both of the
coherently excited upper levels can decay into the same
state |c〉 via the emission of a photon. Hence, one cannot
in any way determine the photon energy without measuring it
directly. Without such a measurement, interference terms will
appear.

How is the situation for the GSI experiment? In this case one
simply has to replace the photon by the neutrino. As explained
in Ref. [17], for instance, a splitting in the initial state could
lead to an oscillatory behavior. This splitting, however, would
have to be tiny, ∼10−15 eV, a value that can hardly be explained.
Furthermore, there exists preliminary data on the lifetimes of
142Pm60+ with respect to β+ decay that shows no oscillatory
behavior [12]. An initial splitting in the nucleus also would
lead to an oscillatory rate in this case. Accordingly, if such a
splitting is present in the initial state, it could be in the levels
of the single-bound electron because this would then affect EC
decays while leaving β+ decays untouched.

B. Single atom of type II

We can study a similar setting, namely an atom of type
II, shown on the right panel of Fig. 3. The corresponding
initial state would again be described by Eq. (26), but its time
evolution would now look like

|�(t)〉 = A(t)|a〉|0〉γ + B(t)|b〉|0〉γ + C(t)|c〉|0〉γ
+B′(t)|b〉|1ab〉γ + C ′(t)|c〉|1ac〉γ , (31)

where A(0) = A0, B(0) = B0, C(0) = C0, B′(0) = 0, C ′(0) =
0, and |A(t)|2 + |B(t)|2 + |C(t)|2 + |B′1(t)|2 + |C ′(t)|2 = 1.
The square of the electric field has again the form of Eq. (29),
just with bc → ab. Because of the orthogonality of the
atomic states, there are not too many combinations that are
possible:

(i) Zero-photon state coupled with itself:
If we take, for example, the term |A(t)|2, it does not

oscillate anyway. Hence, only the time-dependent parts
in Eq. (29) (with bc → ab) could lead to oscillations.
But they are proportional to

γ 〈0|a†
acaab|0〉γ = γ 〈0|a†

abaac|0〉γ = 0.

(ii) One-photon state coupled with itself:
|B′(t)|2 does not oscillate, too, and the time-

dependent terms from the electric field yield

γ 〈1ab|a†
acaab|1ab〉γ = γ 〈0|aaba

†
acaaba

†
ab|0〉γ = 0 (32)

and

γ 〈1ab|a†
abaac|1ab〉γ = γ 〈0|aaba

†
abaaca

†
ab|0〉γ = 0,

which follows immediately from the action of a
†
ac to

the left and of aac to the right, respectively.
(iii) Zero-photon state coupled with one-photon state:

This is the only possibility left. If we take, for
instance, the termB∗(t)B′(t), this will oscillate anyway,
so we will also have to check the constant terms in
Eq. (29). The ones proportional to 1 are naturally
zero, γ 〈0|1ab〉γ = γ 〈0|a†

ab|0〉γ = 0. The other terms
are

γ 〈0| a†
ac︸︷︷︸

0←

aac|1ab〉γ = 0, γ 〈0| a
†
ab︸︷︷︸

0←

aab|1ab〉γ = 0,

γ 〈0| a†
ac︸︷︷︸

0←

aab|1ab〉γ =0,

and γ 〈0| a
†
ab︸︷︷︸

0←

aac|1ab〉γ = 0, (33)

where the action of the operators to give zero is always
indicated by the arrow. The argumentation is analogous
for the complex-conjugated term.

Hence, there can be no QBs for a single atom of type II. The
intuitive reason is that, by waiting long enough, one could
reach an accuracy in energy that is good enough to distinguish
the possible final states |b〉 and |c〉. This would then be a
way to determine the energy of the emitted photon without
disturbing it.
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To give an analogous argument for the GSI experiment,
one has to turn the comparison given in Sec. IV A around and
replace the atom by the neutrino and the photon by the ion.
The reason is that what is claimed to interfere in this situation
is the neutrino states themselves [2]. This neutrino is not
expected to interact before losing its coherence (cf. Sec. II C).
However, once it interacts, it has to decide for a certain
mass eigenstate. By monitoring this interaction, it would in
principle be no problem to determine the neutrino’s mass (e.g.,
by exploiting the spatial separation of the mass eigenstates
far away from the source), and from this one could easily
reconstruct the kinematics of the daughter ion in the GSI
experiment. Accordingly, no QBs are to be expected in this
situation.

C. Two atoms of type II

On the other hand, there is a situation in which we can
expect QBs even for atoms of type II, namely if we have two
of them. If these two atoms are separated by a distance that is
smaller than the wavelength of the emitted photons, there is no
way to resolve their separation in space and we have to write
down a combined initial state for both atoms, 1 and 2:

|�(0)〉 = A0|a〉1|a〉2|0〉γ + B0|b〉1|b〉2|0〉γ + C0|c〉1|c〉2|0〉γ
+D1,0|a〉1|b〉2|0〉γ + D2,0|b〉1|a〉2|0〉γ
+ E1,0|a〉1|c〉2|0〉γ + E2,0|c〉1|a〉2|0〉γ
+F1,0|b〉1|c〉2|0〉γ + F2,0|c〉1|b〉2|0〉γ .

The corresponding time evolution |�(t)〉 looks a bit compli-
cated:

A(t)|a〉1|a〉2|0〉γ + B(t)|b〉1|b〉2|0〉γ + C(t)|c〉1|c〉2|0〉γ
+D1(t)|a〉1|b〉2|0〉γ + D2(t)|b〉1|a〉2|0〉γ
+ E1(t)|a〉1|c〉2|0〉γ + E2(t)|c〉1|a〉2|0〉γ
+F1(t)|b〉1|c〉2|0〉γ + F2(t)|c〉1|b〉2|0〉γ
+G1(t)|b〉1|a〉2|1ab〉γ + G2(t)|a〉1|b〉2|1ab〉γ
+H1(t)|c〉1|a〉2|1ac〉γ + H2(t)|a〉1|c〉2|1ac〉γ
+ I1(t)|b〉1|b〉2|1ab〉γ + I2(t)|c〉1|c〉2|1ac〉γ
+J1(t)|b〉1|c〉2|1ab〉γ + J2(t)|c〉1|b〉2|1ab〉γ
+K1(t)|b〉1|c〉2|1ac〉γ + K2(t)|c〉1|b〉2|1ac〉γ . (34)

One oscillatory term would then be, for example, J ∗
1 K1e

−i�t ,
which is proportional to

γ 〈1ab|a†
abaac|1ac〉γ = γ 〈0|aaba

†
abaaca

†
ac|0〉γ

= γ 〈0|(1 + a
†
ab︸︷︷︸

0←

aab)(1 + a†
ac aac︸︷︷︸

→0

)|0〉γ

= γ 〈0|0〉γ = 1. (35)

If the spatial separation is less than the photon wavelength,
one cannot determine the photon energy because one does not
know which atom has emitted the radiation. Accordingly, we
expect QBs.

For the GSI case, this possibility has to be taken into
account because even for runs with one EC only, there might
have been more ions in the ring that were lost or decayed
via β+. In this case (comparing the neutrino again with the
photon), one has to replace the wavelength of the photon by
the de Broglie wavelength of the neutrino. The neutrino energy
should be of the same order as the Q value of the EC reaction,
which is roughly 1 MeV [1]. The corresponding wavelength is,
however, λ = 2πh̄c

Ec ∼ 10−12 m, whereas the average distance
between two ions should be of the order of the storage ring [50],
which is roughly 100 m [47]. Hence, this possibility is excluded
for the GSI experiment.

V. CONCLUSIONS

A comparison of the GSI experiment with several other
processes (the double-slit experiment with photons, e+e− →
µ+µ− scattering, and charged-pion decay) has been given. By
using the language of QFT as well as the intuitive formulation
with probability amplitudes, I have shown that the situation
at GSI cannot lead to any oscillation of the decay rate, if the
correct treatment is chosen and no additional assumptions (as,
e.g., a splitting in the initial state) are taken into account. Also
the frequently mentioned possibility of QBs of the final state
cannot explain the observed oscillations, at least not in the
standard picture. Hopefully this article will contribute to the
clarification of the physical situation in the experiment that has
been performed at GSI.
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