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Determination of nuclear radii for unstable states in 12C with diffraction inelastic scattering
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We propose a method for determining the nuclear radii for the excited states lying above the particle breakup
threshold based on the diffraction model of scattering. The method is applied to analyzing the diffraction structure
of the elastic and inelastic scattering of 2He, 3He, 4He, 6Li, and 12C ions on 12C at energies below 100 MeV/A.
We study the radii of 12C in the excited states up to Ex ≈ 11 MeV and show that the diffraction radii for the
ground and the first 2+ (4.44 MeV) excited states are approximately the same. The diffraction radii for the 0+

2

(7.65 MeV) Hoyle state and 3− (9.64 MeV) states located above the 12C → 3α threshold are larger by ≈0.5 fm.
This difference does not depend on the energy or on the kind of projectiles (deuterons are an exception). This
fact justifies an application of the proposed method to the determination of the root-mean-square radii of the
above-threshold states. We found that the rms radii for the 0+

2 (7.65 MeV) and 3− (9.64 MeV) states are a factor of
1.2 larger than the rms radius for the ground state of 12C. Also, we estimated the rms radii for the above-threshold
2+ (9.9 MeV), 0+ (10.3 MeV), and 1− (10.84 MeV) states.
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I. INTRODUCTION

The sizes of nuclei, their charge or nucleon distributions,
represent one of the important parameters determining their
basic properties and are a consequence of the fundamental
features of the strong interaction. To date, a number of reliable
methods used to measure the radii of nuclei in the ground
states have been developed, among which the most precise and
widespread is the elastic scattering of electrons on stable or
long-lived targets [1]. Laser spectroscopy, for instance, is used
to measure the radii of nuclei in excited states with half-lives
of more than 10−8–10−9 s, in cases when these nuclei can be
obtained in the form of monatomic beams.

Until recently, no method of measuring the radii of nuclear
states located above the thresholds of nucleon and cluster
emission with half- lives less than 10−12 s had been developed.
Giant resonances, the excited states of exotic nuclei in
the region of the drip lines, and some quasimolecular and
cluster states represent numerous examples of these above-
threshold states. The investigation of the properties of the
short-lived states in nuclei may give rise to the observation
of novel phenomena and the development of nuclear structure
theory. In addition to its role in nuclear spectroscopy, the
study of nuclear radii is of great importance to nuclear
astrophysics. Nucleosynthesis mainly occurs by the excitation
of intermediate states lying above the thresholds of fusion
of the colliding nuclei. Direct measurements of fusion cross
sections at low energies of astrophysical interest are extremely
difficult or impossible. Corresponding calculations are very
sensitive to the precise values of the radii of the nuclei, because
their variation can change the result in the order of magnitude.

The problem of measuring the radii of nuclei in the unbound
states has attracted plenty of attention in the last decade in
connection with a hypothesis of the possible existence of
α-particle Bose-Einstein condensation (αBEC) in finite nuclei
[2]. Corresponding nuclear states are expected to be dilute

systems of almost unperturbed α particles with zero relative
angular momentum L = 0 and are located closely to the
thresholds of complete dissociation to α particles: A → nα.
Nuclear radii for the αBEC states are estimated to be a factor
of 1.4–1.7 larger than those for the ground state [2].

An intensive study of four-nucleon correlations of the
α-cluster type initiated more than 50 years ago [3] established
their important role in nuclei. The microscopic α-cluster
models [4–8] have succeeded in describing the structure of
many states in light nuclei, in particular, around the threshold
energy of breakup into constituent clusters. Considerable
attention has been drawn to the studies of α-cluster states in
12C, especially the second 0+ state, located at Ex = 7.65 MeV,
which is 0.38 MeV above the 3α threshold. As early as 1954,
Hoyle showed [9] that this level plays an extremely important
role in nucleosynthesis. The properties of the Hoyle state in
12C determine the ratio of carbon to oxygen formed in the
stellar helium burning process that strongly affects the future
evolution of stars. Detailed analyses of the structure of 12C
with the microscopic 3α cluster model [10,11] was made
about 30 years ago. The 3α generator coordinate method
(GCM) [10] and 3α resonating group method (RGM) [11]
calculations showed that the 7.65 MeV 0+

2 state in 12C has a
loosely coupled 3α structure and an enlarged radius. Modern
microscopic calculations in the framework of cluster models
such as the antisymmetrized molecular dynamics [12] and the
fermionic molecular dynamics (FMD) [13] also predict an
increased radius of this above-threshold cluster state. Much
recent attention has been focused on experimental studies of
the α-cluster structure of the excited states in 12C as well as of
the neighboring loosely bound 14C and 10Be nuclei [14–17].

In the context of the αBEC hypothesis, the 7.65 MeV
level in 12C is considered to be the simplest example of the
α-condensed state playing the role of a test for the whole
problem. Although the direct measurement of the radius of
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this short-lived nuclear state is impossible because of its very
short half-life [τ1/2 (0+, 7.65 MeV) � 2 × 10−16 s], some
information on enhanced dimensions of Hoyle’s state could
be derived in various ways. Kokalova and collaborators [18]
observed enhanced emission of 12C in the 7.65 state from
the compound nuclei, which was interpreted as a result of
the lowering of the Coulomb barrier due to the larger size
of this level. Ohkubo and Hirabayashi [19] analyzed the
differential cross sections of 3He and α particles to the
7.65 MeV state in 12C measured at different energies and
found that the shifts of rainbow (Airy) minima point to the
enlargement of the nuclear radius in this state. Takashina
and Sakuragi [20] analyzed the α-particle inelastic scattering
on 12C exiting the 0+

2 state at 7.65 MeV in the framework
of the microscopic coupled-channels approach [19] with the
density distribution of 12C given by the α-condensate model
calculations [21]. The authors found that one can determine
the extension of the transition density rather than the nuclear
radius of the excited state from the oscillation pattern of the
inelastic angular distribution. However, the nuclear radius of
the excited state can be deduced from the absolute value of
the inelastic differential cross sections through the amplitude
of the transition density. Ogloblin et al. [22] pointed out that
inelastic form factors used to describe the differential cross
sections of α scattering at 139 MeV [23] and 3He scattering
at 72 MeV [24] to the 7.65 MeV state were taken as a second
derivative d2V/dr2 of the real part of the optical potentials,
because the use of standard form-factors as a first derivative
dV/dr failed to get any reasonable agreement with the data.
This form factor qualitatively agrees with one predicted by
cluster model calculations [11], because both form factors have
minima at the same radial distance and a large part of them
are located at large distance. Chernykh and collaborators [13]
compared the electron scattering data on form factors of the
ground state and the transition to the Hoyle state within
the three-cluster FMD model. The authors indicated a dilute
density of the Hoyle state, which has a large spatial extension
estimated to be a factor of ∼1.5 larger than that of the ground
state. An analysis made by Khoa [25] demonstrated an increase
of the absorption in the exit channels for some of the 12C states
above the threshold.

As great amounts of existing data suggest a considerable
enhancement of the Hoyle state size, it can serve as a good
object for testing the methods of measuring the radii of the
unstable states. We have proposed two such methods based
on the use of inelastic diffraction and rainbow scattering.
Preliminary results from the application of the diffraction
method to the analysis of the new data of α + 12C inelastic
scattering are presented in Refs. [26,27]. This method has
demonstrated the vitality and ability to be widely used in view
of its clarity and direct relation with the experimental data. A
short summary and comparison of the diffraction and rainbow
methods in the inelastic α particles and 3He scattering are
given in Ref. [28].

In this paper, we present a detailed study of the diffraction
structure of the elastic and inelastic scattering of 2H, 3He, 4He,
6Li, and 12C ions on 12C at energies below 100 MeV/A. The
analysis is based on the diffraction model of scattering and
aims to determine the nuclear radii for the excited states lying

above the 12C breakup threshold, mainly the 0+
2 (7.65 MeV)

Hoyle state. We formulate the conditions for the applicability
of the method and extract the diffraction and root-mean-square
radii of 12C in the excited states by comparing the inelastic
scatterings of different light ions.

II. DIFFRACTION MODEL AND DIFFRACTION RADII

A. Input data

We analyzed the α + 12C elastic and inelastic (to the
4.44 MeV 2+, 7.65 MeV 0+, and 9.64 MeV 3− states)
scattering data at beam energies of 60 [26], 110 [26,27],
104 [29], 139 [23], 166 [30], 172.5 [31], and 240 [32] MeV.
The resolution of the experiments mentioned above (about
700 keV) allowed us to clearly distinguish the 7.65 MeV
state. To estimate the sizes of the high-lying states in 12C, we
included the data of inelastic α-particle scattering at 240 MeV
[32] (Ex = 10.3 and 10.84 MeV) and the data obtained
in Refs. [33,34] at α-particle energy 388 MeV (Ex = 9.9,
10.3, and 10.84 MeV). These three states could give some
contributions to a single peak corresponding to the 3− state
at 9.64 MeV. Basing our calculations on the data [33] and
taking into account the large widths of the first two levels,
we estimated the possible contribution in the maximum of
the angular distribution corresponding to the formation of the
9.64 MeV state to be no more than 5–10%.

The available data on 3He + 12C for four lower states in
12C were explored at Elab(3He) = 34.7 [35], 50 [36], 60 [36],
72 [24], and 82 [37] MeV.

We also used data of the elastic and inelastic scattering of
the 2H + 12C at Elab = 52 [38], 60.6, 77.3, 90 [39], and 200
[40] MeV, the 6Li + 12C scattering at 124 and 169 MeV [41],
and the 12C + 12C scattering at 120 [42], 139.5, and 159 MeV
[43].

B. Application of the diffraction model of scattering

The experimental differential cross sections of elastically
and inelastically scattered light heavy ions at energies 10–
100 MeV/A clearly reveal a characteristic region of the
small-angle Frauenhofer diffraction. Simple formulas for the
inelastic scattering differential cross sections were obtained
[44] under the assumption that an adiabatic approximation is
valid; that is, the excitation energy of the level is much smaller
than the initial energy. The shapes of the angular distributions
are determined by combinations of the Bessel functions Jl(x),
that is,
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of different order from the argument x = qR, where q is the
linear transferred momentum and R is the radial parameter.
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The Blair phase rule following from Eqs. (1) defines a set of
phase relations between the shapes of the elastic and inelastic
angular distributions depending on the transferred angular
momentum l values: the even l angular distributions are out of
phase with the odd −l ones.

In our applications, this method deals with only one
parameter, the diffraction radius Rdif, extracted directly from
the positions of the first small-angle minima (maxima), which
are considered as zeros (maxima) of the squared Bessel
functions of the qR = qRdif argument. The diffraction of
particles at small angles appears because of the absorption
of the incident flux by the nuclear field, and it is defined by the
imaginary part of the optical model potential. Because of that,
the parameter Rdif is close to the strong absorption radius.

Our aim is to establish the connection between the diffrac-
tion radius and “real” (say, rms radii 〈R〉) of the colliding
nuclei in the states involved. The diffraction radius Rdif for
the elastic scattering of the A1 + A2 system can be defined
as a sum of the real radii 〈R〉 plus some value �el, which is
determined by the peculiarities of the interaction

Rdif(el) = 〈
RA1

〉 + 〈
RA2

〉 + �el. (2)

For inelastic scattering, we can write the similar relation

Rdif(in) = 〈
RA1

〉 + 〈
R∗

A2

〉 + �in. (3)

Assuming that the real radii 〈RA1〉 and 〈RA2〉 of the colliding
nuclei in their ground states are known, which usually is the
case, we found that the nuclear radius in the excited state 〈R∗

A2
〉

is 〈
R∗

A2

〉 = 〈
RA2

〉 + [Rdif(in) − Rdif(el)] + [�el − �in]. (4)

The application of Eqs. (2)–(4) is possible if the following
conditions are fulfilled for the particular projectile-target
combination:

(i) The incident energy is much greater than the excitation
energy of the state under consideration (the adiabatic
approximation).

(ii) The diffraction radius Rdif for a particular projectile-
target combination does not depend on the order of
the observed minimum or maximum, which proves a
diffraction nature of the observed extremes.

(iii) The difference of the diffraction radii in Eq. (4) does
not depend on the energy and concrete projectile-target
combination. This fact proves that Eqs. (2)–(4) do not
have a formal character and justifies the application of
the proposed method for the determination of the rms
radii.

(iv) The values of � that are measured directly in the
elastic scattering (�el) can be predicted for the inelastic
scattering (�in). This statement is crucial to this method
of determination of nuclear radii in the excited states.
Here we chose the model in which �el = �in (see
discussion below).

The first condition in our analysis is fulfilled, because even
at the lowest energy, 34.7 MeV for the 3He + 12C system, the
ratio Ec.m./7.65 is 3.6.

The second condition is fulfilled, because the diffraction
radius calculations are realized using well-manifested minima

FIG. 1. (Color online) Differential cross sections of the α + 12C
scattering at (a) 110 [28] and (b) 172.5 MeV [31]. The solid
lines represent corresponding distorted-wave Born approximation
calculations. (Angles in units of degrees.)

and maxima (not higher than the fourth order) of the angular
distributions. As an example, the differential cross sections
of the α + 12C scattering at 110 and 172 MeV are shown
in Fig. 1, and in Table I the minima and maxima and
corresponding diffraction radii are displayed.

We did not find any substantial or systematic dependence
of Rdif values from the sequence number of the extremum,
and the observed variations of Rdif are fully connected with
the accuracy of the angles determination.

The justification of the third and fourth conditions is
discussed in the following section.

C. Diffraction radii for the 12C states

Diffraction radii pertaining to the first four states of 12C are
shown in Fig. 2 (α + 12C), Fig. 3 (3He + 12C and 2H + 12C),
and Fig. 4 (6Li + 12C and 12C + 12C). The errors indicated in
Figs. 2–4 are the result of averaging the diffraction radii for
minima and maxima of various orders. In most cases, devia-
tions from the average values do not exceed 0.10–0.15 fm. Let
us note the characteristic features of the diffraction radii.

First, they smoothly (almost linearly) decrease with energy.
The energy dependences of the diffraction radii for the elastic
scattering as well as for the inelastic one with the formation of
the four states surveyed are approximately the same.

Second, for all combinations of nuclei and all energies, the
diffraction radii of the ground and first excited (4.44 MeV)
states are practically the same (the only deviation is observed
for the level 2+ at the maximum energy of α particles).

Third, and this is the main result, the diffraction radii for
the Hoyle state in all cases are greater than Rdif for the ground

054603-3



A. N. DANILOV et al. PHYSICAL REVIEW C 80, 054603 (2009)

TABLE I. Positions of minima and maxima of the differential
cross sections of α + 12C scattering at 110 and 172.5 MeV and the
corresponding diffraction radii.

Ex (MeV), J π θlab (deg) Rdif (fm) 〈Rdif〉 (fm)

At 110 MeV:
0.00, 0+ 12.95 4.87 4.87 ± 0.02

17.68 4.82
24.0 4.90
28.74 4.90

4.44, 2+ 17.0 5.16 4.98 ± 0.07
22.4 5.12
30.0 4.77
34.2 4.89
41.0 4.89

7.65, 0+ 16.9 5.49 5.38 ± 0.09
21.1 5.61
27.8 5.31
32.4 5.39
40.0 5.09

9.64, 3− 19.2 5.80 5.64 ± 0.16
25.5 5.48

At 172.5 MeV:
0.00, 0+ 10.0 5.03 4.82 ± 0.14

20.6 4.55
13.9 4.89

4.44, 2+ 15.3 4.56 4.71 ± 0.06
24.1 4.70

9.0 4.72
18.7 4.86

7.65, 0+ 8.5 5.96 5.45 ± 0.10
13.6 5.42
17.2 5.45
21.1 5.52
25.5 5.40

9.64, 3− 16.2 5.46 5.48 ± 0.02
20.1 5.49

FIG. 2. (Color online) Energy dependence of diffraction radii
extracted from the α + 12C elastic and inelastic to the 2+ (4.44 MeV),
0+ (7.65 MeV), and 3− (9.64 MeV) scattering. The error bars reflect
uncertainties in determination of the positions of the corresponding
minima (maxima). The solid curves represent linear approximations
of the data.

FIG. 3. (Color online) Same as Fig. 2, but for the (a) 3He + 12C
and (b) d + 12C scattering.

state. At the same time, as shown in Figs. 2– 4, the differ-
ences Rdif(7.65)–Rdif(0.00), within the errors, do not depend
on the energy up to E(α) ∼ 100 MeV/nucleon, where the use
of the diffraction model is not quite adequate because of the
increasing transparency of the nuclei.

FIG. 4. (Color online) Same as Fig. 2, but for the (a) 6Li + 12C
scattering and (b) 12C + 12C scattering.
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TABLE II. Differences of the diffraction radii between the 7.65 MeV 0+ state and the ground state obtained from
the different reactions and averaged on energies.

3He + 12C α + 12C 6Li + 12C 12C + 12C d + 12C

〈Rdif (7.65) − Rdif (g.s.)〉 (fm) 0.56 ± 0.06 0.57 ± 0.03 0.58 ± 0.06 0.47 ± 0.05 0.29 ± 0.07

Table II shows the energy-averaged values of these dif-
ferences for all five systems of nuclei studied. One can see
that the errors are small. Nevertheless, one should bear in
mind that the overall accuracy of the results obtained from
the data on 6Li and 12C scattering is lower than for the
3He and α-particle scattering because of the small number
of energy values available for analysis. The absolute values
of the differences do not depend on the type of reaction. The
only exception may be the data obtained from the scattering of
deuterons.

The diffraction radius for the 9.64 MeV state in all the
cases also proved to be larger than that of the ground state
(see Figs. 2– 4). For the scattering of light particles (4He, 3He,
and 2H), Rdif (9.64) is approximately equal to Rdif (7.65), or
even a little bit bigger (within the errors). Rdif(9.64) extracted
from the 6Li + 12C and 12C + 12C scattering is slightly less
than Rdif(7.65). However, because of the small number of data
for the latter, one cannot say this definitively.

III. RESULTS AND DISCUSSION: “REAL” RADII

A. Model determination of rms radii of 12C

The transition from the diffraction radii of excited states to
the “real” radii requires the use of certain models. Our model
is defined by Eqs. (2)–(4). In accordance with the condition
�el − �in = 0, the values of � disappear in expression (4).
Nevertheless, their erratic behavior would make a procedure
of the real radii determination unreliable. From the physical
point of view, the � values are determined by the finite-
range nuclear forces, the dynamics of interaction between the
colliding nuclei, and their nucleon distributions. Theoretical
calculations of �, especially for inelastic scattering, is hardly
possible.

For elastic scattering, we have determined �el energy
dependencies, according to Eq. (2), for various combinations
of colliding nuclei. The Coulomb corrections [45]

Rdif = η

k
+

[
(R′

dif)
2 +

(η

k

)2
]1/2

(5)

were included in the calculation of the diffraction radii.
In Eq. (5), η/k = Z1Z2e

2/(2E), and Rdif and R′
dif are,

respectively, the corrected diffraction radii and the extracted
ones directly from the observable minima and maxima.

We found that the values of �el behave quite systematically
and smoothly (for 3He and α particles almost linearly) decrease
with energy, as shown in Fig. 5, where these data and the data
for some other combinations of colliding nuclei are included.
This behavior of �el is not surprising, since the absorption
depends mostly on the number of nucleons in the zone of

interaction and on the nucleon-nucleon cross section. The latter
decreases with energy. There is also some dependence on the
mass (size) of the colliding nuclei. For loosely bound nuclei
(deuterons, 6Li), �el values at high energies become negative.
This means that in these cases, a diffraction occurs at a distance
between the colliding nuclei less than the sum of their rms
radii.

There is no reason to expect that in inelastic scattering
these dependencies will be significantly different. The almost
the same energy dependence of diffraction radii of the ground
state and as that of the 4.44 and 7.65 MeV states confirms this
(see, for instance, Figs. 2–4). Based on the empirical result ob-
tained in the previous section, which shows the independence
of the diffraction radii differences from the specific reaction
and energies, we have chosen the simplest model, which
assumes that in inelastic scattering, � remains the same as in
elastic scattering, namely, �el = �in. A rigorous theoretical
justification of this hypothesis is impossible; however, it
can have rather wide practical application. Here are some
additional arguments in its favor.

A good description of experimental data by Eq. (1) and,
in particular, the implementation of the Blair phase rule well
established for a large number of different projectile-target

FIG. 5. (Color online) Dependence of � on energy in a center-
of-mass system for various combinations of colliding nuclei.
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combinations in the reactions with excitation of the low-lying
states (see, for example, Ref. [45]), implicitly assumes equal
diffraction radii for the reference states. In these studies, there
was no reason to suggest that the real radius of an excited
state differs significantly from the radius of the ground state.
Therefore, in all these cases, for each pair of nuclei, it could
be considered that �el = �in. Our analysis, which demon-
strates the approximate equality of diffraction radii for the
ground and first excited (4.44 MeV) states, also confirms this
conclusion.

The situation could change in the case of the high-lying and
above-threshold excited state, which can have enlarged radii.
Strong absorption and, consequently, diffraction structure of
the cross sections arise from the relatively small overlap of nu-
clear densities (e.g., a few percent in the scattering of
16O + 208Pb [45]). For a given form of the radial nucleon
density distribution, there is a rigid connection between the real
radius and the distance at which the density reaches a certain
value. Thus, the distance between the half-density radius R1/2

and a radius of 10% density for the Fermi distribution is 2.2a,
where a is a diffusion parameter. However, if a large change in
radius is accompanied with changes in the radial distribution,
the value of � might not remain constant at the transition
from elastic to inelastic scattering. This situation cannot be
excluded for the states in which the nucleon density is very
different from the normal one, as, for example, the Hoyle state,
or for nuclei with neutron halos.

Because the density distribution in the excited state is not
known a priori, the feasibility of a hypothesis of equality
of �el = �in can be tested only empirically. The proximity
of the results obtained in the scattering of nuclei with very
different density distributions (3He, 4He, 6Li, 12C) shows that
in these cases, the equality �el = �in is at least approximately
is fulfilled. A somewhat different result was obtained for the
scattering of deuterons (Fig. 3, Table II), although it almost
does not go beyond the errors. The measured diffraction
radius for deuteron scattering was found to be on an average
of 0.2 fm less than in other reactions. This difference is
naturally attributed to the inequality �el > �in in Eq. (4).
If so, the diffraction inelastic scattering of deuterons occurs
with a stronger overlap of nuclear densities than for the elastic
one.

A radical experimental test of the applicability of the dif-
fraction method in general would be the measurement of the
radius of the Hoyle state using other independent models. The
above-mentioned rainbow scattering can serve this purpose.
The first comparison [28] led to very similar results. A more
detailed description of the rainbow method will be provided
in a separate publication [46].

Determination of the radii of nuclear states by diffraction
scattering is a more direct method for estimating the real
radii of nuclei than the calculations based on the optical
model. The results of optical model analysis, of course,
contain information about the size of colliding nuclei, but
only implicitly. Under favorable conditions, it can identify
the radii of form factors and potentials but not the radii of
nuclei. In addition, the determined values strongly depend
on the completeness of experimental data and the quality
of fit using several free parameters. In using the diffraction

TABLE III. Root-mean-square radii (in fm) of 12C in the ex-
cited states obtained from the 3He + 12C, α + 12C, 6Li + 12C, and
12C + 12C scattering data.

E∗(MeV), Iπ
12C

4.44, 2+ 7.65, 0+ 9.64, 3−

3He + 12C 2.38 ± 0.04 2.90 ± 0.06 3.10 ± 0.09
α + 12C 2.38 ± 0.07 2.91 ± 0.03 3.00 ± 0.06
6Li + 12C 2.30 ± 0.03 2.92 ± 0.06 2.71 ± 0.08
12C + 12C 2.37 ± 0.03 2.81 ± 0.05 2.57 ± 0.10
〈Rrms〉 2.36 ± 0.04 2.89 ± 0.04 2.88 ± 0.11

model, the radii of the excited states are extracted directly
from experimental data, that is, from the minima and maxima
of angular distributions in the forward angles. The model
includes only one parameter, �el = �in, which is determined
from experimental data on elastic scattering. At the same
time, this approach does not pretend to reproduce the entire
curve of the differential cross section for either elastic or
inelastic scattering, which makes it very convenient for quick
estimations.

Substituting measured diffraction radii (Table II and
Figs. 2– 4) and the rms radius of 12C in the ground state,
〈Rg.s.〉 = 2.34 fm, in Eq. (4), we determine the rms radii of the
excited states of 12C averaged for all reactions. The resulting
radii are shown in Table III. Data on deuteron scattering were
not used here.

Thus, the rms radius of 12C in the first excited state 2+ is
the same, 〈R(2+)〉 = 2.36 fm, as in the ground state, 〈Rg.s.〉 =
2.34 fm. This result is in good agreement with the calculations
made in different works, as shown in Table IV. The radius of
12C in the Hoyle state was found to be 1.2 times larger than that
for the ground state. It is less than the estimations provided by
various theoretical models.

B. Radii of 12C in high-lying above-threshold states

We tested the proposed diffraction method by determining
the radius of the unstable 7.65 MeV Hoyle level in 12C and
confirmed its enlarged size in accordance with theoretical
predictions and existing indirect experimental data. Thus, this
result can be considered as a justification of the chosen method.
Now we apply it to the determination of the radii of some other
high-lying above-threshold states.

TABLE IV. Root-mean-square radii (in fm) of the nucleus
12C obtained in this work and predicted by different theoretical
models.

E∗(MeV), I π
12C This work [2] [11] [12] [13] [47]

0.00, 0+
1 2.34 2.40 2.40 2.50 2.39 2.44

4.44, 2+ 2.36 ± 0.04 2.38 2.38 2.70 2.50 2.45
7.65, 0+

2 2.89 ± 0.04 3.83 3.47 3.3 3.38 4.31
9.64, 3− 2.88 ± 0.11 2.78 3.02 2.96
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As already mentioned, the radius of 12C in the 9.64 MeV
3− state has also been abnormally large. Averaged over
all investigated combinations of nuclei shown in Table III,
the rms radius was found to be 〈R(3−)〉 = 2.88 ± 0.11 fm.
The error bar is larger than in the case of the Hoyle state.
Because of the small amount of data on the scattering of
6Li + 12C and 12C + 12C systems, it is premature to assume
that there exists weak dependence of the radius of the 3− state
on a particular nuclear reaction. In addition, some of the
cross sections of the inelastic scattering on the 3− state can
contain contaminants from the transitions to the unresolved
states, as noted in Sec. II A. As shown in Table IV, our
empirical results agree with the microscopic calculations of
Kamimura [11] and Yamada and Schuck [47], as well as
with the molecular dynamics calculations in Ref. [13], all
of which predicted some enlargement of the radius of the
3− state. According to Refs. [48,49], this state has the equilat-
eral triangular 3α spatial configuration in contrast to the Hoyle
state.

Of great interest is the question of the radii of other above-
threshold states of 12C, the structure and sizes of which have
attracted much attention in the last few years. The theoretical
calculations based on the microscopic 3α cluster models
[7,10,11] suggested the existence of a 2+

2 state of 12C at around
E3α ∼ 3 MeV above the 3α threshold (Ex ∼ 10 MeV). The
interest was enhanced by the suggestion that this state is a
member of the β-oscillation band based on the 0+

2 , 7.65 MeV
state. It was suspected that the structure of the 2+

2 state is
similar to the 0+

2 state, and that this state also would have an
enlarged radius similar to that of the 7.65 MeV state. Recently
the 2+

2 state was observed in 12C at Ex = 9.9 ± 0.3 MeV with
the α decay width 
α = 1.0 ± 0.3 MeV in the high-resolution
measurements of α + 12C inelastic scattering at 386 MeV
[33,34]. “Condensate” calculations [47] suggested that the 2+

2
level should have a very large rms radius, 〈R〉 = 6.12 fm.
The differential cross sections of the inelastic scattering of
α particles on 12C with excitation of the 0+, 10.3 ± 0.3 MeV
and the 1−, 10.84 MeV states were measured at Eα = 240 [32]
and 386 [33] MeV.

Unfortunately, the existing data are insufficient for con-
ducting the same detailed analysis as for the lower states in
12C. Because the data were obtained at only a few energies

TABLE V. Diffraction radii Rdif and rms radii 〈R〉 of 12C for the
states at Ex = 9.9, 10.3, and 10.84 MeV obtained from data on α

particles scattering at Elab = 240 and 388 MeV. The “No. min/max”
is the number of minima (maxima) following from the oscillation
pattern of the inelastic angular distribution used for the deter-
mination of the diffraction radii. Errors are defined by the precision
of identification of their positions.

Ex Iπ
12C 240 MeV 388 MeV

(MeV) No. Rdif 〈R〉 No. Rdif 〈R〉
min/max (fm) (fm) min/max (fm) (fm)

9.9 2+ 4 5.17 ± 0.23 3.2
10.3 0+ 4 4.84 ± 0.12 2.7 1 4.66 ± 0.13 2.6
10.84 1− 1 5.13 ± 0.61 3.1 1 5.05 ± 0.22 2.9

and the analysis includes only a limited number of minima
(maxima), the diffraction radii shown in Table V should
be regarded only as estimations (especially those obtained
from Elab = 388 MeV). This remark also applies to the
rms radii. It appears that all three levels given in Table V
have roughly the same radii as the 7.65 and 9.64 MeV
states.

IV. CONCLUSION

A method for determining the nuclear radii for the excited
states lying above the particle breakup threshold is proposed.
The main idea of the method is to directly determine from
the observable minima and maxima of the diffraction angular
distributions the radial parameter of the interaction, the
diffraction radius, and associate it with the rms radii of the
nuclei involved in the reaction. The second 0+ state in 12C
at Ex = 7.65 MeV, the so-called Hoyle state, was chosen as
the main object of the study. For this state, many theoretical
works, in accordance with some of the indirect experimental
data, predict a significant increase in size compared to other
states of this nucleus.

We analyzed the diffraction structure of the differential
cross sections of the elastic and inelastic scattering of 2H,
3He, α, 6Li, and 12C on 12C with formation of the excited
states up to Ex <∼ 11 MeV at the incident energies below
100 MeV/nucleon. The first three or four minima and maxima
of the angular distributions were identified as the diffraction
ones and then used to determinate the diffraction radii for
different excited states. We found that the diffraction radii
smoothly (almost linearly) decrease with energy both for
elastic and inelastic scattering. The absolute values of the
diffraction radii corresponding to formation of the ground and
the first excited state (2+

1 , 4.44 MeV) practically coincide.
The diffraction radii corresponding to the formation of the
Hoyle state in all the cases are found to be larger than those
of the ground state. The difference Rdif(7.65) − Rdif(0.00)
does not depend on either the energy or the specific reaction
(possibly except for the scattering of deuterons) and is equal
to 0.5 fm with good accuracy. Similar features were found for
the diffraction radii of the 3−, 9.64 MeV state.

The persistence of the diffraction radius differences justifies
the assumption that the rms radius for the excited state differs
from the rms radius for the ground state by the difference of
the diffraction radii. Under this assumption, we determined
the rms radii for the excited states of 12C averaged for all
analyzed reactions and energies. The rms radius of 12C in
the first excited state 2+

1 is found to be 〈R(2+
1 )〉 = 2.36 ±

0.04 fm, almost equal to the ground state (〈Rg.s.〉 = 2.34 fm)
in accordance with expectations. The rms radius of 12C in
the Hoyle state was found to be equal to 〈R(0+

2 )〉 = 2.89 ±
0.04 fm. This value is 1.2 times larger than that for the ground
state but smaller than predicted by most of the theoretical
models. The rms radius of the 9.64 MeV 3−state was found
to be 〈R(3−)〉 = 2.88 ± 0.11 fm, which is as large as for the
Hoyle state. A comparable increase in the size of 12C has been
found for all other levels located above the threshold of 12C →
3α. These findings require a new theoretical analysis. At this
stage, we can only reiterate the view expressed previously [26]:
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the increased radii of the above-threshold nuclear states may be
associated not so much with the peculiarities of their structure,
but with the very fact of their location above the breakup
threshold of the 12C nucleus.

The results obtained in the present work show that the
diffraction structure of the angular distributions of inelastic
scattering can be directly connected with the radii of nuclei in
the excited states, including those lying above the threshold
of particle emission. The developed method, in view of its
simplicity, can be widely used. Therefore, an independent

confirmation of its functionality and a more detailed study
of its applicability remain important tasks.
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