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Glauber model for α-nucleus total reaction cross section
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The Coulomb-modified Glauber model is employed to calculate the total reaction cross section (σR) for
α particles from 9Be, 12C, 16O, 28Si, 40Ca, 58,60Ni, 112,116,120,124Sn, and 208Pb at 117.2, 163.9, and 192.4 MeV
and from the lighter nuclei also at 69.6 MeV. Our main focus in this work is to assess the suitability of
semiphenomenological parametrization of the NN amplitude (SPNN), used recently [Deeksha Chauhan and
Z. A. Khan, Eur. Phys. J. A 41, 179 (2009)], in the analysis of σR at the energies under consideration. Using the
realistic form factors for the colliding nuclei, it is found that the SPNN works reasonably well and we have quite
a satisfactory account of the σR data in all the cases. Moreover, our analysis suggests that the SPNN could be
taken as fairly stable to describe simultaneously the elastic angular distribution and the σR for a wide range of
target nuclei in the relatively low-energy region.
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I. INTRODUCTION

Over about the past three decades, we have witnessed an
increasing interest in experimental [1–18] as well as theoretical
[19–37] studies of the total nuclear reaction cross section
(σR), which is one of the most important physical quantities
characterizing nuclear reactions [5,7,38,39]. The total nuclear
reaction cross section is very useful for extracting information
about nuclear sizes, and the Glauber model has been quite
successful in getting the radii of radioactive nuclei from
the measured values of σR [40]. It also has applications in
diverse research areas such as radiobiology and space radiation
[41,42]. Keeping this in mind, Charagi and Gupta [22] and Alvi
and Abdulmomen [36] have provided closed-form analytic
expressions that can be used for a quick determination of σR

for nucleus-nucleus and α-nucleus collisions within the frame-
work of the Coulomb-modified Glauber model. From a theo-
retical point of view, the studies of σR may not only be helpful
in minimizing the different ambiguities in optical model cal-
culations, but may also be helpful in obtaining a better picture
of the reaction mechanisms when different models provide
equivalent descriptions of the elastic angular distribution data.

Working within the framework of the Glauber multiple
scattering model, many authors have applied this model
to study nucleus-nucleus total reaction cross section
data [7,20,22,43,44]. The results of these studies show that
the model works reasonably well at intermediate and high
energies. In addition, the Glauber model is found to give
fairly good results at relatively lower energies provided it is
suitably corrected to account for the Coulomb effects [45].
Unfortunately, these studies involve the so-called optical-limit
approximation (OLA) of the full Glauber elastic S matrix,
which is found to be a rather poor approximation because
the series for the Glauber S matrix, whose first (leading) term
corresponds to the optical-limit result, in the studies of nucleus-
nucleus elastic angular distribution shows slow convergence.
This shows that one really needs to go beyond the OLA to get
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a better understanding of σR [23,46] and the elastic angular
distribution [47–49]. However, keeping in mind the problems
encountered in the analytic evaluation of even the leading
term of the Glauber S matrix for realistic description of nuclei,
efforts have also been made to invoke other approximation
schemes for analyzing the nucleus-nucleus scattering within
the framework of the Glauber model. Among these schemes
the phase expansion approach of Franco and Varma [50]
and the effective profile function approach of Ahmad [51]
are found to give better approximations of the full Glauber
S matrix.

Recently [52] we have studied the elastic angular distri-
bution and σR for the 12C-12C system at 1.016, 1.449, and
2.4 GeV within the framework of the Coulomb-modified
Glauber model in which the effective profile expansion
approach of Ahmad [51] has been used to obtain the correlation
expansion for the Glauber amplitude. In this work we have
laid emphasis on the parametrization of the basic (input) NN
amplitude that may be used for a wide range of angles. By
retaining the first two terms of the correlation expansion and
using the realistic densities for the colliding nuclei, it has been
shown that the consideration of higher momentum transfer
components, and hence the nondiffractive behavior, of the NN
amplitude [53] provides a more satisfactory account of the
data than does the usually parametrized one-term Gaussian
NN amplitude [54,55]. As pointed out in Ref. [56], although
the NN amplitude used in Ref. [52] predicts the experimental
values of the NN total cross section [57] and the ratio of the
real to the imaginary parts of the forward NN amplitude [58],
the consideration of its higher momentum transfer components
may not predict the same low q behavior as that obtained from
the one-term Gaussian form [54,55] of the NN amplitude at
the desired energies. Keeping this in mind, we consider it
worthwhile to make use of that form of the NN amplitude that
may preserve the low q behavior and whose higher momentum
transfer components may be treated phenomenologically. Such
an NN amplitude has been used in our recent work [56]
to analyze the α-nucleus elastic scattering in the energy
range of 25–70 MeV/nucleon. Assuming the effect of nuclear
correlations to be fairly small [26,59], the Glauber S matrix
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has been replaced by the first term of its correlation expansion
[52], which considers no correlations. After correcting for the
deviation in the straight line trajectory of the Glauber model
due to the Coulomb field [45], the authors have shown [56] that
the low- and high-q behaviors of the (free) NN amplitude could
be assessed separately, and the data on α-α elastic angular
distribution have been reproduced satisfactorily well, covering
a fairly large value of momentum transfer. Moreover, the trend
of the slope parameter of the NN amplitude and the values of
its high-q components demonstrate the need for nondiffractive
behavior of the NN amplitude in any realistic study of the
nucleus-nucleus collision at relatively lower energies.

To test the usefulness of the NN amplitude that takes care
of its higher momentum transfer components, the best course
of study could have been the simultaneous description of the
elastic angular distribution and σR , as they complement each
other. Unfortunately, the experimental data on the measure-
ments of σR are so sparse compared to those for the elastic
angular distribution, one may not provide a simultaneous
description of the elastic angular distribution and the σR at
similar incident energies. Keeping in view the status of σR ,
the Uppasala/Redlands Collaboration [8,12,13] has performed
measurements for σR for light ions in the energy range of
17–50 MeV/nucleon.

Motivated by the success of the Glauber model at projectile
energies as low as 25 MeV/nucleon [56], we, in this work,
consider the analysis of α particle reaction cross-section data
[12] for a variety of target nuclei at 69.6, 117.2, 163.9, and
192.4 MeV. Like in Ref. [52], the present analysis also is based
upon the Coulomb-modified correlation expansion for the
Glauber amplitude, the first term of which contains all orders
of scattering with no correlations, while the others depend
successively upon the two-, three-, and many-body densities
(correlations) of the colliding nuclei. As demonstrated in
Ref. [26], the effect of two-body density (correlation) terms
is insignificant at energies of our interest; we expect that the
(leading) first term in the correlation expansion [52] could
not only suffice for the study of σR but also would provide a
better (microscopic) understanding of the subject in the present
analysis. In addition, our calculation for σR may be as quick as
the one performed with the closed (analytic) expressions for
σR [22,36]. To be more specific, our aim in this work is to see
how far the NN amplitude used in Ref. [56] could be helpful
in the analysis of α-nucleus total reaction cross sections at
energies under consideration and to see what can be said about
the behavior of the NN amplitude from the point of view of
providing the simultaneous description of the elastic angular
distribution and σR at relatively lower energies.

The formulation of the problem to calculate σR is given in
Sec. II. In Sec. III, we present our results for the α-nucleus
total reaction cross section. A summary and conclusions are
given in Sec. IV.

II. FORMULATION

According to the correlation expansion for the Glauber
amplitude [52], the elastic S matrix element S00 for nucleus-
nucleus collision is written as

S00(�b) = (1 − �00)AB + correlation terms, (1)

with

�00(�b) = 〈ψ0φ0|�(�b − �si + �s ′
j )|φ0ψ0〉 (2)

= 1

ik

∫
dq qJ0(qb)FA(�q)FB(�q)fNN (�q), (3)

where A(B) is the mass number of the target (projectile)
nucleus; φ0[FB(�q)] and ψ0[FA(�q)] are the intrinsic ground-
state wave functions (form factors) of the projectile and
target nuclei, respectively; �b is the impact parameter vector
perpendicular to the beam direction; �si

�(s ′
j ) are the projections

of the target (projectile) nucleon coordinates on the impact
parameter plane; k is the momentum of the projectile nucleon;
q is the momentum transfer; and �NN (�b) is the NN profile
function, which is related to the NN scattering amplitude
fNN (�q) as follows

�NN (�b) = 1

2πik

∫
e−i �q.�bfNN (�q)d2q. (4)

Here it may be noted that Eq. (1) with B = 4 gives S00 for
α-nucleus elastic scattering.

As observed in Ref. [59], the optical limit of the cor-
related Glauber model works reasonably well for studying
the nucleus-nucleus elastic and inelastic scattering data,
which cover a wide range in the projectile energy (30–
350 MeV/nucleon) and the mass number of the colliding
nuclei. This suggests that the nuclear correlations may not
play a significant role in nucleus-nucleus collisions at the
energies under consideration. However, in the present context,
the study of Abdulmomen and Ahmad [26] is quite useful. In
this work, the authors have specifically shown that the effect
of the two-body density term in the analysis of α-nucleus
reaction cross sections is small, and if we look into the trend
of the results for α−16O (Fig. 1 in Ref. [26]), we could say
that the effects of the two-body density term may be ignored
in the energy range considered in this work. Thus the results
of Ref. [26] show that in the analysis of α-nucleus reaction
cross sections, the consideration of the first term in Eq. (1)
seems to be a good approximation to the full Glauber S matrix
at relatively low-incident energies:

S00(�b) � [1 − �00]AB. (5)

Equation (5) has, however, been modified to account for
the deviation in the straight line trajectory of the Glauber
model because of the Coulomb field. Following Fäldt and
Pilkuhn [45], this deviation can be incorporated by replacing
b in S00(�b) by b′, which is the distance of the closest approach
in Rutherford orbits and is given by

kb′ = η + (η2 + k2b2)1/2, (6)

where η = ZAZBe2/h̄v is the Sommerfeld parameter with
ZA(ZB) as the target (projectile) atomic number and v as the
projectile velocity.

Finally it must be pointed out that the distinction between
pp(nn) and pn(np) amplitudes has also been incorporated in
Eq. (5). This modification leads to the following expression
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for the Glauber S matrix:

S00(�b) � [
1 − �

′pp

00

]ZAZB
[
1 − �

′np
00

]NBZA

× [
1 − �

′pn

00

]ZBNA
[
1 − �′nn

00

]NANB
, (7)

with

�′mn
00 = 1

ik

∫
dqqJ0(qb)FA(�q)FB(�q)fmn(�q), (8)

where NA(NB) is the number of neutrons in the target
(projectile) nucleus, and m and n stand for a proton and a
neutron.

With these considerations, the σR for a nucleus-nucleus
collision is given by

σR = 2π

∫
dbb[1 − |S00(�b)|2]. (9)

III. RESULTS AND DISCUSSION

Following the approach outlined in Sec. II, we have ana-
lyzed the α-nucleus reaction cross section data of Ingemarsson
et al. [12] at 69.6, 117.2, 163.9, and 192.4 MeV. The inputs
needed in the calculation are the NN amplitude and the
form factors of the colliding nuclei. The nuclei involved
in the analysis are 4He, 9Be, 12C, 16O, 28Si, 40Ca, 58,60Ni,
112,116,120,124Sn, and 208Pb.

For computational simplicity, we parametrize the required
nuclear form factors as a sum of Gaussians:

Fν(�q) =
∑

j

aj e
−bj q

2
; ν = A,B, (10)

where aj and bj are parameters, whose values for 4He, 12C,
16O, 40Ca, and 58Ni are taken from Refs. [51,60,61]. The
parameter values for 9Be, 28Si, and 60Ni are given in Table I.
These values are determined by fitting the proton form factors
as obtained from the charge densities after correcting for the
finite size of the proton. For this, the charge densities of Sick

TABLE I. Parameter values of the sum of the
Gaussian parametrization of the nuclear form factor.

Nucleus aj bj (fm2)

9Be 0.1044 1.0379
1.3814 1.0327
0.3106 1.3066
0.1876 0.4083

−0.9841 1.0100
28Si 1.4917 0.5025

2.8506 0.8148
3.3808 0.8722
0.3924 0.5031

−7.1156 0.6714
60Ni −7.4461 1.2996

1.0975 0.4033
0.0084 0.5399

−6.0326 0.4789
8.2669 1.4485
5.1059 0.4986

TABLE II. Parameter values of the sum of the Gaussian
parametrization of the proton and neutron form factors.

Nucleus Proton form factor Neutron form factor

aj bj (fm2) aj bj (fm2)

112Sn 10.5600 1.6553 5.9223 1.8925
1.4070 0.5671 1.5986 0.6769

−0.1704 0.0576 −0.2179 0.2065
−10.7960 1.3780 −6.3029 1.3769

116Sn 9.6062 1.6930 4.7149 2.0568
1.4189 0.5797 1.7090 0.8218

−0.1699 0.0632 −0.0743 0.0611
−9.8552 1.3842 −5.3496 1.3816

120Sn 9.2067 1.7130 4.2097 2.1793
1.4533 0.5717 1.5536 0.7980

−0.1910 0.0698 −0.1184 0.1569
−9.4691 1.3849 −4.6448 1.4116

124Sn 9.3930 1.7239 3.7008 2.2962
1.4652 0.5799 1.4236 0.7225

−0.1822 0.0592 −0.2060 0.2270
−9.6760 1.3971 −3.9183 1.4100

208Pb −17.4270 3.4151 −22.0360 4.1771
−35.6380 4.2002 −22.3500 4.6581

56.0680 3.7733 47.5880 4.3196
19.6070 1.4906 20.0000 1.5195
60.6730 2.2117 61.7430 2.2104

−78.2590 2.0780 −77.8620 2.0761
−4.0939 1.0800 −4.1462 1.0896

2.2820 5.9619 1.0663 5.9886
−2.1265 3.4265 −2.8810 3.7646
−0.0341 1.1062 −0.0368 0.9676
−0.0722 0.5773 −0.1205 0.9570

0.0196 0.0142 0.0361 0.1395

and McCarthy [62] for 12C and 16O, Chaumeaux et al. [63]
for 40Ca, and de Vries et al. [64] for 58,60Ni have been used.
To obtain the parameter values for 4He, 9Be, and 28Si, the
electron scattering form factors of Frosch et al. [65] for 4He,
Bernheim et al. [66] for 9Be, and Whitner et al. [67] for 28Si
have been used. Moreover, we also assume that the proton and
the neutron density distributions for the aforesaid nuclei are
same. For nuclei 112,116,120,124Sn and 208Pb, we use different
density distributions for protons and neutrons as calculated
in the relativistic mean-field (RMF) [68] framework; the
corresponding values of aj and bj in Eq. (10) for proton and
neutron form factors are given in Table II.

Because our interest in this work is to establish the
suitability of the NN amplitude [56] in different situations,
the present analysis of α-nucleus reaction cross section also
considers the similar form of the NN amplitude as used in
Ref. [56]:

fNN (�q) = ikσ

4π
(1 − iρ)e−(β+iγ )q2/2[1 + T (�q)], (11)

with

T (�q) =
∑

n=1,2...

λnq
2(n+1), (12)
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where σ is the NN total cross section, ρ is the ratio of the real
to the imaginary parts of the forward NN amplitude, β is the
slope parameter, γ is the phase of the NN amplitude [69], and
the parameters λn take care of the higher momentum transfer
components of the NN amplitude. The values of the parameters
of fNN (�q), namely, σ , ρ, β, λ1, and λ2, should be the same as
those for the NN scattering at one-fourth of the kinetic energy
of the incident α particle. In the present analysis, we need
their values at 17.4, 29.3, 40.9, and 48.1 MeV. The values
of σ are obtained using the parametrizations of the NN total
cross sections [22], which nicely reproduce the experimentally
determined NN total cross sections [57], σpp(nn) and σpn, in the
energy range of 10 MeV to 1.0 GeV:

σpp(nn) = 13.73 − 15.04v−1
0 + 8.76v−2

0 + 68.67v4
0 (13)

σpn = −70.67 − 18.18v−1
0 + 25.26v−2

0 + 113.85v0, (14)

where σpp(nn) and σpn are expressed in mb and v0 is the incident
nucleon velocity in units of c. To calculate ρ we use the
parametrizations of Ahmad et al. [70], which reproduce the
values of ρpp(nn) and ρpn obtained from the phase shifts and
Coulomb interference measurements [58]:

ρpp(nn) = −0.386 + 1.224e− 1
2 ( k−0.427

0.178 )2 + 1.01e− 1
2 ( k−0.592

0.638 )2

(15)

ρpn = −0.666 + 1.437e− 1
2 ( k−0.412

0.196 )2 + 0.617e− 1
2 ( k−0.797

0.291 )2

,

(16)

where the incident nucleon laboratory momentum k is ex-
pressed in GeV/c. To obtain the values of the other parameters
of fNN (�q), namely, β, λ1, and λ2, we proceed as follows.

It is well known that the Glauber model calculations are
physically meaningful only when one could have consistently
a satisfactory account of the available scattering data for
different target nuclei at the same incident energy/nucleon,
using the similar description for the (input) NN amplitude.
Keeping this in mind, we first calibrate the parameters (β,
λ1, and λ2) of the NN amplitude at the required incident
energies/nucleon. For this, we analyzed the σR for the α-9Be
system at 69.6, 117.2, 163.9, and 192.4 MeV. The values of
the parameters of fNN (�q) obtained in this way are reported
in Table III; the corresponding values of the phase variation

FIG. 1. Total reaction cross section for α particles on 9Be, 12C,
and 16O using the parameters of the NN amplitude as reported in
Table III. The solid curves include the phase variation of the NN
amplitude, whose values are given in Table IV. The dotted curves
ignore the phase variation of the NN amplitude. The data are taken
from Ref. [12].

parameter (γ ) are given in Table IV. We then undertook the
second part of the present work, in which the calculations
were performed for σR for α particles on 12C, 16O, 28Si,
40Ca, 58,60Ni, 112,116,120,124Sn, and 208Pb at 117.2, 163.9, and
192.4 MeV and on light nuclei also at 69.6 MeV using
the same values of the parameters of fNN (�q) as reported in

TABLE III. Values of the NN amplitude parameters obtained from the analysis of α-9Be total reaction cross section (except for σ and ρ,
which are taken from Refs. [57,58]).

Energy of α Energy/nucleon NN σ (fm2) ρ β (fm2) λ1 (fm4) λ2 (fm6)
particle (MeV) (MeV) Ref. [57] Ref. [58]

69.6 17.4 pp(nn) 17.74 0.9080 0.3609 0.6356 + i1.6053 0.0495 − i0.3368
pn(np) 55.51 0.1196 0.4660 0.1730 + i0.6568 0.0135 − i0.1715

117.2 29.3 pp(nn) 9.92 1.1680 0.5180 0.3131 + i0.5223 0.0225 − i0.1501
pn(np) 30.61 0.3918 0.5939 0.0512 + i0.3807 0.0079 − i0.1094

163.9 40.9 pp(nn) 6.85 1.3817 0.7665 0.1194 + i0.1692 0.0059 − i0.0732
pn(np) 20.66 0.6080 0.8610 0.0113 + i0.1565 0.0049 − i0.0571

192.4 48.1 pp(nn) 5.76 1.4912 0.8184 0.0797 + i0.1042 0.0045 − i0.0715
pn(np) 17.09 0.7165 0.9428 0.0059 + i0.1267 0.0038 − i0.0572
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TABLE IV. Values of the NN amplitude phase variation parameter that account satisfactorily for the α-nucleus total reaction cross section
(σR), keeping the values of σ , ρ, β, λ1, and λ2 the same as quoted in Table II. The predicted values of σR with and without the phase variation
(γ ) of the NN amplitude are represented by σ

γ

R and σ 0
R , respectively. σ opt

R is the predicted value of σR without γ using the OLA. The last column
gives the corresponding experimental values of σR [12].

Target Energy/nucleon γpp(nn) γpn(np) σ
γ

R σ 0
R σ

opt
R σ

exp
R

nucleus (MeV) (fm2) (fm2) (mb) (mb) (mb) (mb)

9Be 17.4 1.1590 1.0710 970.0 1220.2 1218.5 970 ± 26
29.3 −0.7894 −0.6862 812.0 942.9 941.8 812 ± 21
40.9 −0.8120 −0.6900 711.5 838.0 837.3 716 ± 38
48.1 −0.8957 −0.8000 648.0 796.2 795.9 648 ± 18

12C 17.4 −1.1908 −0.6002 961.0 1226.0 1230.9 961 ± 39
29.3 −1.1697 −0.4137 804.0 956.0 956.1 804 ± 31
40.9 −0.8533 −0.3530 727.9 839.1 838.9 741 ± 58
48.1 −0.8031 −0.3035 699.8 800.1 800.0 698 ± 28

16O 17.4 −1.3325 −0.9138 1052.0 1409.6 1410.1 1052 ± 80
29.3 −0.8546 −0.4609 973.0 1104.0 1103.8 973 ± 62
40.9 −0.6333 −0.3031 884.3 974.7 974.4 895 ± 100
48.1 −0.5788 −0.2681 850.0 932.4 932.3 850 ± 58

28Si 17.4 −1.2287 −0.8688 1400.0 1670.7 1671.0 1400 ± 70
29.3 −0.6300 −0.3010 1269.9 1362.9 1362.8 1270 ± 60
40.9 −0.2033 −0.1031 1175.6 1207.1 1206.9 1190 ± 100
48.1 −0.1832 −0.0831 1132.4 1160.7 1160.6 1110 ± 60

40Ca 17.4 −1.4577 −1.2886 1610.0 1946.6 1946.4 1610 ± 120
29.3 −0.7530 −0.5824 1470.0 1640.9 1640.6 1470 ± 60
40.9 −0.4833 −0.2331 1404.1 1486.8 1486.6 1410 ± 120
48.1 −0.3899 −0.1799 1371.0 1438.3 1438.2 1370 ± 70

58Ni 29.3 −0.7949 −0.5693 1640.0 1836.0 1835.8 1640 ± 80
40.9 −0.2210 −0.1514 1614.5 1663.4 1663.2 1670 ± 150
48.1 −0.1820 −0.1230 1572.0 1614.4 1614.4 1550 ± 90

60Ni 29.3 −1.2714 −0.6207 1670.0 1924.0 1923.7 1670 ± 85
40.9 −0.3189 −0.2129 1700.0 1767.3 1767.1 1700 ± 160
48.1 −0.2820 −0.1830 1656.0 1718.4 1718.3 1610 ± 90

112Sn 29.3 −0.8835 −0.6991 2140.7 2402.1 2401.9 2140 ± 160
40.9 −0.4070 −0.3270 2131.1 2253.0 2252.9 2190 ± 240
48.1 −0.3670 −0.2830 2094.9 2210.3 2210.2 2020 ± 160

116Sn 29.3 −0.7070 −0.4837 2311.1 2463.9 2463.8 2340 ± 150
40.9 −0.5577 −0.3314 2175.0 2318.4 2318.2 2175 ± 240
48.1 −0.4501 −0.2799 2149.9 2275.5 2275.4 2150 ± 160

120Sn 29.3 −0.7276 −0.5236 2360.4 2521.3 2521.2 2360 ± 150
40.9 −0.3770 −0.2550 2281.3 2377.4 2377.3 2380 ± 250
48.1 −0.2510 −0.1630 2268.2 2334.0 2333.9 2300 ± 170

124Sn 29.3 −0.8835 −0.6991 2343.8 2574.3 2574.1 2340 ± 160
40.9 −0.5168 −0.2796 2309.9 2431.3 2431.2 2310 ± 240
48.1 −0.4270 −0.2590 2272.5 2387.3 2387.2 2200 ± 160

208Pb 29.3 −0.7630 −0.4690 2944.8 3141.3 3141.2 2990 ± 180
40.9 −0.5870 −0.3517 2808.3 2997.9 2997.8 2720 ± 250
48.1 −0.2530 −0.1330 2893.4 2965.9 2965.8 2900 ± 190

Table III, but we varied only the phase of the NN amplitude
that could possibly be different for different target nuclei [56].
The results of such calculations are shown by the solid lines
in Figs. 1–4. The values of the phase variation parameter,
so obtained, are given in Table IV. The dotted lines in
Figs. 1–4 depict the corresponding results without any phase
variation (γ = 0) of the NN amplitude. The open circles are

the experimental data of Ingemarsson et al. [12]. Table IV
also reports the experimental values of σR (σ exp

R ) and their
corresponding predicted values with (σγ

R ) and without (σ 0
R)

the phase of the NN amplitude for different target nuclei
at different incident energies of the α particle. The quantity
σ

opt
R in Table IV represents the predicted values of σR ,

without the phase of the NN amplitude, which are calculated

054601-5



DEEKSHA CHAUHAN AND Z. A. KHAN PHYSICAL REVIEW C 80, 054601 (2009)

FIG. 2. Same as Fig. 1, but for α particles on 28Si, 40Ca, and 58Ni.

FIG. 3. Same as Fig. 1, but for α particles on 60Ni, 112Sn, and 116Sn.

FIG. 4. Same as Fig. 1, but for α particles on 120Sn, 124Sn, and
208Pb.

using the OLA, in which the Glauber S matrix is written
as [50]

S00(�b) � e−AB�00(�b). (17)

Like in Eq. (7), the above equation, with different pp(nn) and
pn(np) amplitudes, may be expressed as

S00(�b) � e−[ZAZB�
′pp

00 +NBZA�
′np
00 +ZBNA�

′pn

00 +NANB�′nn
00 ], (18)

where �′
00 has the same form as given in Eq. (8).

The comparison between the predicted values of σR in
Figs. 1–4 with (solid lines) and without (dotted lines) the phase
of the NN amplitude shows that the phase of the NN amplitude
pushes the theory closer to the experiment and we have quite
a satisfactory account of the data for all the target nuclei at the
energies under consideration. The values of the phase variation
parameter, reported in Table IV, show a systematic change with
the incident energy/nucleon for a given target nucleus. This
supports our recent findings [56] in which we have shown that
the phase of the NN amplitude gets modified in different ways
at different incident energies even if the interacting nucleons
move in the same target nucleus.

Regarding the phase variation of the NN amplitude, we
further add that because the phase of the NN amplitude does
not alter the basic physics of the NN amplitude, it seems that
the NN amplitude, as obtained in this work (Table III), is fairly
stable over a wide range of target nuclei. Moreover, we find that
the values of the parameters (β, λ1, and λ2) of fNN (�q) follow
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the trend of their corresponding values reported in Ref. [56].
This shows that the NN amplitude, as obtained in Ref. [56],
works well in accounting for the α-nucleus total reaction cross
section, and one further expects that the same NN amplitude
may also be used to provide a satisfactory explanation of both
the elastic angular distribution and σR at matching incident
energies, if available, in the energy range under consideration.

Finally, we compare our predicted values of σR using
Eqs. (7) and (18) for the Glauber S matrix without the phase
variation of the NN amplitude, represented by σ 0

R and σ
opt
R ,

respectively, in Table IV. It is found that although the OLA and
the first term of the correlation expansion (1) are two different
ways of evaluating the Glauber S matrix, the calculations
show that they predict nearly similar values of σR . To look
into the possible causes of such findings, we have calculated
the values of |S00(�b)|2 in two situations. Our results show
that the values of |S00(�b)|2 are almost similar whether we
calculate it using the OLA or the first term of the correlation
expansion (1) for the Glauber S matrix. This shows that the
OLA does not lead to substantial changes in the uncorrelated
Glauber model, and hence the OLA and the first term of the
correlation expansion (1) may be taken as equivalent choices
for calculating the σR at the energies under consideration.
Moreover, we find that the consideration of the phase of the
NN amplitude (γ ) in the OLA could predict the σR as good
as the one (σγ

R ) obtained using the uncorrelated part of the
expansion (1) with γ . But, we have noticed that this exercise
leads to another set of γ (results not shown) that is different
from the one quoted in Table IV. In this connection, it may
be emphasized that because there is no way to connect γ with
the existing NN scattering observables, it is not possible to
assess which one of the two sets of γ values corresponds to
the exact behavior of the NN amplitude in a given situation.
Thus it seems that once we compromise with the phase of
the NN amplitude, the OLA and the uncorrelated part of
the expansion (1) may be considered on equal footings to
providing a satisfactory account of the σR data at the energies
considered in this work.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a theoretical study of the
total reaction cross-section data [12] of α particles from target
nuclei ranging from 9Be to 208Pb at 69.6, 117.2, 163.9, and
192.4 MeV using the leading (first) term of the Coulomb-
modified correlation expansion for the Glauber S matrix for
nucleus-nucleus collisions [52]. Our main focus in this work
was to assess the suitability of the NN amplitude, used in
Ref. [56], from the point of view of providing a simultaneous
description of the elastic angular distribution and σR in the
energy range under consideration.

In this work, we first calibrated the parameters of the NN
amplitude by analyzing the α-9Be reaction cross section at the

energies under consideration. The NN amplitude parameters
so obtained were then used to analyze the σR for other
target nuclei in which we considered the sole variation of
the phase of the NN amplitude, which could be different not
only for different target nuclei but also for different incident
energies/nucleon. We also predicted the values of σR using
the OLA and the first term of the correlation expansion for
the Glauber S matrix without considering the phase of the NN
amplitude.

The comparison of the predicted values of σR with and
without the phase of the NN amplitude shows that the consid-
eration of the phase of NN amplitude brings the predictions
closer to the experiment and we have quite a satisfactory
account of the data in all the cases. The values of the phase
variation parameter show a consistent change with the incident
energy/nucleon for a given target nucleus, suggesting that the
phase of the NN amplitude could be different at different
incident energies even if the interacting nucleons move in
the same target nucleus. In this context, it may be added
that because the phase variation of the NN amplitude does
not change the basic physics of the NN amplitude, we find
that the NN amplitude, as obtained in this work, seems to be
fairly stable over a wide range of target nuclei. Moreover, we
notice that the values of the parameters of fNN (�q) (Table III)
follow the trend of the corresponding values quoted in Ref.
[56]. This suggests the usefulness of the NN amplitude, as
obtained in Ref. [56], in reproducing the α-nucleus total
reaction cross section, and one further hopes that the same
NN amplitude could also be used to provide the simultaneous
description of both the elastic angular distribution and σR at
the energies under consideration. Here, it is important to add
that, despite the fact that the SPNN amplitude [56] seems to
work reasonably well in different situations, it is still desirable
to have more precise data on elastic angular distribution
and σR for nucleus-nucleus collisions at matching incident
energies/nucleon, so that one may undertake the analysis of
the said experimental data with a motive of having a better
understanding of the NN amplitude especially at high-q values.
Further, we argued that the OLA and the first term of the
correlation expansion (1) may be considered as equivalent
choices for providing an independent description of σR at
relatively lower energies. Finally, we conclude that if we
look into the simultaneous description of the elastic angular
distribution and σR , it seems to be the nondiffractive behavior
of the NN amplitude whose consideration may push down the
Glauber model at relatively lower energies.
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