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Slow-proton production in semi-inclusive deep inelastic scattering off the deuteron and
complex nuclei: Hadronization and final-state interaction effects
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The effects of the final-state interaction in slow-proton production in semi-inclusive deep inelastic scattering
processes off nuclei, A(e, e′p)X, are investigated in detail using the spectator and target-fragmentation
mechanisms. In the former mechanism, a hard interaction on a nucleon of a correlated pair leads, by recoil,
to the emission of the partner nucleon, whereas in the latter mechanism a proton is produced when the diquark,
which is formed right after the γ ∗-quark interaction, captures a quark from the vacuum. Unlike previous papers on
the subject, particular attention is paid to the effects of the final-state interaction of the hadronizing quark with the
nuclear medium using an approach based on an effective time-dependent cross section that combines the soft and
hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown
that the final-state interaction of the hadronizing quark with the medium plays a relevant role in both deuterons
and complex nuclei. Nonetheless, kinematical regions where final-state interaction effects are minimized can be
selected experimentally, which would allow one to investigate the structure functions of nucleons embedded in
the nuclear medium. Likewise, regions where the interaction of the struck hadronizing quark with the nuclear
medium is maximized can be found, which would make it possible to study nonperturbative hadronization
mechanisms.
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I. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) of leptons
(l) off nuclei can provide relevant information on: (i) the
possible modification of the nucleon structure function in
medium (EMC-like effects), (ii) the relevance of exotic
configurations at short nucleon-nucleon (NN) distances,
(iii) the mechanism of quark hadronization.

A process that attracted much interest from both the
theoretical (see, e.g., Refs. [1–9]) and the experimental (see,
e.g., Refs. [10–12]) points of view is the production of slow
protons, that is, the process A(l, l′p)X, where a slow proton
(p) is detected in coincidence with the scattered lepton (l′).
In plane wave impulse approximation (PWIA), after the hard
collision of the virtual photon γ ∗ with a quark of a bound
nucleon, two main production mechanisms of slow protons
have been considered, namely the spectator (sp) and the
target-fragmentation (or direct) mechanisms. In the former, the
virtual photon is assumed to interact with a quark belonging
to a nucleon of a correlated pair. The struck quark leaves
the nucleon and hadronizes, giving rise to a jet of hadrons,
whereas the second correlated nucleon of the pair recoils
with slow momentum and is detected in coincidence with
the scattered lepton. In the target-fragmentation mechanism,
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slow protons originate from the capture of a quark from the
vacuum by the spectator diquark. We stress that in this article
we do not consider the production of leading fast protons
that arise from current fragmentation (see, e.g., Refs. [13,14]
for recent experimental advances), although our formalism
will be generalized to consider this process as well. In the
past, several theoretical approaches to the spectator mechanism
have been developed, though most of them either completely
disregarded the final-state interaction (FSI) or considered only
part of it. In this article the results of calculations of the cross
section within both the spectator and target-fragmentation
mechanisms, taking also into account FSI effects of the
hadronizing quark with the nuclear medium, are presented. Our
article, which is motivated by the results of recent experiments
at the Thomas Jefferson National Accelerator Facility (JLab)
[11], by our participation as theoretical support to JLab
Experiment E-03-012 [12], and, eventually, by the possibility
of performing SIDIS experiments at the 12-GeV upgraded
JLab (see, e.g., Ref. [13]), is organized as follows: The general
theory of SIDIS is sketched in Sec. II, the SIDIS process on
the deuteron and complex nuclei is illustrated in Secs. III
and IV, respectively, and the Conclusions are presented in
Sec. V.

II. THE SEMI-INCLUSIVE DEEP INELASTIC
CROSS SECTION

Within the widely used one-photon exchange approxima-
tion, whose Feynman diagram is shown in Fig. 1, the SIDIS
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FIG. 1. The Feynman diagrams of the process A(e, e′p)X in
one-photon-exchange approximation. The incident electron with
four-momentum ke = (Ee, ke) is scattered by the nucleus A with four-
momentum PA = (MA, 0). In the final state, the scattered electron
with four-momentum k′

e = (E′
e, k′

e) is detected in coincidence with
a proton with four-momentum p2 = (

√
p2

2 + m2
N, p2), whereas the

whole set of undetected particles moves with center-of-mass four-
momentum PX = (EX, PX). Q2 = −q2 = −(ke − k′

e)
2 = q2 − ν2 =

4 Ee E′
esin2 θe

2 is the four-momentum transfer and θe ≡ θk̂ek′
e

is the
electron scattering angle.

cross section off a nucleus A is given by

d4σ

dxdQ2 dp2
= 4α2

em

Q4

πν

x

[
1 − y − Q2

4E2
e

]
l̃µνLA

µν (1)

= 4α2
em

Q4

πν

x

[
1 − y − Q2

4E2
e

]
[l̃LWL + l̃T WT

+ l̃T LWLT cos φ + l̃T T WT T cos(2φ)]. (2)

Here, αem is the fine-structure constant, Q2 = −q2 = −(ke −
k′
e)2 = q2 − ν2 = 4EeE

′
esin2 θe

2 the four-momentum transfer,
q = ke − k′

e and ν = Ee − E′
e the three-momentum and en-

ergy transfer, respectively, θe ≡ θk̂ek′
e

the electron scattering
angle, x = Q2/2mNν the Bjorken scaling variable, y = ν/Ee,
and φ the angle between the scattering and reaction planes.
The four-momentum of the slow detected recoiling nucleon
is denoted by p2 ≡ (E2, p2) and the center-of-mass (c.m.)
momentum of the whole set of undetected particles by PX ≡
(EX, PX). In Eq. (1), l̃µν and LA

µν are the electron and the
nucleus electromagnetic tensors, respectively. The former has
the well-known standard form, whereas the latter can be
written as follows:

LA
µν =

∑
X

〈PA|Ĵµ|Pf 〉 〈Pf |Ĵν |PA〉(2π )4δ(4)

× (ke + PA − k′
e − PX − p2) dτX, (3)

where Ĵµ is the operator of the nucleus electromagnetic current
and PA and Pf = PX + p2 denote the three-momentum of
the target nucleus and the final hadronic state, respectively.
Nuclear effects are contained in the various nuclear responses
Wi , and the quantities l̃i are the components of the virtual
photon spin-density matrix.

As stated in the Introduction, slow-proton emission can
be attributable to either the spectator mechanism or target
fragmentation, the momentum of the detected nucleon being
in both cases small in magnitude, p2 ≡ |p2| <∼ 1 GeV, which
is much less than the value of fast leading hadrons [13,14]
produced in current fragmentation, which therefore will not
be considered in this article. It should also be pointed out that

in both the deuteron and the complex nuclei cases we consider
the momenta of the detected recoil nucleon to always be larger
than the Fermi momentum.

III. PROTON PRODUCTION FROM THE DEUTERON

We now consider SIDIS of electrons off a deuteron target,
that is, the process of proton production via the reaction

e + D = e′ + p + X, (4)

where, we reiterate, p denotes the produced proton, which
is detected in coincidence with the scattered electron, and
X is the whole set of undetected particles. This process
has been considered in several theoretical articles [1–9] and
experimental investigations [10–12]. We first discuss the
spectator mechanism.

A. The spectator mechanism

In the spectator mechanism, depicted in Fig. 2, the deep
inelastic electromagnetic process, producing the hadronic jet
(PX = Pjet), occurs on the active (or struck) nucleon (e.g.,
nucleon 1), while the second nucleon (the spectator one) recoils
with low momentum and is detected in concidence with the
scattered electron. At high values of the three-momentum
transfer, the jet (to be also called “nucleon debris” or
“hadronizing quark”) propagates mainly along the q direction;
within the PWIA [Fig. 2(a)] it does not interact with the slow
nucleon, whereas, when the interaction between the jet and
the spectator nucleon is taken into account, FSI effects are
generated [Fig. 2(b)]. The wave function of the final state can
be written in both cases in the general form

	f ({ξ}, rX, r2) = φβf
({ξ})ψPX,p2 (rX, r2), (5)

where rX and r2 are the coordinates of the center-of-mass
of the jet X and the spectator nucleon, respectively, and {ξ}
denotes the set of the internal coordinates of system X. The
latter is described by the internal wave function φβf

({ξ}), with
βf denoting all quantum numbers of the final state, whereas
the wave function ψPX,p2 (rX, r2) describes the relative motion
of system X and the spectator nucleon. The matrix elements in
Eq. (3) can easily be computed, provided the contribution of
the two-body part of the deuteron electromagnetic current can
be disregarded, which means that the deuteron current can be

1k

2 2k  = −k  = p1

JetPq

DP

1k

2p

JetP

2k  = −k1

q

DP

(a) (b)

FIG. 2. The Feynman diagrams of the process D(e, e′p)X within
(a) the spectator mechanism in PWIA and (b) taking into account the
FSI. k1 and k2 = −k1 are the nucleon three-momenta in the deuteron
before γ ∗ absorption, and p2 is the three-momentum of the detected
proton p.
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represented as a sum of electromagnetic currents of individual
nucleons, that is, Ĵµ(Q2, X) = ĵN1

µ + ĵN2
µ . Introducing in

intermediate states complete sets of plane waves |k′
1, k′

2〉 and
|k1, k2〉, one obtains〈

βf , Pf = PX + p2

∣∣ĵN
µ

∣∣PD

〉
=

∑
β,k′

1,k
′
2

∑
k1,k2

〈βf , PX, p2| β, k′
1, k′

2〉

× 〈
β, k′

1, k′
2

∣∣jN1
µ

∣∣k1, k2
〉 〈k1, k2|PD〉

=
∫

d3k1

(2π )3
ψD(k1) 〈βf , k1 + q|ĵN1

µ (Q2, p · q)|k1〉
×ψ+

κf
(q/2 + k1), (6)

where the matrix element 〈βf , k1 + q|jN1
µ (Q2, k · q)|k1〉 de-

scribes the electromagnetic transition from a moving nucleon
in the initial state to the final hadronic system X in a quantum
state βf . Here, κf = (PX − p2)/2, and the sum over all
final state βf of the square of this matrix element times the
corresponding energy conservation δ function, defines the deep
inelastic nucleon hadronic tensor for a moving nucleon. We
now analyze the PWIA and the FSI cases. For the sake of
simplicity we will present our formalism in the target rest
frame.

1. The PWIA

Within the PWIA, the relative motion of the jet and the slow
proton is described by a plane wave,

ψκf
(q/2 − k2) ∼ (2π )3δ(3)(q/2 − k2 − κf )

= (2π )3δ(3)(k2 − p2), (7)

and the transition matrix element, Eq. (6), factorizes into the
product of the matrix element of the nucleon electromag-
netic (e.m.) current and the deuteron wave function. As a
consequence, the four response functions in Eq. (2) can be
expressed in terms of the two independent structure functions,
WL and WT . Moreover, if one assumes the validity of the the
Callan-Gross relation [2xF1(x) = F2(x)], the semi-inclusive
cross section (2) depends only upon one nucleon deep inelastic
scattering (DIS) structure function, namely F2(x), that is,

d4σ PWIA
sp

dxdQ2 dp2
= K(x, y,Q2) nD(|p2|) z1F

N1/D

2

(
x

z1

)
, (8)

where z1 = k1 · q/(mN ν) is the light-cone momentum fraction
of the struck nucleon, and the kinematical factor K(x, y,Q2)
is given by (see, e.g., Ref. [6])

K(x, y,Q2) = 4πα2
em

Q4

1

x

(
y

y1

)2 [
y2

1

2
+ (1 − y1) − k2

1x
2y2

1

z2
1Q

2

]
,

(9)

where y1 = k1q

k1ke
. In the Bjorken limit (Q2, ν → ∞, x = const)

y1 = y and one has

K(x, y,Q2) = 4πα2
em

xQ4

(
1 − y + y2

2

)
. (10)

In Eq. (8), F
N/D

2 (x/z1) = 2(x/z1)FN/D

1 (x/z1) is the DIS
structure function of the struck (active) nucleon in the deuteron
and nD is the momentum distribution of the struck nucleon
with |k1| = |p2|, viz.,

nD(|k1|) = 1

3

1

(2π )3

∑
MD

∣∣∣∣∫ d3r	1,MD
(r) exp(−ik1r/2)

∣∣∣∣2

.

(11)

From what we have exhibited, it is clear that if the spectator
mechanism represents the correct description of the process, it
can provide unique information on the DIS structure function
of a nucleon bound in the deuteron F

N/D

2 [1].

2. Final-state interaction

The FSI effects account for the reinteraction of the
hadronizing quark with the spectator nucleon [Fig. 2(b)].
Because the relative motion of the jet and the recoil proton
can no longer be described by a plane wave, all four
responses contribute, in principle, to the cross section (2).
However, a factorization of the nucleon e.m. current and the
nuclear structure part can be still advocated, provided that
the following conditions are satisfied [8,9]: (i) |q| and Q2

are large enough [|q| � 1.5 GeV/c, Q2 � 2.5–5 (GeV/c)2];
(ii) the rescattering process of the fast system X with the
spectator nucleon can be considered as a high-energy soft
hadronic interaction with low momentum transfer in the
rescattering process, in which case |p2| 	 |k2| and the matrix
element becomes

〈Pf |ĵN
µ |PD〉 ∼= ĵN

µ (Q2, x, p2)
∫

d3rψD(r)ψ+
κf

(r) exp(irq/2).

(12)

As a result, the SIDIS cross section can still be described by
one structure function F

N1/A

2 , that is,

d4σ FSI
sp

dxdQ2 dp2
= K(x, y,Q2) nFSI

D (p2, q) z1F
N1/D

2

(
x

z1

)
,

(13)

where

nFSI
D (p2, q)

= 1

3

1

(2π )3

∑
MD

∣∣∣∣∫ d3r	1,MD
(r)ψ+

κf
(r) exp(irq/2)

∣∣∣∣2

(14)

is the distorted momentum distribution, which coincides with
the momentum distribution of the struck nucleon [Eq. (11)]
when ψ+

κf
(r) ∼ exp(−iκf r), with κf = q/2 − p2. In our case,

when the relative momentum is rather large, κf ∼ q/2, and
the rescattering processes occur with low momentum transfers,
the wave function ψ+

κf
(r) can be replaced by its eikonal

form describing the propagation of the nucleon debris formed
after γ ∗ absorption by a quark, followed by its hadronization
processes and the interaction of the newly produced hadrons
with the spectator nucleon. This series of soft interactions with
the spectator can be characterized by an effective cross section
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σeff(z, x,Q2) [15] depending on time (or the distance z traveled
by the system X). Within such a framework, the distorted
nucleon momentum distribution, Eq. (14), becomes [8]

nFSI
D (p2, q)

= 1

3

1

(2π )3

∑
MD

∣∣∣∣∫ dr	1,MD
(r)S(r, q)χ †

f exp(−ip2r)

∣∣∣∣2

,

(15)

where χf is the spin function of the spectator nucleon and
S(r, q) the S matrix describing the FSI between the debris and
the spectator. In Ref. [8], the S matrix has been approximated
by a Glauber-like eikonal form, namely,

S(r, q) ≡ G(r, q) = 1 − θ (z) �(b, z), (16)

where r = r1 − r2 ≡ {b, z} and

�(b, z) = (1 − i α) σeff(z)

4 π b2
0

e
− b

2

2 b2
0 (17)

is the profile function depending upon α = RefNN (0)/
ImfNN (0). Here, fNN (0) is the forward elastic NN scattering
amplitude, σeff the effective cross section of interaction
between the hadronizing quark and the spectator nucleon, and
b0 the slope parameter of the elastic NN scattering amplitude.
In Eq. (16), the θ function ensures that rescattering occurs
only in the forward hemisphere and the dependence upon
q has been included to define the orientation of the z axis
(i.e., r = z

q
|q| + b), as well as the energy dependence of α,

σeff , and b0. Although Eq. (16) resembles the usual Glauber
form, it contains an important difference, namely, unlike the
Glauber case, the profile function � depends not only on the
two-nucleon transverse relative separation b = b1 − b2 but
also on the longitudinal separation z = z1 − z2. This latter
dependence is attributable to the z (or time) dependence of
the effective cross section σeff(z) obtained in Ref. [15], which
describes the interaction of the hadronizing quark, struck from
nucleon 1 with the spectator nucleon 2. The effective cross
section σeff(z), at the given point z, consists of a sum of
the nucleon-nucleon and the meson-nucleon cross sections
σeff(z) = σNN

tot + σπN
tot [nM (z) + nG(z)], where nM (z) and

nG(z) are the effective numbers of mesons produced by
the breaking of the color string and by gluon radiation,
respectively. As demonstrated in Ref. [16], such an effective
cross section provides a good description of gray tracks
production in muon-nucleus DIS at high energies [17]. We
stress that hadronization is basically a QCD nonperturbative
process; consequently, any experimental information on its
effects on the reaction (4) would be rather valuable. Because
it has been shown in Ref. [8] that in the kinematical range
where the FSI effects are relevant the process (4) is essentially
governed by the hadronization cross section, this reveals
a new and important aspect of these reactions, namely,
the possibility, by using them, to investigate hadronization
mechanisms by choosing a proper kinematics where FSI
effects are maximized.

We now consider proton production attributable to target
fragmentation.

p
2

1k

2k  = −k1

Pq Jet

q

PD

(qq)

FIG. 3. Proton production by target fragmentation in the
D(e, e′p)X process. The diquark (qq) captures a quark from the
vacuum and the proton p is formed and detected with three-
momentum p2.

B. Target fragmentation

The target-fragmentation (or direct) mechanism, depicted
in Fig. 3, is rather different from the spectator mechanism.
Here, the detected proton is not the spectator proton in
the deuteron, but a proton that is formed immediately after
the hard γ ∗-quark interaction, when the spectator diquark
captures a quark from the vacuum (note that in this process
PX = Pjet + k2). The cross section corresponding to the target-
fragmentation mechanism can be calculated by introducing the
notion of nucleon fragmentation function H

N1 N2
1(2) (x, z2, p2⊥)

[18], which describes the formation of nucleon N2 from the
hadronization of the diquark of nucleon N1. It is usually
presented in the following form:

H
N1,N2
2

(
x, z2, p2

2⊥
)

= xρ(p2⊥)
z2

1 − x

[∑
q

e2
qfq(x)Dp

qq

(
z2

1 − x

)]
, (18)

where z2 = (p2 · q)/mNν 	 (p20 − |p2| cos θ2)/mN is the
light-cone momentum fraction of the produced proton, ρ(p2⊥)
is the transverse momentum distribution of the produced
nucleon with transverse momentum p2⊥, fq(x) is the parton
distribution function, and D

p
qq(z2) is the diquark fragmentation

function representing the probability of producing a proton
with light-cone momentum fraction z2 from a diquark. The
explicit parametrized forms of ρ(p2⊥) and D

p
qq(z2) can be

found, for example, in Refs. [19,20]. By means of the
fragmentation functions, the theoretical analysis of target
fragmentation in SIDIS becomes similar to the theoretical
analysis of the spectator mechanisms and a common theo-
retical framework can be used. The only difference consists
in replacing the deuteron DIS structure function F

N/D

2 (x, p2)
with the deuteron fragmentation function H

N/D

2 (x, z2, p2
2⊥).

Then, in the Bjorken limit the cross section describing the
target-fragmentation (tf) mechanism reads as follows:

d4σtf

dxdQ2 dp2/E2
= K(x, y,Q2)HD

2

(
x, z2, p2

2⊥
)
, (19)

where the kinematical factor K(x, y,Q2) is given by Eq. (10).
The deuteron target-fragmentation function HD

2 (x, z2, p2
2⊥)

can be expressed as a convolution of the nucleon momen-
tum distributions and the nucleon fragmentation function as
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Q2

N

X

N1 π1 π2 πn

X1 X1 X2 X2 X3
Xn−1 Xn

+

Q2

N

+ + · · ·+

z0 z1 zn−10 0 ∞

≡ FIG. 4. Schematic representation of
pion production by quark hadronization.

follows:

HD
2

(
x, z2, p2

2⊥
) =

∫ MD/mN

x+zp

dz1 nD(k1)d3k1 δ

(
z1 − kq

mNν

)

×H
N1,N2
2

(
x

z1
,

z2

z1 − x
,

∣∣∣∣p2⊥ − z2

z1
k1⊥

∣∣∣∣2
)

,

(20)

where zp = z2(1 − x) and and the quantity p2⊥ − z2
z1

k1⊥ is
the transverse momentum of the detected proton in the rest
system of the struck nucleon (see, e.g., Refs. [1,2]). Within
the considered kinematics, with low and moderate values of
the transverse momenta of the detected proton, in Eq. (20) the
k1⊥ dependence is governed entirely by the momentum dis-
tribution nD(k1z, k1⊥) ∼ exp(−βk2

1⊥), which decreases much
faster (β ∼ 1.5 fm2 for the deuteron and β ∼ 3.5–5 fm2 for
complex nuclei [21]) than the nucleon fragmentation function
[HN

2 (x, z, p2
⊥) ∼ exp(−βp2

⊥) with β ∼ 0.38 fm2; see below].
Then the transverse part of the nucleon fragmentation function
can be taken out of the integral at k1⊥ = 0, providing

HD
2

(
x, z2, p2

2⊥
) 	

∫ MD/mN

x+zp

dz1 fN1 (z1) H
N1,N2
2

×
(

x

z1
,

z2

z1 − x
, p2

2⊥

)
, (21)

where

fN1 (z1) = 2π mN z1

∫ ∞

|kmin
1 |

d|k1| |k1| nD(k1) (22)

is the light-cone momentum distribution of the struck nucleon
and |kmin

1 | = |[(mNz1 − MD)2 − m2
N ]/[2(mNz1 − MD)]|.

C. Numerical results

To analyze the kinematical conditions under which the
effects of the FSI are minimized or maximized, we have
considered the ratio of the PWIA cross section to the cross
section including the FSI, given by Eqs. (8) and (13),
respectively. We stress here that, whereas in Ref. [8] the
asymptotic value of σeff(z, x) [15] has been used, in the present
work we have obtained the effective cross section at finite
values of Q2, σeff(z, x,Q2), using the following procedure. We
recall that, according to the hadronization model of Ref. [22],
the process of pion production on a nucleon after γ ∗ absorption
by a quark can be represented schematically as in Fig. 4. At
the interaction point a color string, denoted X1, and a nucleon

N1, arising from target fragmentation, are formed. The color
string propagates and gluon radiation begins. The first “pion”
is created at z0 	 0.6 by the breaking of the color string and
pion production continues until it stops at a maximum value
of z = zmax, when energy conservation does not allow further
pions to be created. We obtain [23]

zmax = Emax
loss

κstr + κgl
= ξ

EX − EN

κstr + κgl
, (23)

after which the number of pions remains constant. Here,
κgl = 2/(3 π )αQCD(Q2 − �2) (� ≈ 0.65 GeV and αQCD =
0.3) and κstr = 0.2 represent the energy loss κ = − dE

dz
of the

leading hadronizing quark attributable to the string breaking
and gluon radiation, respectively, and Emax

loss = (κstr + κgl)z 	
(EX − EN1 )/2 is the maximum energy loss expressed through
the energy of the nucleon debris and the energy of the
nucleon created by target fragmentation at the interaction
point. Calculation of zmax by Eq. (23) within the kinematics
of the experiment of Ref. [10] shows that the average number
of pions that can be created is about two. The results of our
calculations, obtained with the Q2 dependent σeff(z, x,Q2) are
presented in Fig. 5, where the angular dependence (left panel)
and the dependence on the value of the spectator momentum

FIG. 5. (Color online) The role of the FSI in the process
D(e, e′p)X within the spectator mechanism. (Left panel) Angular
dependence of the ratio of the cross section that includes the FSI
[Eq. (13)] to the PWIA cross section [Eq. (8)] at several fixed
values of the detected proton momentum |p2| ≡ p2 (in GeV/c).
(Right panel) Dependence of the same ratio on p2 at parallel (θ = 0◦

and θ = 180◦) and perpendicular (θ = 90◦) kinematics. Calculations
have been performed at Q2 = 12 (GeV/c)2. The chosen kinematics
is close to the one planned in the future experiments at JLab at
Ee ∼ 10 GeV. The shaded areas are due to the uncertainties in the
parameters appearing in Eq. (17) (see Ref. [8]).
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(right panel) are shown at x = 0.6. Kinematics has been chosen
to correspond to the one considered in the JLab experiments at
about 10 GeV. The shaded areas reflect the uncertainties in the
choice of the parameters appearing in σeff [8]. It can be seen
that at low values of momenta and emission in the backward
hemisphere, the effects of the FSI are minimized, so that in
this region the process D(e, e′p)X could be used successfully
to extract the DIS structure function of a bound nucleon.
Contrarily, at perpendicular kinematics the FSI effects are
rather important and depend essentially on the process of
hadronization of the struck quark. Therefore, in this region,
the processes D(e, e′p)X can serve as a source of unique
information about nonperturbative QCD mechanisms in DIS.
A systematic experimental study of the processes D(e, e′p)X
is under way at JLab and first experimental data at initial
electron energy Ee = 5.765 GeV are already available [11].
Under such kinematical conditions, the parameter b0 in our
calculations varies in the range 0.35–0.6 fm and α 	 −0.35,
with a resulting maximum value of σeff 	 100 mb.

To minimize statistical errors, it is common in the literature
to present the so-called “reduced cross section,” that is, the
ratio of the experimental cross section to all those kinematical
factors, such that in PWIA the theoretical ratio would simply
reduce to the product of the neutron DIS structure function
Fn

2 (x,Q2) times the deuteron momentum distribution (11).
Thus, any deviation from such a product should be ascribed
to the failure of the PWIA, due either to deviations of the
free structure function from the bound one or to FSI effects.
In Fig. 6, the experimental reduced cross section [11] is
compared with our theoretical results obtained within the
spectator mechanism in PWIA (dashed curves) and taking the
FSI into account (solid curves). It can be seen that:
(i) the spectator mechanism within the PWIA does not explain
the data in the whole kinematical range, and (ii) the inclusion
of the FSI between the hadronizing quark and the spectator
appears to be necessary to explain the data. We point out
that the reduced cross section is generated by the interplay
between the PWIA and the FSI. At low values of |p2| 	
0.2–0.3 GeV/c, the interference between PWIA and the FSI
mostly cancels out, whereas at high values of |p2| the deuteron
wave function drops out very fast and, at perpendicular
kinematics, the reduced cross section is dominated by eikonal-
type FSI. The fact that the calculated reduced cross section at
large values of |p2| appears to agree with the experimental
data makes us confident that our approach to FSIs is basically
correct. In closing our analysis of the spectator mechanism, we
point out that, besides our previous work [8] and the present
article, FSI between the nucleon debris and the spectator
nucleon has also been taken into account in Ref. [9] by an
approach in which the scattering amplitude describing the
rescattering between the debris and the spectator nucleon
has been chosen in the form f = σeff(i + α)exp(− 1

2B2 k2
⊥)

with α, B, and σeff as free parameters. In particular, σeff

has been varied in the range 20–80 mb, and B and α have
been fixed at B = 8 GeV2 and α = −0.2. The effects of FSI
appear to be in qualitative agreement with our results, which
can be understood in light of the fact that, according to our
hadronization model, only two pions can be produced in the
kinematics of Ref. [10].

FIG. 6. The reduced cross section (solid dots), that is, the exper-
imental cross section divided by the kinematical factor K(x, y,Q2)
[Eq. (9)] [11], versus the proton emission angle (the angle between
q and p2) at various values of |p2| and fixed values of the four-
momentum transfer [Q2 = 1.8 (GeV/c)2] and the invariant mass
of the debris X, WX = √

(PD − p2 + q)2 ≡ W . The dotted curve
represents the PWIA cross section [Eq. (8)] divided by the kinematical
factor K(x, y, Q2), whereas the solid curve represents the cross
section [Eq. (13)] that includes the FSI between the hadronizing
quark and the spectator nucleon divided by the same kinematical
factor K(x, y,Q2). Note that within the PWIA the reduced cross
section represents the product of the neutron DIS structure function
F n

2 (x/z1, Q
2) and the deuteron momentum distribution nD(|p2|)

[Eq. (11)]. Because the latter does not depend on the angle θ2,
the angle dependence is given only by the quantity x/z1, which is
almost constant in the considered set of data. The inclusion of the
FSI generates a strong θ2 dependence of the distorted momentum
distributions nFSI

D (q, p2) [Eq. (15)], with the role of the FSI increasing
with the value of |p2| because of the rapid falloff of the undistorted
momentum distribution.

To estimate the role of the target-fragmentation mechanism,
we have calculated the ratio

R = dσtf + dσ PWIA
sp

dσ PWIA
sp

, (24)

which, obviously, characterizes the relative contribution of the
fragmentation cross section. The transverse hadron momentum
distribution appearing in Eq. (18) has been parametrized in the
following form [19]:

ρ(p2⊥) = β

π
exp

(−βp2
2⊥

)
, (25)

with β = 〈p2
2⊥〉−1 = 0.38 fm2, while the fragmentation func-

tion Dqq has been taken from Ref. [20], both choices being
fully satisfactory for the purpose of the present article. The
results of calculations are shown in Fig. 7, where R is presented
versus the emission angle of the detected proton at several
fixed values of the momentum (left panel) and versus the
spectator momentum at fixed emission angles (right panel).
As expected, the fragmentation mechanism contributes only
in a very narrow forward direction and for large values of
the spectator momentum. We stress that the ratio between the
direct (target-fragmentation) and spectator cross sections of
the process D(e, e′p)X has been analyzed in detail in Ref. [1]
within the light-front (LF) dynamics, versus x and p2⊥ = 0,
using LF deuteron wave functions corresponding to the Reid
Soft Core (RSC) interaction (cf. Fig. 3.8 of Ref. [1]). Our
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FIG. 7. Contribution of target fragmentation to nucleon emission
in the process D(e, e′p)X. The ratio of the sum of cross sections (8)
and (19) to cross section (8), R = (dσtf + dσ PWIA

sp )/dσ PWIA
sp , plotted

versus cos θ2 and versus |p2| ≡ p2 are shown in the left and right
panels, respectively. For convenience, the corresponding values of
the kinetic energy T2 of the proton are also displayed along the top of
the right panel.

results shown in Fig. 7 are in good agreement with the ones in
Ref. [1].

IV. COMPLEX NUCLEI

A. The spectator mechanism

First of all, we point out that in a complex nucleus
the spectator mechanism can occur only on a correlated
nucleon-nucleon pair, for if γ ∗ interacts with a mean field
nucleon, the most probable event would be the coherent recoil
of the (A − 1)-nucleon system. To describe the spectator
mechanism, one needs therefore a model of nucleon-nucleon
(NN) correlations in nuclei. In the so-called “strict two-nucleon
correlation” (2NC) model, the whole nucleus momentum
(
∑A

i=1 ki = 0) is shared by two correlated nucleons, with equal
and opposite momenta, with the (A − 2)-nucleon system at
rest (i.e., KA−2 = 0). On the contrary, in the few-nucleon
correlation (FNC) model, a small part of the momentum
is also carried out by the (A − 2)-nucleon system, that is,
KA−2 = −kc.m. = 0, kc.m. being the c.m. momentum of the
correlated pair. Thus, if γ ∗ interacts with one correlated
nucleon of the pair, the partner nucleon recoils and is detected.
The process is similar to that on a free deuteron, the main
difference being the c.m. motion of the pair and the different
types of FSI that occur in a complex nucleus. In this section,
our approach is generalized to complex nuclei in the same way
as it was done in Ref. [3], with the relevant difference that in
the present article the FSI of the hadronizing quark with the
spectator nucleons is also taken into account. We start with the
PWIA and then consider the effects of the FSI.

1. The PWIA

As already pointed out, the spectator mechanism in complex
nuclei can occur only on a correlated nucleon pair, because in
the independent particle model without correlations the whole
system (A − 1) would recoil. Thus, in PWIA, the cross section
of the process we are considering has to be proportional to the
joint probability to find in the ground state of the target nucleus

two correlated nucleons with momenta k1 and k2 and removal
energy E(2). This quantity is nothing but the well-known two
nucleon spectral function, that is, the following quantity:

PN1,N2 [k1, k2, E
(2)]

= 〈
	0

A

∣∣a†
k2

a
†
k1

δ[E(2) − (HA−2 − EA)]ak1ak2

∣∣	0
A

〉
=

∑
f

∣∣〈�k1,k2 , 	
f

A−2

∣∣	0
A

〉∣∣2
δ
[
E(2) − (

E
f

A−2 − EA

)]
,

(26)

where a
†
k(ak) are nucleon creation (annihilation) operators,

	0
A is the ground-state wave function of the target, eigen-

function of the Hamiltonian HA with (positive) eigenvalue
EA, 	

f

A−2 is the eigenfunction of the Hamiltonian HA−2

with (positive) eigenvalue E
f

A−2 = EA−2 + E∗
A−2 = EA−2 +

E(2) − E
(2)
thr , where EA−2 is the (positive) ground-state energy

of the (A − 2) nucleus, and E
(2)
thr = 2mN + MA−2 − MA is the

two-nucleon threshold energy. Because of the lack of realistic
many-body two-nucleon spectral functions for finite nuclei,
and also given the exploratory nature of the present work, we
will use here, as in Ref. [3], the two-nucleon spectral function
resulting from the FNC model; in this model the two-nucleon
spectral function coincides with the decay function introduced
in Ref. [1] and represents the probability that, after a nucleon
with momentum k1 is instantaneously removed from the target,
the residual (A − 1)-nucleon system decays into a nucleon
with momentum k2 and an (A − 2)-nucleon system in the
ground or in a well defined energy state. (In this respect, the
process we are considering is a semiexclusive process rather
than a semi-inclusive one. We will come back to this point
later in this article.)

The FNC model spectral function (26) for the deuteron
is simply the momentum distribution, whereas for 3He it is
the three-body wave function in momentum space times the
corresponding energy delta function. For a generic nucleus
with A > 3, one has [21]

PN1,N2 [k1, k2, E
(2)]

= nrel
N1,N2

(|k1 − k2|/2)

4π

nc.m.
N1,N2

(|k1 + k2|)
4π

δ
[
E(2) − E

(2)
th

]
,

(27)

which, using momentum conservation k1 + k2 = −KA−2 =
kc.m., can also be written as follows:

PN1,N2 [kc.m./2 − k2, k2, E
(2)]

= nrel
N1,N2

(|kc.m./2 − k2|)
4π

nc.m.
N1,N2

(|kc.m.|)
4π

δ
[
E(2) − E

(2)
th

]
,

(28)

where, in both equations, nrel
N1,N2

and nc.m.
N1,N2

are the relative and
center-of-mass momentum distributions, respectively, of the
correlated pair (N1, N2).

The calculation of the PWIA diagram of Fig. 8(a) yields

dσ PWIA
sp

dxdQ2dp2
= K(x, y,Q2) F

N1/A

2 (x, p2), (29)
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FIG. 8. Proton production in A(e, e′

p)X processes off a complex nucleus
A. (a) Spectator mechanism within the
PWIA. (b) Various contribution to the FSI
within the spectator mechanism. (c) Pro-
ton production from target fragmentation.
In each of the three processes a proton
with momentum p2, formed by different
mechanisms, is detected in coincidence
with the scattered electron.

with the factor K(x, y,Q2) given by Eq. (10) and the SIDIS
nuclear structure function F

N1/A

2 (x, p2) defined as follows [3]:

F
N1/A

2 (x, p2)

= mN

∑
N2

∫ MA/mN−z2

x

dz1 z1 FN
2

(
x

z1

)

×
∫

dkc.m.

nrel
N1,N2

(|kc.m./2 − p2|)
4π

nc.m.
N1,N2

(|kc.m.|)
4π

× δ[MA − mN (z1 + z2) − MA−2zA−2], (30)

where kc.m. = k1 + k2 = −KA−2 = −PA−2 and k2 = p2.
Here, FN

2 (x/z1) is the structure function of the struck nu-
cleon, and z2 = [(m2

N + p2
2)1/2 − |p2| cos θ2]/mN , and zA−2 =

[(MA−2)2 + k2
c.m.)

1/2 + kc.m. · q/|q|]/MA−2 are the light-cone
momentum fractions of the detected nucleon and the recoiling
spectator nucleus (A − 2), respectively.

2. The FSI

The treatment of the FSI in complex nuclei is more involved
than in the deuteron because, as already pointed out, the

structure of the spectral function [Eq. (28)] implies that
(A − 2) is in the ground or in a well defined energy state.
In this case, after γ ∗ absorption, the final state consists of
at least three different interacting systems [cf. Fig. 8(b)]: the
undetected hadron debris X, the undetected (A − 2)-nucleon
system, and the detected proton p2. Correspondingly, the FSI
can formally be divided into three classes [24], namely: (i) the
FSI of the hadron debris with the spectator (A − 2)-nucleon
system, (ii) the interaction of the recoiling nucleon with the
(A − 2)-nucleon system, and (iii) the interaction of the hadron
debris with the recoiling proton. Note that FSIs of type (i)
reduce the survival probability of having (A − 2) in the ground
state, and those of types (ii) and (iii) reduce the survival
probability of the struck proton. Note, moreover, that in the
spectator mechanism one has PX = Pjet + PA−2, whereas in
the target-fragmentation process one has PX = Pjet + PA−1.
The FSI of the hadronizing quark with the (A − 2)-nucleon
system and the spectator nucleon is treated in the same as in the
deuteron case, that is, by using the effective cross section σeff

within the eikonal approximation. Then in Eq. (30) the spectral
function PN1,N2 [k1, k2, E

(2)] has to be replaced with the dis-
torted spectral function, which can be written in the following
way:

P FSI
N1,N2

(k1, p2, E
(2)) =

∑
f

|Tf i |2 δ
[
E(2) − (

E
f

A−2 − EA

)]
=

∑
f

∣∣〈Pjet, p2, 	
f

A−2(k3, . . . , kA)
∣∣ŜFSI

∣∣ q, 	0
A(k1, k2, . . . , kA)

〉∣∣2
δ
[
E(2) − (

E
f

A−2 − EA

)]
, (31)

where ŜFSI is the FSI operator and Tf i the transition ma-
trix element of the process having the following explicit
form:

Tf i = 1

(2π )6

∫ A∏
i=1

dri e−iPjet·r1 eiq·r1 e−ip2·r2

×	
†f
A−2(r3, . . . , rA) ŜFSI(r1, . . . , rA) 	0

A(r1, . . . , rA).

(32)

According to our classification of the FSI effects, the operator
ŜFSI will read as follows:

ŜFSI(r1, r2, . . . , rA) = Dp2 (r2) G(r1, r2)
A∏

i=3

G(r1, ri), (33)

where Dp2 (r2) and G(r1, r2) take care, respectively, of the in-
teraction of the slow recoiling proton with the (A − 2)-nucleon
system and with the fast nucleon debris, and

∏A
i=3 G(r1, ri)

takes into account the interaction of the latter with the
(A − 2)-nucleon system. Properly generalizing our previous
treatment of the deuteron case, we have

A∏
i=2

G(r1, ri) =
A∏

i=2

[1 − θ (zi − z1) �(b1 − bi , zi − z1)],

(34)

where bi and zi are the transverse and longitudinal components
of the coordinates of nucleon i, the function θ (zi − z1) de-
scribes forward debris propagation, and � is given by Eq. (17).
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As far as the FSI of the recoiling nucleon with the residual
(A − 2)-nucleon system is concerned, following Ref. [3], we
have treated it using an optical potential approach, according
to which the outgoing nucleon plane wave is distorted by the
eikonal phase factor

e−i p2·r2 −→ e−i p2·r2Dp2 (r2), (35)

where

Dp2 (r2) = exp

(
−i

E2

h̄|p2|
∫ ∞

z2

dz V (b2, z)

)
. (36)

We used an energy-dependent complex optical potential with
the real and imaginary parts given, respectively, by

ReV (r) = −h̄ |p2|
E2

α σNN
tot ρ(r)

2
(37)

and

ImV (r) = −h̄ |p2|
E2

σNN
tot ρ(r)

2
, (38)

where ρ is the one-body density and σNN
tot the total NN cross

section. When the energy of the propagating proton is low, each
rescattering causes a considerable loss of energy-momentum
and the flux of the outgoing proton plane wave is suppressed
by the imaginary part of the potential.

Using in Eq. (32) momentum conservation Pjet = q − p2 −
PA−2, the transition matrix element of the process A(e, e′p)X
becomes

Tf i = 1

(2π )6

∫ A∏
i=1

dri ei(PA−2+p2)·r1e−ip2·r2

×	
†f
A−2(r3, . . . , rA)ŜFSI(r1, . . . , rA)	0

A(r1, . . . , rA)

= 1

(2π )6

∫
dr1dr2 ei(PA−2+p2)·r1e−ip2·r2 I FSI(r1, r2),

(39)

where

I FSI(r1, r2) =
∫ A∏

i=3

dri 	
†f
A−2(r3, . . . , rA)

× ŜFSI(r1, . . . , rA)	0
A(r1, . . . , rA) (40)

is the distorted two-body overlap integral.
We reiterate that in the present approach we consider

protons with relatively large momenta (at the average Fermi
momentum scale) originating from correlated pairs in the
parent nucleus. Then for such kinematics the nuclear wave
function can be written as follows [21]:

	0
A(r1, . . . , rA) =

∑
αβ

�α(r1, r2) ⊗ 	
β

A−2(r3, . . . , rA),

(41)

where �α(r1, r2) and 	
β

A−2(r3, . . . , rA) describe the correlated
pair and the (A − 2)-nucleon system remnants, respectively.
In Eq. (41) the symbol ⊗ is used as short hand for the
corresponding Clebsh-Gordon coefficients. The wave function
of the correlated pair can be expanded over a complete set of

wave functions describing the intrinsic state of the pair and its
motion relative to the (A − 2)-nucleon system, viz.,

�α(r1, r2) =
∑
mn

cmn φm(r)χn(R), (42)

where R = 1
2 (r1 + r2) and r = r1 − r2 are the center of mass

and relative coordinate of the pair. As already mentioned, in the
FNC model it is assumed that the correlated pair carries most
part of the nuclear momentum, while the momentum of the
relative motion of the pair and (A − 2) nucleus is small [21].
This allows one to treat the c.m. motion in its lowest 1S0

quantum state (in what follows denoted, for the sake of brevity,
as “os” state). We can therefore write

�α(r1, r2) 	 χos(R)
∑
m

cmo φm(r) = χos(R) ϕ(r), (43)

with

ϕ(r) =
∑
m

cmo φm(r). (44)

Finally, we have

	0
A(r1, . . . , rA) 	 χos(R) ϕ(r) 	0

A−2(r3, . . . , rA). (45)

Placing this expression in Eq. (40) we get

I FSI(r1, r2) =
∫ A∏

i=3

dri χos(R) ϕ(r)

× ŜFSI(r1, . . . , rA)
∣∣	0

A−2(r3, . . . , rA)
∣∣2

, (46)

and, disregarding correlations in the (A − 2)-nucleon system,
one can write [25,26]∣∣	0

A−2(r3, . . . , rA)
∣∣2 	

A∏
i=3

ρ(ri), (47)

with
∫

ρ(ri)dri = 1, so that, eventually, the distorted overlap
integral becomes

I FSI(r1, r2)

=
∫ A∏

i=3

dri φ(r1, r2)
A∏

i=3

ρ(ri)Dp2 (r2) G(r1, r2)

×
A∏

i=3

G(r1, ri)

= φ(r1, r2) G(r1, r2) Dp2 (r2)

[∫
dr ρ(r) G(r1, r)

]A−2

,

(48)

where φ(r1, r2) = χos(R) ϕ(r) [cf. Eq. (43)]. In our calcula-
tions, the function φ(r1, r2) has been chosen in such a way
that in PWIA the same high momentum components of the
two-nucleon spectral function as reported in Ref. [21] are
obtained. Disregarding the real part of the forward scattering
amplitude and considering A � 1, we can write[∫

dr ρ(r)G(r1, r)

]A−2

=
[∫

dr ρ(r) −
∫

db
∫ ∞

z1

dz ρ(b, z) �(b1 − b; z − z1)

]A−2
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[

1 − 1

2

∫ ∞

z1

dz ρ(b1, z) σeff(z − z1)

]A−2

	 exp

[
−1

2
A

∫ ∞

z1

dz ρ(b1, z) σeff(z − z1)

]
, (49)

which represents the probability that the debris and the proton
did not interact. Finally, we can write the transition matrix
element in the following way:

Tf i = 1

(2π )6

∫
dr1 dr2 ei(PA−2+p2)·r1e−ip2·r2 φ(r1, r2)

×G(r1, r2) Dp2 (r2)

× exp

[
−1

2
A

∫ ∞

z1

dz ρ(b1, z) σeff (z − z1)

]
, (50)

and the distorted spectral function is eventually

P FSI
N1,N2

[−(PA−2 + p2), p2, E
(2)]

=
∣∣∣∣ 1

(2π )6

∫
dr1 dr2 ei(PA−2+p2)·r1e−ip2·r2 φ(r1, r2)

×G(r1, r2) Dp2 (r2) exp

[
−1

2
A

×
∫ ∞

z1

dz ρ(b1, z) σeff(z − z1)

]∣∣∣∣2

δ
(
E(2) − E

(2)
th

)
, (51)

which reduces to the FNC spectral function [Eq. (27), with
kc.m. = −PA−2] in the absence of any FSI. The sp cross section
becomes

d4σ FSI
sp

dxdQ2dp2
= K(x, y,Q2) F

(N1/A, FSI)
2 (x, p2), (52)

with the factor K(x, y,Q2) given by Eq. (10) and the SIDIS
nuclear structure function F

(N1/A, FSI)
2 (x, p2) being

F
(N1/A, FSI)
2 (x, p2)

= mN

∑
N2

∫ MA/mN −z2

x

dz1 z1 FN
2

(
x

z1

)∫
dPA−2 dE(2)P FSI

N1,N2

× (−(PA−2 + p2), p2, E
(2))δ(MA − mN (z1 + z2)

−MA−2zA−2), (53)

with P FSI
N1,N2

given by Eq. (51). It can be seen that in the absence
of any FSI, the PWIA results, given by Eq. (30), are recovered.

B. The target-fragmentation mechanism

We now consider proton production from the target-
fragmentation mechanism, in which the quark-gluon debris
originates from current fragmentation, and the proton from
target fragmentation [cf. Fig. 8(c)]. The corresponding cross
section can be expressed in terms of two nuclear structure
functions HA

1 and HA
2 as follows:

d4σtf

dx dQ2 dp2/E2
= 4πα2

xQ4

[
x y2 HA

1

(
x, z2, p2

2⊥
)

+ (1 − y) HA
2

(
x, z2, p2

2⊥
)]

, (54)

where HA
1(2) can be written as a convolution of the nucleon

fragmentation function and the nuclear spectral function of

nucleon 1, PN1 (|k1|, E), as follows:

HA
1

(
x, z2, p2

2⊥
)

=
∫

dz1 fN1 (z1)
1

z1
H

N1,N2
1

(
x

z1
,

z2

z1 − x
, p2

2⊥

)
, (55)

HA
2

(
x, z2, p2

2⊥
)

=
∫

dz1 fN1 (z1) H
N1,N2
2

(
x

z1
,

z2

z1 − x
, p2

2⊥

)
, (56)

where H
N1,N2
1 and H

N1,N2
2 are the fragmentation structure

functions of the struck nucleon N1 producing the detected
nucleon N2, and fN1 (z1) is given by

fN1 (z1) =
∫

dk1 dE PN1 (|k1|, E) z1 δ

(
z1 − k1 · q

mN ν

)
, (57)

where in the quark-parton model the nucleon fragmentation
structure functions have the form H

N1,N2
2 = 2xH

N1,N2
1 , with

H
N1,N2
2 given by Eq. (18).

C. Results of calculations

Taking into account the full FSI described by the operator
ŜFSI of Eq. (33), we have calculated the differential cross
section of the process 12C(e, e′p)X given by Eq. (52) as
follows

d4σsp

dE′
ed�′

edT2d�2
= K̃(x, y,Q2, T2) F

(N1/A, FSI)
2 (x, p2), (58)

where

K̃(x, y,Q2, T2)

= 4 α2 Ee E′
e

ν Q4
(1 − y + y2)(T2 + mN )

(
T 2

2 + 2 mN T2
)1/2

.

(59)

The results of our calculations are presented in Figs. 9–11,
where the separate contributions of the various kinds of

FIG. 9. The SIDIS differential cross section for the process
12C(e, e′p)X versus the kinetic energy T2 of the detected proton,
emitted forward at θ2 = 25◦, in correspondence of two values of the
Bjorken scaling variable x. Dotted curve, PWIA [Fig. 8(a)]; dashed
curve, PWIA plus the FSI of the nucleon debris X with the recoiling
proton; dashed-double-dotted curve, PWIA plus the FSI of the proton
with (A − 2)-nucleon system; solid curve, PWIA plus the full FSI
[Fig. 8(b)]. For the sake of convenience, the corresponding values of
the proton momentum |p2| are displayed along the tops of the panels.
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FIG. 10. The same as in Fig. 9 for protons emitted backward at
θ2 = 140◦.

FSI and their summed effect are shown versus the kinetic
energy of the detected proton. To compare with the results
of Ref. [3], calculations have been performed assuming an
incident electron energy of Ee = 20 GeV and an electron
scattering angle θe = 15◦, with values of the Bjorken scaling
variable equal to x = 0.2 and 0.6. The proton emission angle
has been fixed at the values θ2 = 25◦ (forward proton emission)
and θ2 = 140◦ (backward proton emission). It can be seen
that the most relevant contribution of the FSI is due, in both
forward and backward nucleon emissions, to the rescattering
of the hadronizing quark with the (A − 2)-nucleon system. In
agreement with Ref. [3], the effects of the FSI between the
recoiling nucleon and the (A − 2)-nucleon system amounts to
an attenuation factor that, in the analyzed proton momentum
|p2| range, decreases the cross section up to a factor of two. As
expected, this contribution is more relevant for low values of
the momentum. We also checked the sensitivity of the process
upon the model for the effective cross section σeff(z, x,Q2),
describing the interaction of the hadronizing quark with the
spectator nucleon; to this end, we calculated the cross section
that includes the FSI between the nucleon debris and the
detected nucleon using the time-dependent σeff(z, x,Q2) of
Ref. [15], adopted in this article, and a constant cross section
σeff = 60 mb, used in Ref. [9] in the description of proton

FIG. 11. The SIDIS differential cross section for the process
12C(e, e′p)X with the FSI between the nucleon debris and the
spectator nucleon calculated at forward kinematics with the time-
dependent σeff = σeff (z) [15] (solid curve) and with a constant
σeff = 60 mb (dashed curve). The PWIA results are presented by
the dotted curve.

FIG. 12. Proton production by target fragmentation in the process
12C(e, e′p)X versus the kinetic energy T2 of the detected proton,
emitted forward at θ2 = 25◦ at x = 0.4 and x = 1.5. Dotted curve,
spectator mechanism within the PWIA; dashed curve, spectator
mechanism within the PWIA plus the FSI of the spectator nucleon
with the (A − 2)-nucleon system; solid curve, spectator mechanism
within the PWIA plus the FSI of the spectator nucleon with (A − 2)-
nucleon system plus target fragmentation. Note the different kinetic
energy range between this and the previous figures.

backward production from the deuteron. The results, which
are presented in Fig. 11, appear to depend appreciably upon
the model of σeff . Such a dependence, however, is very mild
in the kinematics considered in Ref. [9], characterized by
very low values of the momentum of the detected nucleon
(|p|2 <∼ 0.1 GeV/c). Eventually, we analyzed the role of the
fragmentation mechanism: the results, presented in Fig. 12,
show that, as in the deuteron case, the target-fragmentation
mechanism contributes to nucleon emission in the forward
direction and becomes appreciable only at high values of T2

(T2 > 600 MeV). It should be noted that such large kinetic
energy is beyond of applicability of our approach and that
in the region 50 MeV < T2 < 250 MeV, where the use of a
nonrelativistic spectral function is well grounded, the effects
of target fragmentation play only a minor role. From the
results we have exhibited, it turns out that although FSIs
are very important, they should not hinder, in principle, the
extraction of the bound nucleon structure functions, because
the x dependence of σeff (z, x,Q2) is very mild (cf. Ref. [15]) so
that the x dependence of Eq. (13) is governed almost entirely by
the DIS nucleon structure function F2(x/z1). One can therefore
consider the ratio

R(x, x ′, p2) = F
(N1/A, FSI)
2 (x, p2)

F
(N1/A, FSI)
2 (x ′, p2)

, (60)

which is the generalization to the FSI case of the quantity
suggested in Ref. [3]. In case of the deuteron, the ratio in PWIA
simply reduces to the quantity F

N/D

2 (x/z1)/FN/D

2 (x ′/z1),
whereas for complex nuclei such a direct relation between
Eq. (60) and the bound nucleon structure functions cannot
be obtained because of the combined effects of the nuclear
convolution and the FSI. Concerning the effects of the latter,
it should be pointed out that they are produced by the effective
cross section σeff(z, x,Q2), which exhibits only a mild depen-
dence upon x, so that the x dependence of Eq. (60) will be still
governed by the nucleon structure functions F

N/A

2 (x/z1). We
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are currently investigating this point, as well as other possible
ways of extracting F

N/A

2 from the experimental data on com-
plex nuclei. This would provide precious information on the
A-dependence of possible medium modifications of nucleon
properties that, at the same time, would represent a valuable
contribution to a final understanding of the elusive EMC effect.

V. SUMMARY AND CONCLUSIONS

We have considered proton production in SIDIS processes
A(e, e′p)X within the spectator and the target-fragmentation
mechanisms, taking all kinds of FSI into account. A systematic
study of this process is of great relevance in hadronic physics.
As a matter of fact, in the case of a deuteron target, detailed
information on the DIS neutron structure function could
in principle be obtained by performing experiments in the
kinematical region where FSIs are minimized (backward
production and parallel kinematics). At the same time, if the
experiment is performed when FSIs are maximized (perpen-
dicular kinematics) the nonperturbative QCD phenomenon of
hadronization could be investigated. In case of complex nuclei,
SIDIS could also represent a tool for investigating short-range
correlations in nuclei because the main source of backward
protons originates in a complex nucleus from a correlated pair.
Moreover, SIDIS on complex nuclei might in principle serve
to investigate the A-dependence of possible medium-induced
modification of the DIS nucleon structure function. However,
being that these experiments were performed on nuclear
targets, one faces the longstanding problem of the careful
treatment of nuclear effects, for example the short-range
behavior of the nuclear wave function and the effects of
the FSI, which is a prerequisite before drawing conclusions
about medium-induced modifications of nucleon properties.
In this respect, we point out that, so far, apart for a few
exceptions concerning the deuteron [8,9], the problem of
the FSI has been overlooked, in particular as far as the
interaction of the hadronizing quark with the nuclear medium
is concerned. For this reason, in the present article: (i) we have
improved the treatment of the FSI in the deuteron case by
using a time-dependent effective cross section σeff(z, x,Q2),
describing the interaction of the hadronizing quark with the
spectator nucleon, featuring the proper Q2 behavior; and
(ii) we have calculated the SIDIS cross section off complex nu-
clei taking all types of FSI into account, namely the rescattering
of the leading hadronizing quark with the recoiling proton
and with the residual (A − 2)-nucleon system, which, apart
from our preliminary results [24], have not been considered in
previous investigations of SIDIS off complex nuclei.

The main results we have obtained can be summarized as
follows:

(i) In SIDIS off the deuteron, FSI effects are minimized in
backward emission and maximized in perpendicular
kinematics. In the former case, the bound nucleon
structure function can be investigated, whereas in
the latter case, information on QCD hadronization
mechanisms can be obtained.

(ii) In the case of complex nuclei, the reinteraction of the
hadronizing quark with the spectator (A − 2)-nucleon

system appreciably attenuates the cross section because
the survival probability of the (A − 2) nucleus is
strongly reduced [16]. For this reason, some doubts
can be cast as to the possibility of performing SIDIS
experiments of the type we have considered, where
the underlying mechanism is almost fully exclusive,
being the unobserved (A − 2) nucleus in a well defined
energy state. A more realistic case would be to consider
a really semi-inclusive process by summing over all
energy states of the (A − 2)-nucleon system, when the
effects from the FSI are expected to be much smaller.
Calculations of this type are in progress and will be
presented elsewhere [23].

(iii) As in Ref. [3], we found that the interaction of the
recoiling proton with the (A − 2)-nucleon system is
relevant only at low proton kinetic energies, leading to
an overall small attenuation of the cross section.

(iv) In agreement with Ref. [9], we found that in case
of a deuteron target, FSI and target-fragmentation
mechanisms play a secondary role in slow-proton pro-
duction in the backward hemisphere, which is governed
by the spectator mechanism, provided Tp <∼ 0.3 GeV
(|p2| <∼ 0.8 GeV/c).

(v) For both the deuteron and the complex nuclei we found
that at the highest considered proton energies, in the
forward hemisphere and partly also in the backward
one, the effects from target fragmentation and the
FSI become important. Thus, slow-proton production
in SIDIS could be a sensitive tool for investigating
nonperturbative QCD effects. In this connection it has
been suggested [13] that greater sensitivity to nonper-
turbative current and target-fragmentation mechanisms
could be achieved by detecting, in coincidence with
the slow proton, the fast leading hadron arising from
current fragmentation. The extension of our approach to
this process, which can be investigated experimentally
by the CLAS detector at JLab, is straightforward.

(vi) We did not address here in details the problem con-
cerning the most reliable way of extracting from the
experimental data on nuclei information on the DIS
nucleon structure function but pointed out that the
important role played by FSI should not in principle
hinder such a possibility.

In summary, slow-hadron production in SIDIS appears to be
a powerful tool for investigating both the properties of bound
nucleons and the hadronization mechanisms.
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