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A new method for continuum discretization in continuum-discretized coupled-channels calculations is
proposed. The method is based on an analytic local-scale transformation of the harmonic-oscillator wave functions
proposed for other purposes in a recent work [Karatagladis et al., Phys. Rev. C 71, 064601 (2005)]. The new
approach is compared with the standard method of continuum discretization in terms of energy bins for the
reactions d + 58Ni at 80 MeV, 6Li + 40Ca at 156 MeV, and 6He + 208Pb at 22 MeV and 240 MeV/nucleon. In all
cases very good agreement between both approaches is found.
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I. INTRODUCTION

For many years, the continuum-discretized coupled-
channels (CDCC) method has been the most successful and
accurate method for studying nuclear reactions induced by
weakly bound projectiles. Although originally designed to
account for the effect of the breakup channels in direct
nuclear reactions involving deuterons [1–3], it soon proved
to be a useful tool to describe reactions induced by other
weakly bound nuclei that could be to some extent described
within a two-cluster model such as 6Li [4–9] or 7Li [9–13]
and, more recently, the scattering of exotic nuclei such as
8B [14–17], 7Be [13], or 11Be [18,19]. The CDCC method has
been extended lately to describe the scattering of three-body
projectiles and has successfully described the elastic scattering
of 6He [20–23].

In the CDCC method, an effective three-body problem
is solved approximately via the expansion of the full wave
function in a selected set of continuum wave functions of the
weakly bound projectile internal Hamiltonian. An essential
ingredient of the method is a representation of the projectile
continuum in terms of a finite set of internal states. Although
not strictly necessary, it is numerically advantageous to use a
set of L2 (i.e., square integrable) functions for this represen-
tation. So far, two kinds of discretization methods have been
used, namely the bin method and the pseudostate (PS) method.
In the former case, the continuum is first truncated by defining
a maximum excitation energy of the projectile and then it is
divided into a finite set of energy intervals. For each interval, or
bin, a representative function is constructed by superposition
of true scattering wave functions within that interval (the
average method, denoted Av hereafter). By construction, the
functions obtained in this way are normalizable and mutually
orthogonal. In the PS method, by contrast, the wave functions
describing the internal motion of the projectile are the
eigenstates of the projectile Hamiltonian in a truncated basis of
square-integrable functions. A possible election is a harmonic
oscillator (HO) basis [24]. The HO is convenient from a
computational point of view, although its Gaussian asymptotic
behavior is not appropriate to describe the exponentially

decaying wave functions associated with weakly bound
states.

To overcome this problem, in a series of previous works,
we proposed a basis of pseudostates aimed at describing
the scattering of two-body composite systems [25–30]. The
method provides a discrete representation of the continuum
spectrum starting from the ground-state wave function, which
is the only required input. A local-scale point transformation
(LST) [31,32] that maps this function into the HO ground-state
wave function is defined. Once the LST is obtained, the inverse
transformation is applied to the HO basis, giving rise to
the so-called transformed harmonic oscillator (THO) basis,
which is used to represent the continuum (and other bound
states if they exist) of the two-body system. The method
was first developed in Ref. [25] for simple one-dimensional
problems and was later extended to check its applicability
and limitations [26–30]. In particular, it was shown in Refs.
[17,27] that the combination of the THO discretization method
with the coupled-channels technique, named CDCC-THO,
can be useful to describe continuum effects in nuclear
collisions.

A characteristic feature of the THO method, as formulated
in our previous works, is that the eigenvalues resulting from
the diagonalization of the projectile Hamiltonian in the PS
basis tend to pile up at small excitation energies. This is a
direct consequence of the fact that all the basis functions decay
with the asymptotic momentum associated with the tail of the
ground-state wave function which, for weakly bound systems,
is very small. Hence, the THO basis functions have a long
range in configuration space or, conversely, a short range in
momentum space. This feature can be very convenient in some
situations (e.g., in Coulomb-dominated reactions, where the
transferred momentum to the projectile is small). However, in
cases where high excitation energies are involved, this property
may not be desirable because a very large basis might be
required to have a sufficient density of states at these excitation
energies.

In this paper, we propose an alternative prescription to
define the LST, taken from the recent work of Karataglidis
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et al. [33]. In that work the authors were interested in the
description of the structure of exotic nuclei and their effect in
elastic scattering experiments. In their approach, bound single-
particle wave functions are required for making a g-folding
optical potential. For this purpose, the usual shell-model (HO)
orbitals have the problem of lacking the correct asymptotic
behavior. Karataglidis et al. proposed to keep the simplicity of
the HO wave functions, converting their asymptotic behavior
to the physical exponential decrease using an analytic LST. The
transformed single-particle wave functions are then used as
input into calculations of elastic scattering involving the exotic
nucleus. We are interested instead in reaction calculations for
which a representation of the continuum is needed. The aim of
this work is to show that the analytic transformation proposed
by Karataglidis et al. is very efficient for producing a discrete
basis (including both bound and unbound states) suitable for
modeling complex reaction problems involving weakly bound
nuclei.

Similarly to the LST used in our THO method, the LST
proposed in Ref. [33] is applied to the HO basis in such a
way that the Gaussian tail is transformed into an exponential.
However, the LST proposed by Karataglidis et al. is given
by an analytic formula and, in general, does not transform
the first HO function into the ground state of the system.
Therefore, after diagonalization in a finite basis, the ground-
state wave function is only approximately obtained. The new
LST has two appealing features. First, the basis is very easily
generated due to the simple analytic form of the LST. This
property is very important for actual calculations because it
avoids serious numerical problems when a large number of
basis states are generated. Second, and more important, the
radial extension of the basis wave functions is controlled by
the parameters that define the transformation. In turn, this
radial extension determines the energy distribution of the
eigenvalues.

The goal of this paper is to show that the THO basis
obtained with the analytic LST provides a suitable and efficient
representation of the continuum of a two-body system, to
be used in CDCC calculations. Results obtained with this
representation will be compared with those obtained using the
conventional binning procedure for three different reactions.

The paper is organized as follows. In Sec. II the THO
method is briefly reviewed. In Sec. III the analytic LST is
presented. In Sec. IV we present CDCC calculations in which
we compare the standard bin procedure with the new THO
prescription for three different reactions: d + 58Ni at 80 MeV,
6Li + 40Ca at 156 MeV (with special emphasis on the role
of the d-wave resonance) and 6He + 208Pb at 22 MeV and
240 MeV/nucleon. Finally, in Sec. V, the main conclusions of
this work are summarized.

II. THE THO METHOD

For completeness, in this section we briefly review the THO
approach as formulated in our previous works. Although the
method has been recently extended to three-body projectiles
[23,34], in this paper we restrict ourselves to the two-body
case.

The key idea of the THO method is to construct a basis
to describe the states associated with intercluster relative
motion. For this purpose, we perform an LST [31,32] on
the HO basis. The motivation of this transformation is to
correct the asymptotic behavior of the HO basis, converting
the Gaussian tail into an exponential, as corresponds to a
bound-state wave function in a finite potential. This condition
by itself is not sufficient to determine unambiguously the LST.
In our previous formulation, we imposed a more restrictive
condition by requiring that the ground-state HO wave function
is exactly transformed by the LST into the ground state of the
system, which is assumed to be known, either analytically or
numerically. Mathematically, this condition can be written as

φg.s.,�0 (r) =
√

ds

dr
φHO

0,�0
[s(r)], (1)

where φHO
0,�0

(s) is the radial part of the HO wave function for the
orbital angular momentum �0 expressed in the dimensionless
variable s, and φg.s.,�0 (r) is the ground-state wave function of
the two-body system. The subscript �0 represents the inter-
cluster relative angular momentum. To simplify the notation,
we do not consider the intrinsic spins of the fragments.

Once the s(r) function has been obtained, the THO basis
is generated by applying the same LST calculated for the
ground state to the rest of the HO wave functions. Because of
the simple analytical structure of the HO wave functions, this
is equivalent to multiplying the ground-state function by the
appropriate Laguerre polynomial L

�+1/2
n (s) [27]:

φTHO
n,� (r) = [s(r)]�−�0L�+1/2

n [s(r)2]φg.s.,�0 (r). (2)

Notice that, by construction, the family of functions
φTHO

n,� (r) is orthogonal and constitutes a complete set. More-
over, these functions decay exponentially at large distances,
thus ensuring the correct asymptotic behavior for the bound
wave functions. In practical calculations a finite set of
functions (2) are retained, and the internal Hamiltonian of the
projectile is diagonalized in this truncated basis, giving rise to
a set of eigenvalues and their associated wave functions. As the
basis size is increased, those eigenstates with negative energy
will tend to the exact bound states of the system, whereas
eigenstates with positive eigenvalues can be regarded as a
finite representation of the unbound states. Note that, due to
the particular choice of the LST, the ground state of the system
is exactly recovered for any basis size.

By construction, all basis functions (2) decay asymptot-
ically with the same functional dependence as the ground-
state wave function, namely, ∼ exp(−kg.s.r), with kg.s. =√

2µ|εg.s.|/h̄, where µ is the reduced mass of the two
clusters. For weakly bound systems, this produces states with
a large radial extension or, equivalently, with a short range
in momentum space. Consequently, the eigenstates obtained
by diagonalization of the internal Hamiltonian in a finite THO
basis tend to concentrate at small excitation energies. The basis
so obtained is then particularly suitable to describe excitations
to the low-lying continuum, such as Coulomb-dominated
reactions [17].

However, in situations in which higher excitation energies
are involved, one may need to use a large THO basis to obtain

054605-2



ANALYTICAL TRANSFORMED HARMONIC OSCILLATOR . . . PHYSICAL REVIEW C 80, 054605 (2009)

enough density of states at high excitation energies and, hence,
the THO discretization may not be so efficient. Moreover, the
range of excitation energies that will be effectively populated
depends on the specific reaction. Thus, it would be desirable to
develop an alternative definition of the LST in which the radial
extension of the basis functions can be optimized according to
the problem under consideration. At the same time, it would
be desirable to keep the most appealing properties of the LST
transformation, namely, (i) at small distances, the LST should
be such that the radial dependence of the HO functions is
not modified and, (ii) asymptotically, the Gaussian behavior
should be transformed to an exponential dependence in the
physical variable r .

III. THE ANALYTIC LST

Recently, an analytic LST that meets the requirements cited
earlier has been proposed and used for problems related to
nuclear structure [33]. This LST is given by the expression

s(r) = 1√
2b

[
1(

1
r

)m + (
1

γ
√

r

)m

] 1
m

, (3)

which depends on the parameters m, γ , and the oscilla-
tor length b.1 It can be easily verified that the function
s(r) behaves asymptotically as s(r) ∼ γ

b

√
r
2 and, hence, the

functions obtained by applying this LST to the HO basis
behave at large distances as exp(−γ 2r/2b2). Thus, one can
define an effective momentum, keff = γ 2/2b2, that governs
the asymptotic behavior of the THO functions. The quantity
keff can be interpreted as the range of linear momentum that
is explored by the THO basis. This interpretation suggests
that, for a reaction that excites states in the continuum up to
a maximum energy εmax, the value of keff should be of the
order of

√
2µεmax/h̄. This determines completely the ratio

γ /b. Note that the parameter keff plays a role similar to that of
the maximum momentum used in the standard binning method
to truncate the continuum. As a second step, the oscillator
length b is determined by minimizing the ground-state energy
with respect to this parameter for a finite size basis. Thus,
the quantity b can be regarded as a variational parameter
used to optimize the description of the ground-state wave
function. With this procedure, we completely determine b

and γ . Concerning the power m, we have found that the results
are very weakly dependent on this parameter and, hence, in
this work we take m = 4, which is in fact one of the choices
used in Ref. [33].

1Note that this definition contains the extra factor (
√

2b)−1 with
respect to the original definition of Ref. [33]. This extra factor arises
because in the present work the HO functions are defined in terms of
the dimensionless variable s, whereas in Ref. [33] they are defined in
dimensional units. Hence, unlike the original definition, the oscillator
length appears explicitly in the definition used in this work.

IV. NUMERICAL APPLICATIONS OF THE ANALYTIC LST

A. d + 58Ni at 80 MeV

As a first application of the method, we consider the reaction
d + 58Ni at 80 MeV, which has been the subject of many
studies in the past [3,35–37]. Following our previous work
[27], the proton-neutron (pn) interaction is parametrized in
terms of the Poeschl-Teller potential,

Vpn(r) = − V0

cosh(ar)2
, (4)

with V0 = 102.706 MeV and a = 0.9407 fm−1. As explained
earlier, the ratio of the γ parameter to the oscillator length is
estimated as γ /b � √

2keff , where keff is the linear momentum
associated with the maximum excitation energy populated in
the reaction. In this case, we find that states up to about
70 MeV are excited, which corresponds to keff = 1.3 fm−1

and γ /b = 1.65 fm−1/2. Keeping this ratio fixed, the oscillator
length is then determined by minimizing the energy of
the lowest eigenvalue obtained upon diagonalization of the
projectile Hamiltonian in a small THO basis, in this case
giving b = 1.5 fm. Nevertheless, it is worth noting that the
scattering calculations are found to be weakly sensitive to
the actual choice of this parameter.

As an example, in Fig. 1 we plot the positive eigenvalues
obtained for � = 0 with a basis of N = 20 states. The vertical
scale corresponds to the linear momentum for the internal
motion (i.e., k = √

2µε/h̄). For the sake of comparison,
we include also the spectrum obtained with our previous
prescription for the LST, in which the transformation s(r)
is determined by imposing the condition that the first (n = 0)
HO wave function is transformed into the ground-state wave
function of the system. (The latter was obtained by direct
integration of the Schrödinger equation.) Note that, unlike the
analytical LST, the numerical LST is independent of oscillator

0

0.5

1

1.5

2

k 
(f

m
-1

)

(a) (b)

FIG. 1. (Color online) Eigenvalues of the pn system obtained
upon diagonalization of the internal Hamiltonian (a) using a THO
basis generated with the numerical LST based on the ground-state
wave function and (b) using a THO basis generated with the analytical
LST of Eq. (3). A basis with N = 20 functions was used in both cases.
Only eigenvalues below k = 2.1 fm−1 are shown.
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length. It can be seen in the numerical LST, Fig. 1(a), that
the eigenvalues tend to concentrate at low excitation energies.
This is mainly because in this case the exponential decay of
the THO basis is determined by the asymptotic momentum
of the ground state (kg.s. = 0.232 fm−1). In the analytical
LST, Fig. 1(b), the basis functions decay with the momentum
keff = 1.3 fm−1, as explained earlier, and the eigenvalues
are approximately equally distributed in momentum space.
Besides these positive eigenvalues, both bases produce a
negative eigenvalue which, in the case of the numerical LST,
coincides by construction with the exact ground-state energy
(εg.s. = −2.225 MeV). In the analytical LST, the ground-state
energy and its associated wave function are obtained only
approximately, but with N = 20 states the lowest eigenvalue
is εg.s. = −2.225 MeV and the overlap between the exact
and the approximate ground-state wave functions is 0.999998,
indicating that the ground state obtained with the analytical
transformation reproduces very well the exact one for even a
relatively small basis set.

Within the CDCC formalism, the set of eigenstates is used
to generate the coupling potentials (diagonal and nondiagonal)
between different internal states of the projectile. For d + 58Ni,
these coupling potentials are given by2

Uα,α′ (R) = 〈φn,�|Up-Ni + Un-Ni|φn′,�′ 〉, (5)

with α = {n, �} and α′ = {n′, �′} and Up,n-Ni are the nucleon-
target interactions (in the proton case, including Coulomb
interaction). The internal wave functions φn,�(r) in this formula
represent either the continuum bins or the THO eigenstates,
depending on the selected discretization method. In the present
calculations, the proton-58Ni and neutron-58Ni interactions are
taken from the parametrization of Becchetti and Greenless
[38]. Following Ref. [3], we consider only the partial waves
� = 0, 2. All possible couplings (s-s, s-d, and d-d) were
included in the calculations for multipoles λ � 4. In the
standard CDCC calculation, the � = 0 and � = 2 continuum
was discretized into ns = nd = 15 bins evenly spaced in the
linear momentum and up to a maximum excitation energy of
εmax = 70 MeV.

For the CDCC-THO calculations we used a basis with
N = 30 states (for each �). After diagonalization, some of
the eigenvalues lie at very high excitation energies, thereby
playing a negligible role in the studied observables. In
particular, in this calculation we excluded those eigenstates
above 70 MeV, because they were found to have no effect on
the elastic cross section. After removal of these channels, the
number of states that are included is reduced to ns = nd = 14
(plus the ground state).

The coupled equations were solved for total angular
momenta up to Jmax = 100 and integrated up to a radius
Rmax = 100 fm.

In Fig. 2 we compare the differential elastic cross section
obtained with CDCC-Av (solid line) and CDCC-THO (dashed
line) with the experimental data of Stephenson et al. [39] for
d + 58Ni at 79 MeV. It can be seen that both methods are
in very good agreement, proving the independence of these

2In this expression, the integral is along the internal coordinate r.
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FIG. 2. (Color online) Elastic angular distribution, relative to
the Rutherford cross section, for the reaction d + 58Ni at 80 MeV.
The solid line corresponds to the CDCC calculation with bin
discretization, the dashed line to the CDCC-THO calculation, and
the dotted line to the one-channel calculation, in which continuum
channels are neglected. The variables ns and nd denote the number
of continuum states included in the CDCC calculations for � = 0
and � = 2, respectively. The circles are the experimental data of
Ref. [39].

calculations with respect to the discretization method. For
comparison, we include also in this figure the one channel
calculation in which continuum channels are omitted (dotted
line). It is observed that, at this energy, the effect of the coupling
to the continuum on the elastic cross section is sizable and
that the inclusion of these couplings significantly improves
the agreement with the experimental data, with respect to the
one-channel calculation.

The solution of the coupled equations also provides the
S-matrix elements connecting the ground state with the
continuum states, from which breakup observables can be
constructed. In principle, each matrix element corresponding
to a given set of quantum numbers would be a continuous
function of the excitation energy (or momentum). However,
within a coupled-channels scheme, the S matrix is obtained for
discrete values of the energy. In the standard CDCC method, in
which this discretized continuum is represented by continuum
bins, an approximation to this continuous S matrix can be
obtained dividing the discrete S matrix by the square root of the
bin width, �ki . In the CDCC-THO method, one could apply
a similar procedure by assigning a width to each pseudostate.
In fact, this approach was used in Ref. [27] to calculate the
differential breakup cross section from the cross section to
individual pseudostates, assuming that the width of the ith
pseudostate is given approximately by �i = (εi+1 − εi−1)/2.
In this work, we adopt an alternative approach, previously
proposed in Ref. [7] and recently employed in a previous
application of the THO method [17]. In this method, the
breakup S-matrix elements Sα′:α(k), which depend on both
the continuous variable k and the initial and final angular
momenta, are obtained by an appropriate superposition of the
discrete S-matrix elements Ŝα′:α(ki) resulting from the solution
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FIG. 3. (Color online) Modulus of the breakup S-matrix elements
for the total angular momentum J = 17 for the reaction d + 58Ni at
80 MeV as a function of the p-n relative momentum in the final state.
The histogram is the CDCC calculation with binning method. The
filled and open circles represent the CDCC-THO calculations using
the analytical and numerical LSTs, respectively. The solid lines are
obtained by folding the discrete S matrices with the true continuum
wave functions.

of the coupled-channels equations, as [7,15]

Sα′:α(k) ≈
N∑

i=1

〈
φ

(s)
k,�

∣∣φi,�

〉
Ŝα′:α(ki), (6)

where φ
(s)
k,�(r) is the true scattering wave function for the partial

wave � and energy ε = h̄2k2/2µ. The sum runs over the set
of pseudostates included in the coupled-channels calculation.
The indexes α and α′ denote the initial and final channels;
that is, α = {g.s.; L0, �0, J } and α′ = {i; L, �, J }, where L0

(L) is the initial (final) orbital angular momentum for the
projectile-target relative motion.

As an example, in Fig. 3 we plot the modulus of the
breakup S-matrix elements for a total angular momentum of
J = 17; that is, (�, L) = (0, 17), (2, 15), (2, 17), (2, 19). For
the CDCC-Av calculations, the continuum was divided into
ns = nd = 35 bins up to a maximum excitation energy of
70 MeV. For the CDCC-THO calculation, we required a basis
of N = 50 states to obtain full convergence at high excitation
energies, although N = 30 already gives rather good results.
Again, after diagonalization of the internal Hamiltonian, we
removed those eigenstates above 70 MeV, reducing the actual
size of the basis to only ns = nd = 24 states (along with the
ground state). The histogram in Fig. 3 represents the CDCC-Av
calculation; the filled circles correspond to the CDCC-THO
calculation, in which each discrete S matrix has been divided
by the square root of the pseudostate width; and the line is
the CDCC-THO calculation folded with the continuum wave
functions, Eq. (6). We verified that increasing the number of
basis states does not change the calculated S matrices, thus
indicating the convergence of the THO method with respect to
the basis size. It is clearly seen that both discretization methods
are in almost perfect agreement. To illustrate the advantage of
the present LST over the previous one, we have included in
Fig. 3 the calculation using the numerical transformation, with

a basis of N = 30 states (open circles). After eliminating those
pseudostates above 70 MeV, the number of states included in
the CDCC calculation is reduced to ns = nd = 27 states. It can
be seen that this calculation gives a distribution very similar to
the other methods at low excitation energies, where the density
of states is higher, but it clearly deviates from them at higher
excitation energies. We attribute this departure to the small
number of states at these energies.

B. 6Li + 40Ca at 156 MeV

The second example presented in this work corresponds
to the scattering of 6Li from 40Ca at an incident energy of
156 MeV. The 6Li nucleus is assumed here to be composed
of two fragments, α + d, as has usually been done in previous
studies (see, for example, Refs. [6–9]). An important difference
with respect to the deuteron case is the presence of a d-wave
resonance in the 6Li continuum. This feature permits an
assessment of the extent to which our THO basis is capable
of reproducing the effect of this resonance on scattering
observables.

This reaction was recently studied by Matsumoto et al. [7]
as a test case to compare the binning method with a PS method
based on a family of Gaussian functions, and very good
agreement was found between both discretization methods
for both elastic and breakup observables. With a similar
motivation, in this work we performed CDCC calculations
for this reaction, comparing the binning procedure with the
THO basis. The 6Li ground-state wave function was calculated
with the same Gaussian potential used in Ref. [7], assuming
a 2S configuration and a separation energy of 1.474 MeV.
The same potential was used to generate the continuum wave
functions. For � = 2, this potential produces a resonance with
εres = 2.96 MeV and � = 0.62 MeV. Only the partial waves
� = 0 and � = 2 were considered for the α + d relative motion.
The optical potentials for the fragment-target interactions
(α + 40Ca and d + 40Ca) were also taken from Ref. [7]. These
interactions were used to generate the coupling potentials
(diagonal and nondiagonal) for multipoles λ � 2, including
both nuclear and Coulomb parts. For simplicity, the deuteron
spin was ignored.

In the CDCC-Av calculations, the continuum was truncated
at an excitation energy of εmax = 80 MeV. For � = 0, this
energy interval was divided into ns = 15 bins uniformly
distributed in the linear momentum. For � = 2, we considered
nd = 30 bins distributed in the following way: ten bins from
ε = 0 up to an excitation energy of ε = 5 MeV, and 20 bins
from this energy to εmax. This was done to have a finer
description of the region around the resonance. Moreover, for
the interval ε ∈ [0, 5] MeV, the bin wave functions were built
as usual by superposition of the true continuum states, but
with a weight function sin(δk), where δk is the phase shift
corresponding to an asymptotic momentum k for the α-d
relative motion. This weight factor is known to improve the
description of the resonance.

The THO basis was generated following the same procedure
employed in the preceding example but without any fine
tuning due to the presence of the resonance. In this case, the
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FIG. 4. (Color online) Elastic angular distribution, relative to the
Rutherford cross section, for the reaction 6Li + 58Ni at 156 MeV.
The dotted line is the calculation omitting the breakup channels, the
solid line is the CDCC-Av calculation, and the dashed line is the
CDCC-THO calculation. Experimental data are from Ref. [40].

maximum energy populated is about 80 MeV, which yields
kmax = 2.26 fm−1 and γ /b = 2.13 fm−1/2. The oscillator
parameter was obtained by minimizing the binding energy in
a small THO basis, giving b � 2 fm. For the coupled-channels
calculations, a basis of N = 20 was used. When the projectile
Hamiltonian is diagonalized in this basis, the ground-state
energy differs from the exact value by less than 0.1% and
the overlap of its eigenfunction with the exact ground-state
wave function is 0.999996, showing again the good accuracy
of the approximated ground state obtained with the analytic
transformation. We note that a deeply bound eigenvalue is
also obtained at ε = −33.5 MeV. This corresponds to the
1S configuration that is forbidden due to the Pauli principle;
hence, this state was excluded from our calculations. We also
excluded those eigenstates above 80 MeV, reducing the actual
basis dimension to ns = 12 (plus the ground state) and nd = 13
states. The set of coupled equations was solved for a total
angular momentum up to Jmax = 150 and matched to their
asymptotic solution at Rmax = 150 fm.

In Fig. 4 we present the elastic cross section, relative
to the Rutherford cross section, for the CDCC-Av (solid
line) and CDCC-THO (dashed line) calculations, along with
the experimental data from Ref. [40]. The single-channel
calculation, in which the continuum is omitted, has also been
included (dotted line). From this figure, one can see that, except
for the very small differences observed at large scattering
angles (where the cross section is already very small), each
discretization method yields almost identical results. Despite
the simplified model for the 6Li spectrum, the full CDCC
calculations also reproduce the experimental data very well.

In Fig. 5 we compare the modulus of the breakup S-
matrix elements for a total angular momentum of J = 43.
The histogram corresponds to the CDCC-Av calculation, the
circles to the CDCC-THO calculation obtained by dividing
the discrete S-matrix elements by the square root of the
pseudostate widths, and the solid line to the CDCC-THO
calculation in which the discrete values are folded with the
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FIG. 5. (Color online) Breakup S-matrix elements for the reaction
6Li + 40Ca at 156 MeV, for a total angular momentum of J = 43 as
a function of the final d + α relative linear momentum.

true continuum states, according to Eq. (6). Again, we find
excellent agreement between both discretization methods. The
most remarkable feature of this quantity is the presence of a
prominent peak at k = 0.44 fm−1 for the � = 2 continuum,
which arises from the d-wave resonance. It is clearly seen that
this peak is very well described by the THO discretization
(even before folding with the continuum states). Therefore,
we can conclude that the THO basis is also an efficient
procedure to describe the resonant continuum and its effect
on the scattering observables.

C. 6He + 208Pb at 22 MeV and 240 MeV/nucleon

As a final example, we consider the reaction 6He + 208Pb at
22 MeV and 240 MeV/nucleon. These two energies are chosen
to illustrate how the basis can be adapted to the different energy
regimes by an appropriate choice of the parameters that define
the LST.

We first focus on the reaction at 22 MeV. This case is very
demanding because of (i) the strong couplings arising from the
long-range Coulomb interaction and (ii) the proximity of the
incident energy to the Coulomb barrier, making both nuclear
and Coulomb effects very important.

The 6He system is treated within the two-body model
proposed in Ref. [41]. This is analogous to the α + d model
used for the 6Li system, but with an effective dineutron binding
energy of 1.6 MeV, instead of the two-neutron separation
energy (εb = 0.97 MeV). This modification provides a more
realistic rms value for the ground-state wave function, in
addition to more realistic couplings to continuum states.
Following Ref. [41], the 2n-α interaction is parametrized with
a Woods-Saxon shape, with R = 1.9 fm and a = 0.25 fm. The
strength of the � = 0 potential is adjusted to give a separation
energy of 1.6 MeV. For the � = 2 continuum states, we use
the same geometry but with the strength adjusted to give a 2+
resonance at an excitation energy of 1.8 MeV (with respect to
the ground state).

To generate the LST, we considered a maximum momentum
kmax = 0.72 fm−1 (corresponding to a maximum excitation
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FIG. 6. (Color online) Elastic angular distribution, relative to the
Rutherford cross section, for the reaction 6He + 208Pb at 22 MeV.
The solid line corresponds to the CDCC calculation with bin
discretization, the dashed line to the CDCC-THO calculation, and
the dotted line to the single-channel calculation, in which continuum
channels are neglected. The circles are the experimental data of
Ref. [44].

energy of 8 MeV), which leads to γ /b = 1.2 fm−1/2. With
this ratio, the value of the oscillator length that minimizes the
binding energy is b � 1 fm. For the scattering calculations,
we considered � = 0, 1, and 2 continuum states. Unlike the
preceding examples, the role of the � = 1 continuum states is
very important because these states are strongly coupled by
the dipole Coulomb interaction. In the three cases, we used
a basis of N = 15 states, providing the ground-state energy
with an accuracy of 1.25% and an overlap with the exact wave
function of 0.999868. At this incident energy, we found that the
elastic scattering is not affected by the continuum states above

≈8 MeV. Therefore, those pseudostates with eigenenergies
above this value were not included in the solution of the
coupled equations. After removing these states, the number
of pseudostates actually included were ns = np = nd = 7.

Again, we compare the CDCC-THO calculations with
CDCC-Av calculations using the binning method. In this case,
we discretize the s, p, and d continuum using nine bins,
uniformly distributed in the linear momentum from ε = 0 to
ε = 9 MeV.

For the 2n-208Pb interaction we used the d-208Pb potential
generated with the global parametrization of Perey and Perey
[42], whereas for the α + 208Pb interaction we took the optical
potential of Barnett and Lilley [43]. The coupled equations
were integrated up to a radius of 100 fm and for total angular
momenta up to Jmax = 100.

In Fig. 6 we compare the experimental data for the
differential elastic cross section of Ref. [44] (circles) with
the CDCC-Av calculation (solid line) and the CDCC-THO
calculation (dashed line). Both calculations are in excellent
agreement and reproduce the data very well. To emphasize
the effect of the coupling on the continuum, we have also
represented the result obtained by omitting the continuum
contribution (dotted line). The strong suppression of the cross
section around 70◦ is mainly due to the strong dipole Coulomb
couplings with 1− continuum states. Given the good agreement
between both discretization methods, we conclude that the
THO method is also suitable to describe the effects caused by
long-range couplings.

In Fig. 7 we present the breakup S-matrix elements
for a total angular momentum of J = 29, for which the
breakup cross section is largest. To achieve convergence in the
calculations of this observable, the coupled equations had to be
integrated to Rmax = 700 fm. In addition, the number of states
used in both discretization methods had to be increased. For
the CDCC-THO calculation (solid circles), we used a basis of
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FIG. 7. (Color online) Breakup
S-matrix elements for the reaction
6He + 208Pb at 22 MeV, for a total
angular momentum of J = 29 as a
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the CDCC-Av calculation, whereas the
filled circles and the solid line corre-
spond to the CDCC-THO calculations.
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FIG. 8. (Color online) Breakup
S-matrix elements for the total angular
momentum of J = 185 for the reaction
6He + 208Pb at 240 MeV/nucleon as a
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calculation with the binning method.
The circles represent the CDCC-THO
calculations using the analytic LST and
the solid lines are obtained by folding
the discrete S matrices with the true
continuum wave functions.

N = 50 states. After eliminating those states above 8 MeV, the
number of pseudostates per partial wave was reduced to ns =
np = 29 and nd = 30 states. The panels for � = 2 final states
show a narrow peak at low energies, which corresponds to the
well-known 2+ resonance. This peak becomes more evident
when the discrete S matrix is folded with the continuum wave
functions (solid line). For the CDCC-Av method, we used a
basis with ns = np = nd = 40 bins. For this observable, the
CDCC-Av calculation was found to be very sensitive to the
radius at which the bin wave functions are truncated (rbin). We
have chosen the criterion rbin = 2π/�k, where �k is the bin
width. This value of rbin corresponds to the distance at which
all continuum wave functions exhibit a common minimum.

The results shown in Fig. 7 show a reasonably good
agreement between both discretization methods, although, for
the excitation to the dipole states, differences as large as 25%
are found between them. This difference is larger than the
accuracy estimated for the calculated S matrices (about 10%),
so this disagreement requires further investigation.

Finally, we consider the same reaction but at the much
higher energy of Elab = 240 MeV/nucleon. We use the same
internal Hamiltonian for the 6He system and, for simplicity,
we keep the same 2n-target and α-target interactions. Although
the large available kinetic energy would allow the population
of very high excited states, in practice states up to only about
60 MeV are significantly populated. This corresponds to k �
2 fm−1 and, according to our prescription, γ /b = 2 fm−1/2.

For the CDCC-THO calculations, very good convergence
of this observable was achieved with a basis of N = 30
states. Excluding those eigenstates above 60 MeV, the number
of pseudostates that enter the coupled-channels equations is
ns = np = 14 and nd = 15. For the CDCC-Av method, the
continuum was discretized from 0 up to 50 MeV, using ns =
np = nd = 25 bins evenly spaced in the linear momentum.

The coupled equations were integrated up to 100 fm, and for
a total angular momentum up to Jmax = 2000.

In Fig. 8 we depict the breakup S-matrix elements for a
total angular momentum of J = 185, which corresponds to
the maximum of the breakup cross section. As before, the
histogram is the CDCC-Av calculation, and the circles and the
solid lines are the CDCC-THO calculations. In the latter case,
the breakup S matrices are folded with the continuum wave
functions. Excellent agreement is observed in all cases, but
the CDCC-THO method required a smaller basis to achieve
convergence. Note that this smoothing procedure permits an
accurate description of the 2+ resonance, even with a small
number of pseudostates. From these results, we conclude
that the proposed discretization method can be useful for the
analysis of high-energy experiments involving weakly bound
projectiles.

V. SUMMARY AND CONCLUSIONS

In this work, we proposed a new transformed oscillator basis
for continuum discretization in CDCC calculations. This new
THO basis is obtained by application of a recently proposed
LST [33] to the HO basis. The basis obtained provides a
suitable discrete representation of the bound and unbound
spectrum of a two-body system, which can be used within
the CDCC formalism to calculate the scattering observables
for reactions involving weakly bound projectiles. Unlike the
THO used in our previous works, this analytic transformation
does not provide the exact ground-state wave function for
any finite size of the basis, but in the cases studied in this
work we have shown that the energy and wave function of
the ground state can be obtained with high accuracy using a
relatively small basis dimension. An appealing feature of this
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transformation is that the radial extension of the basis can be
controlled with the parameter γ defining the transformation
and the oscillator length b. This flexibility is very convenient
for scattering calculations, because it permits adaptation of the
distribution of eigenvalues to the problem at hand. Moreover, it
can be very easily implemented, due to its analytic form. This
fact is important in realistic calculations for which a large basis
set is needed, because the generation of any number of states
is straightforward with the analytic LST, whereas numerical
problems appear when generating a large-dimension basis if
the numerical LST developed in previous works is used.

As an application of the new basis, we have studied the
elastic and breakup of d + 58Ni at 80 MeV, 6Li + 40Ca at
156 MeV, and 6He + 208Pb at 22 MeV and 240 MeV/nucleon,
showing in most cases excellent agreement with the standard
discretization method based on energy bins. Furthermore,
typically the number of states required to achieve converged
results in the CDCC-THO calculations is smaller than the
number of bins included in the CDCC-Av calculations. This
is a clear advantage of the present method. Even the sharp
resonance peak that appears in the 6Li + 40Ca and 6He + 208Pb
breakup energy distributions is very well described using a
relatively small basis. In the 6He + 208Pb case, we have shown
that the THO method accounts very well for the effect of
long-range Coulomb couplings. In this case, the convergence
rate has been found to be significantly faster than that of
the CDCC-Av method. For this reaction, we have performed

calculations at Elab = 22 MeV and 240 MeV/nucleon to
illustrate how the basis can be adapted to the energy dynamic
regime by a suitable choice of parameters for the LST.
At Elab = 22 MeV, we have found excellent agreement for
the differential elastic cross section between both methods,
whereas for the breakup S-matrix elements, differences as
large as 20% have been observed. This discrepancy should
be further investigated. At Elab = 240 MeV/nucleon, these
differences were not observed, and the two methods provide
almost identical results for this magnitude.

Finally, we note that the present method could be extended
to describe the continuum of a three-body projectile, such as
6He or 11Li, following the same formalism used in Ref. [23].
Moreover, the method can be useful to study the continuum
structure of two- and three-body systems with no bound states.
Work in this direction is in progress.
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[26] F. Pérez-Bernal, I. Martel, J. M. Arias, and J. Gómez-Camacho,
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