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The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized
to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound
system (such as an atomic nucleus or a helium droplet) are all defined by the internal one-body density and the
initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal
density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the
center-of-mass correlations in the functional.
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I. INTRODUCTION

Traditional density functional theory (DFT) [1–3] and
its time-dependent generalization [4,5] have evolved into
standard tools for the description of electronic properties in
condensed-matter physics and quantum chemistry through
the simple local density instead of the less tractable
N -body wave function. Stationary DFT is based on the
Hohenberg-Kohn (HK) theorem [6], which proves that, for
any nondegenerate system of N fermions or bosons [1]
put into a local external potential, the N -body ground-state
wave function can be written as a functional of the local
ground-state density. A similar theorem exists for the
time-dependent case [4,5], where a dependence on the initial
state appears. The Kohn-Sham (KS) scheme [7] and its
time-dependent generalization [4,5] provide a straightforward
method to compute self-consistently the density in a quantum
framework, defining the noninteracting system (i.e., the
local single-particle potential), that reproduces the exact
density.

Traditional DFT is particularly well suited to study
the electronic properties in molecules [8]. As a molecule
is a self-bound system, the corresponding Hamiltonian is
translationally invariant (which ensures Galilean invariance
of the wave function [9]), and one can apply the Jacobi
coordinates method. This permits decoupling of the center-of-
mass (c.m.) properties from the internal ones and the correct
treatment of the redundant coordinate problem (i.e., the fact
that one coordinate is redundant for the description of the
internal properties [10]) and the c.m. correlations. But as
the nuclei are much heavier than the electrons, we can apply the
Jacobi coordinates method to the nuclei only, so that only the
nuclei will carry the c.m. correlations, and use the clamped
nuclei approximation. Then, one recovers the “external”
potential of traditional DFT, of the form

∑N
i=1 vext(ri), which

accounts for the nuclear background as seen by the electrons
in the frame attached to the c.m. of the nuclei. Thus, traditional
DFT is particularly adapted to the study of the electronic
properties in molecules [8]. It is implicitly formulated in the

nuclear c.m. frame [11] and the energy functional does not
contain any c.m. correlations. Of course, in contrast to the
whole molecule, the pure electronic system is not a self-bound
system: The vext potential breaks translational invariance
and is required to reach bound states in the stationary
case.

For other self-bound systems, such as isolated atomic
nuclei or helium droplets, the situation is intrinsically different
because the masses of all the particles (fermions or bosons)
are of the same order of magnitude. As a consequence,
to decouple the c.m. properties from the internal ones,
one has to apply the Jacobi coordinates method to all
the particles. The redundant coordinate problem (and thus
the c.m. correlations) will now concern all the parti-
cles and should be treated properly. If a DFT exists,
the c.m. correlations should be taken into account in the
functional.

Moreover, no “external” potential of the form
∑N

i=1 vext(ri)
can be justified in the corresponding self-bound Hamiltonians
(where ri denote the N particles’ coordinates related to any
inertial frame as the laboratory). One may be tempted to
formulate a DFT using the traditional DFT conclusions in
the limit vext → 0, but this would lead to false and incoherent
results because of the following:

(i) In the stationary case, the HK theorem is valid only
for external potentials that lead to bound many-body
states [13], which is no longer the case at the limit
vext → 0 for translationally invariant particle-particle
interactions [14].

(ii) The form of vext is not translationally invariant, but
translational invariance is a key feature of self-bound
systems [10,14,15].

(iii) Traditional DFT concepts as formulated so far are
not applicable in terms of a well-defined internal
density ρint, that is, the density relative to the sys-
tem’s c.m., which is of experimental interest [8,14,16]
(being for example measured in nuclear scattering
experiments).
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Instead of the traditional DFT potential
∑N

i=1 vext(ri), one
might be tempted to introduce an arbitrary translationally
invariant potential of the form

∑N
i=1 vint(ri − R), where R =

1
N

∑N
j=1 rj is the total c.m. of the particles. This potential is

an “internal” potential (i.e., is seen in the c.m. frame), and in
Ref. [14] we emphasized that it is the only form that satisfies
all the key formal properties. However, vint should be zero in
the purely isolated self-bound case. This is why in Ref. [14]
we presented it as a mathematical “auxiliary” to reach our
goal and showed that it can be dropped in the end without
affecting the conclusions. Through it (and using the Jacobi
coordinates), we proved, in a different way than those found
in Refs. [16,17], the stationary “internal DFT” theorem: The
internal many-body state can be written as a functional of ρint.
Then we formulated rigorously the corresponding “internal”
KS scheme (in the c.m. frame). The main goal of this work is
to take a first step toward a fundamental justification to the use
of internal density functionals for stationary mean-field-like
calculations of nuclei [18] or He droplets [19] with effective
interactions, showing that there exists an ultimate functional
that allows reproduction of the exact internal density, which
was not clear up to now.

It is to be noted that the stationary internal DFT formalism
and KS scheme give a more fundamental justification than the
Hartree-Fock (HF) framework to the stationary nuclear mean-
field-like calculations. Indeed, the HF framework does not con-
tain quantum correlations, nor does it treat correctly the redun-
dant coordinate problem, which introduces a spurious coupling
between the internal properties and the c.m. motion [10,20]. A
way to overcome this problem in the stationary case is to per-
form a projected HF (projection before variation on c.m. mo-
mentum), which permits the restoration of Galilean invariance,
but at the price of abandoning the independent-particle descrip-
tion [10,15,18]. Within the internal DFT formalism, we proved
that the c.m. correlations can be included in the energy func-
tional, thus in the KS potential [14], so that there would be no
need for a c.m. projection if the ultimate functional was known.

It is of interest to generalize the stationary internal DFT
formalism and KS scheme to the time-dependent case. It would
provide a first step toward a fundamental justification to the use
of density functionals in nuclear time-dependent calculations
with an effective mean field [21,22] and would prove that the
c.m. correlations can be included in the functional. This last
point is even more interesting in that the spurious c.m. motion
problem remains in time-dependent HF [23,24], but then the
projected HF method becomes unmanageable and is not used
in practice [24].

In this paper, I propose to set up the time-dependent internal
DFT formalism and KS scheme. The paper is organized as
follows: First the Jacobi coordinates method is applied to
the time-dependent full many-body Hamiltonian to decouple
the internal properties from the c.m. ones, and some useful
“internal” observables, including the internal density, are
defined (Sec. II); then it is shown that the internal many-body
wave function (and thus the “internal” mean values of all
the observables) can be written as a functional of the internal
density (Sec. III); finally, the associated time-dependent
internal KS scheme is developed as a practical scheme to
compute the internal density (Sec. IV).

II. TIME-DEPENDENT N-BODY FORMULATION

A. General formulation

In the time-dependent domain, the introduction of an
explicitly time-dependent internal potential of the form

N∑
i=1

vint(ri − R; t) (1)

takes a true meaning. This is because self-bound systems are
plagued by a c.m. problem. For instance, in the stationary
case, the c.m. will be delocalized in the whole space for
isolated self-bound systems [8,14,16]. This does not occur
in experiments because experimentally observed self-bound
systems are no longer isolated (since they interact with
the piece of matter into which they are inserted, which
localizes the c.m.). In the time domain, the c.m. motion
remains uncomparable to the experimental one (as will be
discussed in more detail later), so that it would not make sense
to introduce a time-dependent potential that would act on
the c.m. motion. It is the internal properties that are of true
experimental interest (since experimentalists always deduce
those properties [25]). This justifies the introduction of an
explicitly time-dependent potential of the form (1), which
would act on the internal properties only, and models the
internal effect (only) of time-dependent potentials used in
experiments. Such a potential no longer appears simply as
a mathematical auxiliary (as for the stationary internal DFT)
and should not necessarily be dropped at the end.

We thus start from a general translationally invariant N -
body Hamiltonian composed of the usual kinetic energy term, a
translationally invariant two-body potential u, which describes
the particle-particle interaction, and an arbitrary translationally
invariant “internal” potential vint, which contains an explicit
time dependence:

H =
N∑

i=1

p2
i

2m
+

N∑
i,j=1
i>j

u(ri − rj ) +
N∑

i=1

vint(ri − R; t). (2)

For the sake of simplicity we assume a two-body interaction
u and N identical fermions or bosons. The generalization to
three- to N -body interactions is straightforward; the general-
ization to different types of particles is underway.

We rewrite the Hamiltonian (2) using the (N − 1) Jacobi
coordinates {ξα; α = 1, . . . , N − 1} and the c.m. coordinate
R, defined as

ξ1 = r2 − r1, ξ2 = r3 − r2 + r1

2
, . . . ,

ξN−1 = N

N − 1
(rN − R), (3)

R = 1

N

N∑
j=1

rj .

The ξα are relative to the c.m. of the other 1, . . . , α − 1
particles and are independent of R. They are to be distinguished
from the N “laboratory coordinates” ri and the N “c.m.
frame coordinates” (ri − R) relative to the total c.m. R.
Because the {ri − rj �=i} and the {ri − R} can be rewritten as
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functions of the ξα , the interaction u and the internal potential
vint can be rewritten as functions of the ξα . (Appendix A
gives the expression of the {ri − R} as a function of the
{ξα} coordinates.) We denote by U and V the interaction
potential and the internal potential in the Jacobi coordinates
representation:

N∑
i,j=1
i>j

u(ri − rj ) → U (ξ1, . . . , ξN−1),

(4)
N∑

i=1

vint(ri − R; t) → V (ξ1, . . . , ξN−1; t).

Of course we have U [u] and V [vint]. The V [vint] potential
is (N − 1) body in the Jacobi coordinates representation and
cannot be written in a simple form in this representation (see
Appendix A). Moreover, various vint can lead to the same V ,
which we will develop later.

After having defined the conjugate momenta of R and ξα ,
we can separate (2) into H = HCM + Hint, where

HCM = −h̄2�R

2M
(5)

(with M = Nm the total mass) is a one-body operator acting
in R space only and

Hint =
N−1∑
α=1

τ 2
α

2µα

+ U [u](ξ1, . . . , ξN−1)

+V [vint](ξ1, . . . , ξN−1; t) (6)

(with τα the conjugate momentum of ξα and µα = m α
α+1 the

corresponding reduced mass). Hint is a (N − 1)-body operator
in the {ξα} space. It contains the interaction and the internal
potential.

In the time-dependent case, we can choose freely the initial
state ψ(r1, . . . , rN ; t0). We start from an initial state, which
can be written

ψ(r1, . . . , rN ; t0) = �(R; t0) ψint(ξ1, . . . , ξN−1; t0) (7)

in the Jacobi coordinates representation. This form does not
mix the c.m. motion with the internal one (since mixing them
would not make sense because the c.m. motion does not
correspond to the experimental one) and corresponds to the
form of the stationary state [10,14]. Because HCM and Hint

act in two separate subspaces, the R and {ξα} spaces (which
implies [HCM,Hint] = 0), it is easy to show that the state
|ψ(t)) can be built at all times t � t0 as a direct product of
the form

ψ(r1, . . . , rN ; t) = �(R; t) ψint(ξ1, . . . , ξN−1; t), (8)

with

HCM|�(t)) = ih̄∂t |�(t)), (9)

Hint|ψint(t)) = ih̄∂t |ψint(t)). (10)

Hence, the N -body wave function ψ can be separated for all
times into a one-body wave function � that depends on the
position R of the c.m. only and an “internal” (N − 1) body
wave function ψint that depends on the remaining (N − 1)

Jacobi coordinates ξα . Of course, ψint could also be written as
a function of the N laboratory coordinates ri , but one of them
would be redundant. � is solution of the free Schrödinger
equation and describes the motion of the isolated system as
a whole in any chosen inertial frame of reference (such as
the laboratory). If one starts from a normalizable initial state
|�(t0)), |�(t)) is destined to spread more and more. In the
stationary limit, the only solutions of Eq. (9) are plane waves,
which are infinitely spread (and thus not normalizable). This
does not correspond to experimental situations, where the
system is no longer isolated: Interactions with other systems
of the experimental apparatus localize the c.m. But the formal
decoupling between the c.m. motion and the internal properties
obtained when using the Jacobi coordinates method allows one
to deduce the internal properties, which can be compared to
the experimental ones.

B. Some useful definitions

Is is helpful to define some quantities and relations that will
be useful for the calculations to follow. In Refs. [14,26,27] the
internal one-body density is defined as

ρint(r, t)/N =
∫

dr1 · · · drN δ(R)|ψint(r1, . . . , rN ; t)|2

× δ(r − (ri − R))

=
(

N

N − 1

)3 ∫
dξ1 · · · dξN−2

×
∣∣∣∣ψint

(
ξ1, . . . , ξN−2,

Nr
N − 1

; t

)∣∣∣∣
2

. (11)

This density is normalized to N . The laboratory density ρ(r, t)
is obtained by convolution of ρint with the c.m. wave function
(following Refs. [26,27]): ρ(r, t) = ∫

dR|�(R, t)|2ρint(r −
R, t).

We also introduced in Ref. [14] the local part of the two-
body internal density matrix

γint(r, r′; t)

=
∫

dr1 · · · drN δ(R)|ψint(r1, . . . , rN ; t)|2

× δ(r − (ri − R))δ(r′ − (rj �=i − R))

= N (N − 1)

2

(
N − 1

N − 2

)3 (
N

N − 1

)3 ∫
dξ1 · · · dξN−3

×
∣∣∣∣ψint

(
ξ1, . . . , ξN−3,

r′ + (N − 1)r
N − 2

,
Nr′

N − 1
; t

)∣∣∣∣
2

.

(12)

It has the required normalization to N (N − 1)/2. Following
steps similar to those in Refs. [26,27], one can show that the
local part of the two-body laboratory density matrix γ (r, r′, t)
is obtained by convolution of γint with the c.m. wave function:
γ (r, r′; t) = ∫

dR|�(R, t)|2γint(r − R, r′ − R; t).
The definitions of ρint(r, t) and γint(r, r′; t) show clearly

that they are defined in the c.m. frame, that is, that the r, r′
coordinates are measured in the c.m. frame [see the δ relations
in Eqs. (11) and (12)]. Compared to the traditional definitions,
a δ(R) term appears in the definition of the internal densities
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calculated with ψint in {ri} coordinates. As one of them is
redundant, the δ(R) term represents the dependence of the
redundant coordinate on the others [28].

Another quantity that will be very useful is the one-
body internal probability current, defined in Appendix B as

jint(r, t)/N = h̄

2mi

(
N

N − 1

)3

×
∫

dξ1 . . . dξN−2ψ
∗
int(ξ1, . . . , ξN−2, ν; t)

×∇νψint(ξ1, . . . , ξN−2, ν; t)|ν= N
N−1 r + c.c. (13)

(where c.c. denotes the complex conjugate), which satisfies
the “internal” continuity equation

∂tρint(r, t) + ∇ · jint(r, t) = 0. (14)

Using Eqs. (13), (6), and (10), we obtain the relation

i
∂

∂t
jint(r, t)

= N

2mi

(
N

N − 1

)3∫
dξ1 . . . dξN−2

{
∇νψint(ξ1, . . . , ξN−2, ν; t)ih̄∂tψ

∗
int(ξ1, . . . , ξN−2, ν; t)

+∇ν

(
ih̄∂tψint(ξ1, . . . , ξN−2, ν; t)

)
ψ∗

int(ξ1, . . . , ξN−2, ν; t) + c.c.

}∣∣∣∣
ν= N

N−1 r

= N

2mi

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2

{
∇νψint(ξ1, . . . , ν; t)

h̄2�ν

2µN−1
ψ∗

int(ξ1, . . . , ν; t)

−ψ∗
int(ξ1, . . . , ν; t)∇ν

h̄2�ν

2µN−1
ψint (ξ1, . . . , ν; t)

+ψ∗
int(ξ1, . . . , ν; t)∇ν

(
U [u](ξ1, . . . , ν) + V [vint](ξ1, . . . , ν; t)

)
ψint(ξ1, . . . , ν; t) + c.c.

}∣∣∣∣
ν= N

N−1 r
, (15)

which will be a key equation for what follows.

III. TIME-DEPENDENT INTERNAL DFT THEOREM

A. Preliminaries

To prove the time-dependent internal DFT theorem, we
adapt the considerations of Refs. [4,5] to the internal
Schrödinger equation (10). The main differences lie in the
definition of the corresponding internal density (11) and
probability current (13), and in the fact that the potential
V [vint](ξ1, . . . , ξN−1; t) cannot be written as the sum of one-
body potentials in the Jacobi coordinates representation (which
introduces some subtleties owing to the c.m. correlations and
will bring us to use the integral mean value theorem to reach
our goal).

In what follows, we consider a given type of fermion
or boson (i.e., a given particle-particle interaction u). Solv-
ing the “internal” Schrödinger equation (10) for a fixed
initial state |ψint(t0)) and for various internal potentials
V [vint](ξ1, . . . , ξN−1; t) defines two maps [4,5]

F : V [vint](ξ1, . . . , ξN−1; t) → |ψint(t)),

G : V [vint](ξ1, . . . , ξN−1; t) → ρint(r, t). (16)

We first notice that two potentials vint and v′
int, which

lead to two potentials V [vint](ξ1, . . . , ξN−1; t) and V [v′
int]

(ξ1, . . . , ξN−1; t) that differ by a scalar function of time only,

c(t), will give two wave functions that differ by a phase e−iα(t)/h̄

only [4,5]:

V [v′
int](ξ1, . . . , ξN−1; t) − V [vint](ξ1, . . . , ξN−1; t) = c(t)

⇒ |ψ ′
int(t)) = e−iα(t)/h̄|ψint(t)),

with α̇(t) = c(t). (17)

Then, |ψint(t)) and |ψ ′
int(t)) will give the same density

ρint(r, t) = ρ ′
int(r, t). The consequence is that the map G is

not fully invertible.
Let us discuss a bit about the condition (17). The form

(4) for V [vint] implies V [v′
int] − V [vint] = V [v′

int − vint]. We
define

�vint(r; t) = v′
int(r; t) − vint(r; t). (18)

It is to be noted that the condition �vint(r; t) �= c(t)/N is
necessary but not sufficient to ensure the condition (17), which
can be rewritten as V [�vint](ξ1, . . . , ξN−1; t) �= c(t). Indeed,
it is possible to have �vint(r; t) �= c(t)/N and nevertheless
V [�vint](ξ1, . . . , ξN−1; t) = c(t), because of possible compen-
sation from the c.m. correlations.

Let us focus on the two-particle case, where only one Jacobi
coordinate is sufficient to describe the internal properties.
We have (see Appendix A) V [�vint](ξ1; t) = �vint(− 1

2ξ1; t) +
�vint( 1

2ξ1; t) = ∑2
i=1 vint(ri − R; t). We see that if �vint(r; t)

is an odd function of r at all t (up to an additional time-
dependent function), we have V [�vint](ξ1; t) = c(t) ⇒ ρint =
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ρ ′
int. This is due to the c.m. correlations, which the nontrivial

form of V reflects. If �vint tends to move the first particle
in one direction (in the c.m. frame), the second particle will
tend to move in the opposite direction because of the c.m.
correlations. But if this potential counteracts perfectly the
motion of the second particle (as does an odd potential in the
c.m. frame), then the particles remain stuck and the density
remains unchanged.

The same can occur for an arbitrary number of particles.
For instance, as

∑N
i=1(ri − R) = 0, it is obvious from Eqs.

(4) and (18) that every �vint(r; t) = b(t) · r + c(t)/N will
yield V [�vint] = c(t) (even if this form for �vint leads to
internal potentials that are not null at infinity). Again, this is
because if a potential counteracts perfectly the motion due to
the c.m. correlations, the particles remain stuck and the density
remains unchanged. In what follows, we consider only internal
potentials vint and v′

int that lead to V [�vint] �= c(t).
Let us return to Eq. (17) and denote |ψint(t)) =

e−iα(t)/h̄|ψ0
int(t)), where we define ψ0

int as the wave function
obtained for the choice c(t) = 0, that is, associated with
a V [vint](ξ1, . . . , ξN−1; t) where no additive time-dependent

function can be split. If we prove that the map G is invertible
up to an additive time-dependent function c(t), then ψ0

int is
fixed by ρint through the relation |ψ0

int(t)) = FG−1ρint(r, t),
which implies that |ψ0

int(t)) can be written as a functional of
the internal density ρint defined in (11). Consequently, any
expectation value of an operator Ô that does not contain a
time derivative can be written as a functional of the internal
density (since the phase cancels out): (ψint(t)|Ô|ψint(t)) =
(ψ0

int[ρint](t)|Ô|ψ0
int[ρint](t)).

We thus have to show that a propagation of (10) with two
potentials vint and v′

int that yield V [�vint](ξ1, . . . , ξN−1; t) �=
c(t) will produce two different internal densities ρint

and ρ ′
int.

B. The proof

We start from a fixed initial state |ψint(t0)) and
propagate it with two potentials vint and v′

int that
give V [�vint](ξ1, . . . , ξN−1; t) �= c(t). We deduce from
Eq. (15)

i
∂

∂t

(
jint(r, t) − j′int(r, t)

)∣∣∣∣
t=t0

= N

mi

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2|ψint(ξ1, . . . , ν; t0)|2∇νV [�vint](ξ1, . . . , ν; t0)

∣∣∣∣
ν= N

N−1 r
. (19)

Using the “internal” continuity relation (14) we obtain

∂2

∂t2

(
ρint(r, t) − ρ ′

int(r, t)
)∣∣∣∣

t=t0

= N

m

(
N

N − 1

)3

∇r.

∫
dξ1 . . . dξN−2

∣∣∣∣ψint

(
ξ1, . . . ,

N

N − 1
r; t0

)∣∣∣∣
2

∇νV [�vint](ξ1, . . . , ν; t0)

∣∣∣∣
ν= N

N−1 r
. (20)

We now make the only hypothesis that is used in this
derivation. Following Refs. [4,5] we restrict the set of
potentials vint to those that can be expanded into Taylor
series with respect to time at the initial time t0 (which is a
reasonable hypothesis for physical potentials). As we supposed
that V [�vint](ξ1, . . . , ξN−1; t) �= c(t), we have

V [�vint](ξ1, . . . , ξN−1; t) �= c(t)

⇒ ∃k : wk(ξ1, . . . , ξN−1; t0) �= constant (21)

(with k a positive integer), where

wk(ξ1, . . . , ξN−1; t0) = ∂k

∂tk
V [�vint](ξ1, . . . , ξN−1; t)

∣∣∣∣
t=t0

.

(22)

It is to be noted that the condition ∂k

∂tk
�vint(r; t)|t=t0 �=

constant ⇒ ∇r
∂k

∂tk
�vint(r; t)|t=t0 �= −→

0 is necessary to ensure
the condition (21) [see Eqs. (4) and (22)], but it is not sufficient.

In what follows, we consider k as the smallest positive
integer such that (21) is verified. Then, if we apply k time
derivatives to Eq. (20), we straightforwardly obtain

∂k+2

∂tk+2

(
ρint(r, t) − ρ ′

int(r, t)
)∣∣∣∣

t=t0

= N

m

(
N

N − 1

)3

∇r.

∫
dξ1 . . . dξN−2|ψint(ξ1, . . . , ν; t0)|2∇νwk(ξ1, . . . , ν; t0)

∣∣∣∣
ν= N

N−1 r
. (23)
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Because, for every physical potential, ∇ξN−1wk(ξ1, . . . ,

ξN−1; t0) is a real and continuous function in the whole
position space, and because |ψint(ξ1, . . . , ξN−1; t0)|2 is a real
and positive function in the whole position space, we can apply

the integral mean value theorem generalized to many-variable
functions (as demonstrated in Appendix C) to the previous
expression. We obtain

∃(β1, . . . , βN−2) : m
∂k+2

∂tk+2

(
ρint(r, t) − ρ ′

int(r, t)
)∣∣∣∣

t=t0

= ∇r.

[
∇ Nr

N−1
wk

(
β1, . . . , βN−2,

N

N − 1
r; t0

)
N

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2

∣∣∣∣ψint

(
ξ1, . . . ,

N

N − 1
r; t0

)∣∣∣∣
2
]

= ∇r.

[
∇ Nr

N−1
wk

(
β1, . . . , βN−2,

N

N − 1
r; t0

)
ρint(r, t0)

]
. (24)

To prove the one-to-one correspondence V [vint](ξ1, . . . ,

ξN−1; t) ↔ ρint(r, t) it remains to be shown that (24) cannot
vanish for vint and v′

int that satisfy the relation (21). Then
the internal densities ρint(r, t) and ρ ′

int(r, t) would become

different infinitesimally later than t0. We use the reductio ad
absurdum method, in the spirit of Refs. [4,5]. We suppose that
(24) vanishes, which implies

0 = N − 1

N

∫
drwk

(
β1, . . . , βN−2,

N

N − 1
r; t0

)
∇r ·

[
∇ Nr

N−1
wk

(
β1, . . . , βN−2,

N

N − 1
r; t0

)
ρint(r, t0)

]

= −
∫

dr
[
∇ Nr

N−1
wk

(
β1, . . . , βN−2,

N

N − 1
r; t0

)]2

ρint(r, t0). (25)

As wk is a many-body function, Eq. (21) does not im-
ply that ∀(β1, . . . , βN−2) : ∇ξN−1wk(β1, . . . , βN−2, ξN−1; t0) �=−→
0 in the general case. However, we check whether

this relation holds for the particular form (4) we choose
for V .

Inserting the results of Appendix A in Eqs. (4) and (22), we
obtain, if N > 2,

wk(β1, . . . , βN−2, ξN−1; t0)

= ∂k

∂tk
�vint

(
N − 1

N
ξN−1; t

)∣∣∣∣
t=t0

+
N−2∑
i=1

∂k

∂tk
�vint

(
γi − 1

N
ξN−1; t

)∣∣∣∣
t=t0

+ ∂k

∂tk
�vint

(
−

N−2∑
i=1

γi − 1

N
ξN−1; t

)∣∣∣∣∣
t=t0

, (26)

where we defined

γN−2 = N − 2

N − 1
βN−2 and

∀i ∈ [1, N − 3] : γi = i

i + 1
βi −

N−2∑
α=i+1

1

α + 1
βα. (27)

The form of the third term of the right-hand side of Eq. (26)
comes from the fact that

∑N
i=1(ri − R) = 0, which implies,

using Appendix A, that −∑N−2
α=1

1
α+1βα = −∑N−2

i=1 γi . We
see from Eq. (27) that the set (γ1, . . . , γN−2) is perfectly
defined by the set (β1, . . . , βN−2) and vice versa. We now can
calculate

∇ξN−1wk(β1, . . . , βN−2, ξN−1; t0) = N − 1

N
D

(
N − 1

N
ξN−1

)
− 1

N

N−2∑
i=1

D
(

γi − 1

N
ξN−1

)
− 1

N
D

(
−

N−2∑
i=1

γi − 1

N
ξN−1

)
, (28)
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where we introduced

D(r) = ∇r
∂k

∂tk
�vint(r; t)

∣∣∣∣
t=t0

(29)

for simplicity. We now check whether ∃(β1, . . . , βN−2) :
∇ξN−1wk(β1, . . . , βN−2, ξN−1; t0) = −→

0 , which is equiva-
lent, according to Eqs. (27) and (28), to checking
whether

∃(γ1, . . . , γN−2) : (N − 1)D
(
(N − 1)r

) =
N−2∑
i=1

D(γi − r) + D

(
−

N−2∑
i=1

γi − r

)
. (30)

Some mathematical considerations show that this equation
cannot be fulfilled for all r when N > 2, whatever the set
of (γ1, . . . , γN−2), unless D(r) = −−−→const.. But if D(r) = −−−→const.,
then �vint(r; t) should be equal to b(t) · r + c(t)/N , according
to Eq. (29), which is forbidden by the condition (21) (cf. the
discussion of Sec. III A).

It remains to discuss the case N = 2. It is easy to
show that then we have ∇ξN−1wk(ξN−1; t0) = − 1

2 D(− 1
2ξN−1) +

1
2 D( 1

2ξN−1), which is null if D(r) is any even function of r. But

if D(r) is even, then ∂k

∂tk
�vint(r; t) should be an odd function

of r (up to an additional time-dependent function), according
to Eq. (29), which is also forbidden by the condition (21) (cf.
the discussion of Sec. III A).

Thus, we can conclude that in our case

∀(β1, . . . , βN−2) : ∇ξN−1wk(β1, . . . , βN−2, ξN−1; t0) �= −→
0 .

We immediately deduce the incompatibility of this relation,
which is a consequence of (21) and of the particular form
(4) of V , with Eq. (25). Thus, the hypothesis we made is
absurd: Eq. (24) cannot vanish if V [�vint] �= c(t), so that
the internal densities ρint(r, t) and ρ ′

int(r, t) become different
infinitesimally later than t0. As a consequence, the map G,
defined in Eq. (16), is invertible (up to an additive time-
dependent function) and |ψ0

int(t)) can be written as a functional
of the internal density [using the notation in Eq. (17)]. Thus,
any expectation value of an operator Ô that does not contain a
time derivative can be written as a functional of ρint as the phase
cancels out. This proves the time-dependent internal DFT
theorem (which is a variant of the Runge-Gross theorem [4,5]
for self-bound systems and internal densities).

Keep in mind that all the previous reasoning holds only for
a fixed initial state ψint(t0) (and a given type of particle), so
that ψ0

int is not only a functional of ρint but also depends on
ψint(t0). This will be discussed further.

C. Link with traditional (time-dependent) DFT

We stress here the link and differences between the
traditional DFT and internal DFT potentials. We recall that
the form of the potential vext of the traditional DFT can be
fundamentally justified starting from the laboratory Hamil-
tonian of an isolated molecule where the nuclei are treated
explicitly. As a molecule is a self-bound system, one can apply
the Jacobi coordinates method. We denote the N electronic

coordinates related to the laboratory frame as ri , the nuclear
c.m. coordinate as Rnucl, and the N electronic coordinates
related to the c.m. of the nuclei as r′

i = ri − Rnucl. A key
point concerning the molecules is that, as the nuclei are much
heavier than the electrons, the c.m. of the whole molecule
coincides with Rnucl, and it is an excellent approximation to
apply the Jacobi coordinates to the nuclear coordinates only.
As a result, the c.m. motion will be described by a �(Rnucl)
wave function. The redundant coordinate problem (and thus
the c.m. correlations) will concern the nuclei only and will
be “external” to the electronic problem: The N electrons are
still described by N coordinates. Then, if one decouples the
electronic motion from the nuclear one using the clamped
nuclei approximation, the interaction of the electrons with
the nuclear background is described by a potential of the
form

∑N
i=1 vext(ri − Rnucl), which becomes

∑
i vext(r′

i) when
moving to the c.m. frame. We then recover the form of the
traditional DFT potential. The potential vext, which is internal
for the (self-bound) molecular problem, becomes external for
the pure electronic problem. Those considerations also hold in
the time domain, the difference being that the potential

N∑
i=1

vext(ri − Rnucl; t) (31)

can then contain an explicit time dependence in addition to the
part that describes the interaction of the electrons with the nu-
clear background. We recover the traditional time-dependent
DFT potential [4,5,29,30] when moving in the c.m. frame.

This line of reasoning gives us the link between the
traditional DFT potential expressed with the laboratory co-
ordinates, Eq. (31), and the internal DFT potential expressed
with the laboratory coordinates, Eq. (1). They both act only on
the internal properties, and not on the c.m. motion (because it
is not comparable to the experimental one). The difference is
that as, in the molecular case, some particles are much heavier
than others, it is a very good approximation to associate the
c.m. of the whole molecule with Rnucl, which allows us to
neglect the c.m. correlations for the electronic system and
justifies the clamped nuclei approximation. This simplifies
greatly the electronic problem, and the traditional DFT can be
used to study it. When the particles constituting the self-bound
system have nearly the same masses, as is the case for nuclei
or He droplets, the total c.m. (R) should be calculated with
all the particles, so that the c.m. correlations will concern all
the particles, and no clamped approximation can be justified.
Then, we should use the formalism proposed here.
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IV. TIME-DEPENDENT INTERNAL KOHN-SHAM
SCHEME

A practical scheme to calculate the internal density ρint

is now presented. It consists of the generalization of the
stationary internal KS scheme of Ref. [14] to the time-
dependent case. First, we note that for any normalizable initial
state |ψint(t0)), which is the only allowed one, the “internal”
Schrödinger equation (10) stems from a variational principle
on the “internal” quantum action [4,31,32]

Aint =
∫ t1

t0

dt(ψint(t)|ih̄∂t − Hint|ψint(t)). (32)

As the function c(t) possibly contained in the potential Vint is
perfectly canceled by the time derivative of the correspond-
ing phase e−iα(t)/h̄ of ψint [see Eq. (17)], we have Aint =∫ t1
t0

dt(ψ0
int[ρint](t)|ih̄∂t − Hint|ψ0

int[ρint](t)) if Vint is chosen so
that no additive time-dependent function can be split. Thus,
the internal quantum action can be considered as a functional

of ρint. Its
∫ t1
t0

dt(ψ0
int(t)|ih̄∂t − ∑N−1

α=1
τ 2
α

2µα
− U [u]|ψ0

int(t)) part
is a universal functional of ρint in the sense that, for a given
type of particle (a given interaction u), the same dependence
on ρint holds for every V [vint] and thus vint [see Eq. (4)].

Using Eq. (6), we develop the “internal” quantum action as

Aint[ρint] =
∫ t1

t0

dt

(
ψ0

int(t)

∣∣∣∣∣ih̄∂t −
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣∣ψ0
int(t)

)

−
∫ t1

t0

dt
(
ψ0

int(t) |U [u](ξ1, . . . , ξN−1)|ψ0
int(t)

)
−

∫ t1

t0

dt
(
ψ0

int(t)
∣∣V [vint](ξ1, . . . , ξN−1; t)

∣∣ψ0
int(t)

)
.

(33)

To rewrite its last two terms in a more convenient way, we
establish a useful relation. For any function f (r1, . . . , rN ; t)
of the laboratory coordinates, expressible with the Jacobi
coordinates [which we denote F (ξ1, . . . , ξN−1; t)], we have(

ψ0
int(t)|F (ξ1, . . . , ξN−1; t)|ψ0

int(t)
)

=
∫

dξ1 · · · dξN−1F (ξ1, . . . , ξN−1; t)

× ∣∣ψ0
int(ξ1, . . . , ξN−1; t)

∣∣2

=
∫

dRdξ1 · · · dξN−1δ(R)F (ξ1, . . . , ξN−1; t)

× ∣∣ψ0
int(ξ1, . . . , ξN−1; t)

∣∣2

=
∫

dr1 · · · drNδ(R)f (r1, . . . , rN ; t)

× ∣∣ψ0
int (r1, . . . , rN ; t)

∣∣2
. (34)

We see that the “internal mean values” calculated with ψint

expressed as a function of the (N − 1) coordinates ξα , can
also be calculated with ψint expressed as a function of the N

coordinates ri . Since one of them is redundant, a δ(R) that
represents the dependence of the redundant coordinate on the
others appears [28].

Equation (34) leads to(
ψ0

int(t)
∣∣V [vint](ξ1, . . . , ξN−1; t)

∣∣ψ0
int(t)

)
=

∫
dr1 · · · drN δ(R)

N∑
i=1

vint(ri − R; t)

× ∣∣ψ0
int(r1, . . . , rN ; t)

∣∣2

=
N∑

i=1

∫
dr vint(r; t)

∫
dr1 · · · drN δ(R)

× ∣∣ψ0
int(r1, . . . , rN ; t)

∣∣2
δ(r − (ri − R))

=
N∑

i=1

∫
dr vint(r; t)

ρint(r, t)
N

=
∫

dr vint(r; t)ρint(r, t), (35)

where we used Eq. (11) to obtain the penultimate equality.
We see that the potential

∑N
i=1 vint(ri − R; t), which is N

body with respect to the laboratory coordinates [and (N − 1)
body when expressed with Jacobi coordinates], becomes
one body (and local) when expressed with the c.m. frame
coordinates (where one must keep in mind that ρint is defined
in the c.m. frame, i.e., that r is measured in the c.m. frame; cf.
Sec. II B).

Applying Eq. (34) to the second term of the ac-
tion integral (33) gives (ψ0

int(t)|U [u](ξ1, . . . , ξN−1)|ψ0
int(t)) =

1
2

∫
drdr′γint(r, r′; t)u(r − r′), where γint is defined in Eq. (12).
The action integral (33) can thus be rewritten as

Aint[ρint] =
∫ t1

t0

dt

(
ψ0

int(t)

∣∣∣∣∣ih̄∂t −
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣∣ ψ0
int(t)

)

− 1

2

∫ t1

t0

dt

∫
drdr′γint(r, r′; t)u(r − r′)

−
∫ t1

t0

dt

∫
dr vint(r; t)ρint(r, t). (36)

Up to now we have not made any hypotheses. To recover the
associated internal time-dependent KS scheme, we assume, so
as to obtain the traditional time-dependent KS scheme [4,5],
that there exists, in the c.m. frame, an N -body noninteracting
system (i.e., a local single-particle potential vS)(

−h̄2�

2m
+ vS(r, t)

)
ϕi

int(r, t) = ih̄∂tϕ
i
int(r, t) (37)

that reproduces exactly the density ρint of the interacting
system

ρint(r, t) =
N∑

i=1

∣∣ϕi
int(r, t)

∣∣2
(38)

(where we keep in mind that ρint is defined in the c.m. frame).
Even if only (N − 1) coordinates are sufficient to describe the
internal properties, they still describe a system of N particles.
Thus, we have to introduce N orbitals in the KS scheme (as we
did) if we want them to be interpreted (to first order only) as
single-particle orbitals and obtain a scheme comparable (but
not equivalent) to mean-field-like calculations with effective
interactions.
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In Eq. (37) we implicitly supposed that the particles are
fermions (but a KS scheme to describe boson condensates can
be set similarly equaling all the ϕi

int). Uniqueness of the poten-
tial vS(r, t) for a given density ρint(r, t) [and initial |ϕi

int(t0))
that yield the correct initial density ρint(r, t0)] is ensured by
a direct application of the traditional time-dependent DFT
formalism [4,5]. Of course, the question of the validity of the
KS hypothesis, known as the noninteracting v-representability
problem, remains, as in traditional (time-dependent) DFT
[1,5].

To use similar kinds of notation to that in tradi-
tional DFT, we add and subtract to the internal action

integral (36) the internal Hartree term AH [ρint] =
1
2

∫ t1
t0

dt
∫
drdr′ρint(r, t)ρint(r′, t)u(r − r′), the noninteracting

kinetic energy term
∫ t1
t0

dt
∑N

i=1(ϕi
int(t)| p2

2m
|ϕi

int(t)), and the∫ t1
t0

dt
∑N

i=1(ϕi
int(t)|ih̄∂t |ϕi

int(t)) term. This allows us to rewrite
the “internal” action integral (36) as

Aint =
∫ t1

t0

dt

N∑
i=1

(
ϕi

int(t)

∣∣∣∣ih̄∂t − p2

2m

∣∣∣∣ϕi
int(t)

)
− AH [ρint]

−AXC[ρint] −
∫ t1

t0

dt

∫
dr vint(r; t)ρint(r, t), (39)

where the internal exchange-correlation part is defined as

AXC[ρint] = 1

2

∫ t1

t0

dt

∫
dr dr′(γint(r, r′; t) − ρint(r, t)ρint(r′, t)

)
u(r − r′)

+
∫ t1

t0

dt

((
ψ0

int(t)

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣∣ψ0
int(t)

)
−

N∑
i=1

(
ϕi

int(t)

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int(t)

))

−
∫ t1

t0

dt

((
ψ0

int(t)|ih̄∂t |ψ0
int(t)

) −
N∑

i=1

(
ϕi

int(t)|ih̄∂t |ϕi
int(t)

))
. (40)

We see that it contains the exchange-correlation that comes
from the interaction u [the first line of Eq. (40)] but also the
correlations contained in the interacting kinetic energy [the
second line of Eq. (40)] and in the interacting “ih̄∂t” term
[the third line of Eq. (40)]. A key point is that, because the
KS assumption implies ϕi

int[ρint] [1,4,5], AXC[ρint](t) can be
written as a functional of ρint [for given |ψ0

int(t0)) and {|ϕi
int(t0))}

that yields the same initial density ρint(r, t0)].
It remains to vary the “internal” quantum action (39) to

obtain the equations of motion (which define ρint). Vignale
[32] showed recently that the correct formulation of the
variational principle is not to stationarize the quantum action
(i.e., δAint[ρint] = 0) as done so far [4,5,31], but

δAint[ρint] = i(ψint[ρint](t1)|δψint[ρint](t1))

− i
(
ψS

int[ρint](t1)
∣∣δψS

int[ρint](t1)
)

(41)

(where ψS
int is the Slater determinant constructed from the

ϕi
int). The two formulations lead to identical final results for

theorems derived from symmetries of the action functional
because compensations occur [32], but Vignales’s formulation
allows us to solve the causality paradox of the previous
formulation.

Varying Eq. (41) with respect to the ϕi∗
int(r, t), with t ∈

[t0, t1], leads straightforwardly to the internal time-dependent
KS equations for the ϕi

int:

(
− h̄2

2m
� + UH [ρint] + UXC[ρint] + vint

)
ϕi

int = ih̄∂tϕ
i
int,

(42)

with the potentials

UH [ρint](r, t) = δAH [ρint]

δρint(r, t)
,

UXC[ρint](r, t) = δAXC[ρint]

δρint(r, t)

− i

(
ψint[ρint](t1)

∣∣∣∣δψint[ρint](t1)

δρint(r, t)

)

+ i

(
ψS

int[ρint](t1)

∣∣∣∣δψS
int[ρint](t1)

δρint(r, t)

)
, (43)

which are local as expected [vS = UH [ρint] + UXC[ρint] + vint

with the notation of Eq. (37)]. Note that the variational
formulation of Vignale [32] leads to the addition of the last
two terms in the definition of UXC[ρint](r, t) [see Eq. (43)],
compared to the traditional result obtained by stationarization
of the action. It is those terms that allow us to solve the causality
paradox [32].

Equations (42) have the same form as the traditional time-
dependent KS equations formulated in the laboratory frame for
non-translationally invariant Hamiltonians [4,5,7] and allow us
to define ρint through Eq. (38). Here, we have justified their
form in the c.m. frame for self-bound systems described with
translationally invariant Hamiltonians.

But there is a major difference with the traditional DFT
formalism. Following similar steps as in Eq. (34), one can show
that the interacting kinetic energy term and the interacting
“ih̄∂t” term can be rewritten [28] as
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(
ψ0

int(t)

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣∣ψ0
int(t)

)
=

∫
dr1 · · · drNδ(R)ψ0∗

int (r1, . . . , rN ; t)
N∑

i=1

p2
i

2m
ψ0

int(r1, . . . , rN ; t),

(44)(
ψ0

int(t)|ih̄∂t |ψ0
int(t)

) =
∫

dr1 · · · drNδ(R)ψ0∗
int (r1, . . . , rN ; t)ih̄∂tψ

0
int(r1, . . . , rN ; t).

This makes it clear that the difference between the in-
teracting kinetic energy term and the noninteracting ki-
netic energy term

∑N
i=1

∫
dr ϕi∗

int(r) p2

2m
ϕi

int(r) [found in the
exchange-correlation functional (40)], and also the difference
between the interacting “ih̄∂t” term and the noninteracting
“ih̄∂t” term

∑N
i=1(ϕi

int(t)|ih̄∂t |ϕi
int(t)) [found in (40)], come,

on the one hand, from the correlations neglected in the
traditional independent-particle framework but also from the
c.m. correlations described by the δ(R) term in Eq. (44), which
does not appear in traditional time-dependent DFT [4,5]. The
inclusion of the c.m. correlations in the exchange-correlation
functional (40) and potential (43) is the main difference from
the traditional KS scheme, and it is a key issue for self-bound
systems such as atomic nuclei.

Keep in mind that all the previous considerations only hold
for fixed initial states |ψint(t0)) and {|ϕi

int(t0))} (and also for
a fixed type of particle), which should of course give the
same initial density ρint(r, t0). As a consequence, ψ0

int is not
only a functional of ρint but also depends on the initial state
|ψint(t0)), and UXC, Eq. (43), also depends on the initial orbitals
{|ϕi

int(t0))}. An important difference from the ground-state
internal DFT formalism presented in Ref. [14] is that |ψint(t0))
and the {|ϕi

int(t0))} cannot necessarily be written as functionals
of ρint(r, t0). However, as emphasized in Refs. [4,5], if one
starts from initial states |ψint(t0)) and {|ϕi

int(t0))} that are
nondegenerate ground states (i.e., that can be written as
functionals of ρint(r, t0) [14]), ψint and UXC become functionals
of ρint(r, t) alone. Then, in the limit of stationary ground states,
the theory reduces to the stationary internal DFT formalism.

We recall that, as in traditional DFT, the previously
discussed functionals are defined only for internal densities
ρint that correspond to some internal potential vint, called
v-representable internal densities [4,5]. Up to now, we do not
know exactly how large the set of v-representable densities
is. This has to be kept in mind when variations with arbitrary
densities are made, as is done in obtaining the time-dependent
KS equations.

V. CONCLUSION

In summary, we have shown that, for a fixed initial state, the
internal wave function, which describes the internal properties
of a time-dependent self-bound system, can be written (up
to a trivial phase) as a functional of the internal density.
This implies that the “internal” expectation values of any
observable (which does not contain a time derivative), that are
of experimental interest, can be regarded as functionals of the
internal density. Then, we set up, in the c.m. frame, a practical
scheme to calculate the internal density, whose form is similar
to the traditional time-dependent KS equations, the difference

being that the exchange-correlation functional contains the
c.m. correlations.

This work is a first step toward justifying the use of
density functionals for time-dependent nuclear mean-field-
like calculations with effective interactions [21,22], proving
that there exists an ultimate functional that allows us to
reproduce the exact internal density (up to the noninteracting
v-representability question). If this functional was known,
there would be no need for a c.m. correction.

In practical terms, the time-dependent internal KS scheme
can describe, for instance in the nuclear case, the collision
of two nuclei in the frame attached to the total c.m. of the
nuclei. Then, vint is zero but the dependency on the initial state
allows us to start from a state that corresponds to two nuclei
with different velocities, or “boosts” (chosen such that the total
kinetic momentum is zero because we are in the c.m. frame).
According to the choice of the boosts, we can describe a wide
variety of physical phenomena, from nuclear fusion [21] to
Coulomb excitation [33]. One of the nuclei can also simply
consist in a particle such as a proton, to describe the excitation
of a nucleus by diffusion.

A case where a nonzero vint would be interesting is the
case of laser irradiation (in which vint would then contain a
laser potential switched on at t > t0). This is not of major
interest in the nuclear case because, experimentally, we do not
yet have lasers that are suited to the study of laser irradiation
of a nucleus. However, this could be interesting in view of a
generalization of this work to the whole molecule (following
from the generalization to different types of particles, which
is underway).

Many questions remain open. In particular, the question of
the form of the potential that describes the c.m. correlations;
in addition to its practical interest, this question would also
give interesting arguments concerning the noninteracting v-
representability question. Generalization to different types of
particles (fermions or bosons) appears desirable. Finally, the
same reasoning should be applied to rotational invariance to
formulate the theory in terms of the so-called intrinsic one-
body density [34] (which is not directly observable). This
is more complicated because rotation does not decouple from
internal motion, but it should shed some light on the symmetry-
breaking question.
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APPENDIX A: EXPRESSION OF THE {ri − R} AS
FUNCTIONS OF THE {ξα} COORDINATES

Using the relations (3), one could show that the {ri − R}
can all be written as a function of the {ξα} coordinates. We
obtain, as a result,

rN − R = N − 1

N
ξN−1,

rN−1 − R = N − 2

N − 1
ξN−2 − 1

N
ξN−1,

rN−2 − R = N − 3

N − 2
ξN−3 − 1

N − 1
ξN−2 − 1

N
ξN−1,

...
∀i ∈ [2, N − 2] :

ri − R = i − 1

i
ξi−1 −

N−2∑
α=i

1

α + 1
ξα − 1

N
ξN−1,

...

r1 − R = −
N−2∑
α=1

1

α + 1
ξα − 1

N
ξN−1.

The ξN−1 is the only Jacobi coordinate to appear in the
expressions (as a function of the Jacobi coordinates) of all
the {ri − R}. Thus, all the vint(ri − R; t) terms that enter into
the calculation of the total internal potential, Eq. (4), will
contain ξN−1.

APPENDIX B: EXPRESSION OF THE INTERNAL
PROBABILITY CURRENT jint(r, t)

The one-body total laboratory density and probability
current are defined as

ρ(r, t) = N

∫
dr1 . . . drN−1|ψ(r1, . . . , rN−1, r; t)|2,

j(r, t) = h̄

2mi
N

∫
dr1 . . . drN−1ψ

∗(r1, . . . , rN−1, r; t)

×∇rψ(r1, . . . , rN−1, r; t) + c.c. (B1)

(where c.c. denotes the complex conjugate). They satisfy the
“laboratory” continuity equation

∂tρ(r, t) + ∇r · j(r, t) = 0. (B2)

We perform some manipulations on the laboratory probability
current j using the Jacobi coordinates:

j(r, t) = h̄

2mi
N

∫
dr1 . . . drN−1drNδ(r − rN )ψ∗(r1, . . . , rN−1, rN ; t)∇rN

ψ(r1, . . . , rN−1, rN ; t) + c.c.

= h̄

2mi
N

∫
dRdξ1 . . . dξN−1

(
N

N − 1

)3

δ

(
ξN−1 − N

N − 1
(r − R)

)

×�∗(R, t)ψ∗
int(ξ1, . . . , ξN−1; t)

(
∇ξN−1 + ∇R

N

)
�(R, t)ψint(ξ1, . . . , ξN−1; t) + c.c.

=
∫

dR|�(R, t)|2 × h̄

2mi
N

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2ψ

∗
int(ξ1, . . . , ξN−2, ν; t)∇νψint(ξ1, . . . , ξN−2, ν; t)

∣∣∣∣
ν= N

N−1 (r−R)

+ h̄

2mi

∫
dR�∗(R, t)

∇R

N
�(R, t) × N

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2

∣∣∣∣ψint(ξ1, . . . , ξN−2,
N

N − 1
(r − R); t)

∣∣∣∣
2

+ c.c.

=
∫

dR|�(R, t)|2jint(r − R, t) +
∫

dRρint(r − R, t)j�(R, t), (B3)

where the second equality is obtained using ∇rN
= ∇ξN−1 +

∇R/N (by the definition of the Jacobi coordinates) and where
we introduced the internal one-body density (11), the c.m.
probability current j�(R, t) = h̄

2Mi
�∗(R, t)∇R�(R, t) + c.c.

(where M = Nm is the total mass), and the internal probability
current (13). The meaning of Eq. (B3) is clear: The laboratory

probability current is the sum of the c.m. probability current
and the internal probability current, both convolved, respec-
tively, by the internal one-body density and the c.m. one-body
density. One can show that j� and jint satisfy both independent
continuity relations. It is trivial, using Eqs. (5) and (9), for j� .
For jint, we calculate [with the help of Eqs. (6) and (10)]

(
N

N − 1

)3

∂t

∫
dξ1 . . . dξN−1δ

(
ξN−1 − N

N − 1
r
)

|ψint(ξ1, . . . , ξN−1; t)|2

= − 1

ih̄

(
N

N − 1

)3 ∫
dξ1 . . . dξN−1δ

(
ξN−1 − N

N − 1
r
)

ψ∗
int(ξ1, . . . , ξN−1; t)

h̄2

2µN−1
�ξN−1ψint(ξ1, . . . , ξN−1; t) + c.c.
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= − h̄

2µN−1i

(
N

N − 1

)3 ∫
dξ1 . . . dξN−2ψ

∗
int(ξ1, . . . , ξN−2, ν; t)�νψint(ξ1, . . . , ξN−2, ν; t)

∣∣∣∣
ν= N

N−1 r
+ c.c.

= − h̄

2µN−1i

(
N

N − 1

)3

∇ν ·
∫

dξ1 . . . dξN−2ψ
∗
int(ξ1, . . . , ξN−2, ν; t)∇νψint(ξ1, . . . , ξN−2, ν; t)

∣∣∣∣
ν= N

N−1 r
+ c.c.

= − h̄

2mi

(
N

N − 1

)3

∇r ·
∫

dξ1 . . . dξN−2ψ
∗
int(ξ1, . . . , ξN−2, ν; t)∇νψint(ξ1, . . . , ξN−2, ν; t)

∣∣∣∣
ν= N

N−1 r
+ c.c.

(To obtain the last equality we used the fact that, by definition,
µN−1 = N−1

N
m.) From this relation we deduce, using Eqs.

(11) and (13), the “internal” continuity equation

∂tρint(r, t) + ∇r · jint(r, t) = 0.

This reinforces the interpretation of jint as the internal
probability current.

APPENDIX C: INTEGRAL MEAN VALUE THEOREM FOR
FUNCTIONS OF MANY VARIABLES

We give the generalization of the mean value theorem [35]
to functions of an arbitrary number of variables. One starts

from two real functions of A variables,

∀(x1, . . . , xA) ∈ �e : f : [x1, . . . , xA] �→ �e,

g : [x1, . . . , xA] �→ �e.

We suppose that they are integrable in a domain D, that f � 0
in D, and that g is continuous in D. We define

m = inf{g(x1, . . . , xA); (x1, . . . , xA) ∈ D},
M = sup{g(x1, . . . , xA); (x1, . . . , xA) ∈ D}.

Because f � 0, mf � fg � Mf , which we integrate
to get

m

∫
D

dx1 . . . dxAf (x1, . . . , xA) �
∫

D

dx1 . . . dxAf (x1, . . . , xA)g(x1, . . . , xA) � M

∫
D

dx1 . . . dxAf (x1, . . . , xA)

⇒ ∃C ∈ [m,M] :
∫

D

dx1 . . . dxAf (x1, . . . , xA)g(x1, . . . , xA) = C

∫
D

dx1 . . . dxAf (x1, . . . , xA).

As we supposed that g is continuous in D, we deduce that
∃(x ′

1, . . . , x
′
A) ∈ D : g(x ′

1, . . . , x
′
A) = C, which implies

∃(x ′
1, . . . , x

′
A) ∈ D :

∫
D

dx1 . . . dxAf (x1, . . . , xA)g(x1, . . . xA) = g(x ′
1, . . . , x

′
A)

∫
D

dx1 . . . dxAf (x1, . . . , xA).
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