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We demonstrate how the separation of the total energy of a self-bound system into a functional of the internal
one-body Fermionic density and a function of an arbitrary wave vector describing the center-of-mass kinetic
energy can be used to set up an “internal” Kohn-Sham scheme.
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I. INTRODUCTION

Density functional theory (DFT) [1–3] is widely used in
condensed-matter physics and quantum chemistry to calculate
the properties of many-electron systems and is based on
the simple local density instead of on the less tractable
N -body wave function. One of the pillars of DFT is the
Hohenberg-Kohn (HK) theorem [4], which in its original
form, proves that for any nondegenerate system of fermions
or bosons [1] put into a local external potential vext(r), there
exists a unique functional of the local one-body density ρ(r)
that gives the exact ground-state energy when ρ(r) corresponds
to the exact ground-state density. A thorough mathematical
analysis of the foundations of the HK theorem was given by
Lieb [5]. A crucial point is that, because the theorem is based
on the Ritz variational principle, it is valid only for systems
described by a normalizable wave function [6]; i.e., ones for
which a bound (ground) state exists. Various extensions of the
HK theorem have been proven, for example for spin-density
energy functionals, for nonlocal external potentials, and
for relativistic, time-dependent, or superconducting systems
[3]. The Kohn-Sham (KS) [7] scheme furthermore provides
a straightforward method to compute self-consistently the
ground-state density in a quantum framework, defining the
local single-particle potential (i.e., the noninteracting system)
that reproduces the exact ground-state density through an
auxiliary product state.

Self-consistent mean-field (SCMF) approaches using ef-
fective interactions are widely used to describe the low-energy
structure of atomic nuclei [8] and resemble a KS scheme in
many ways. Originally conceived as a Hartree-Fock (HF)
or Hartree-Fock-Bogoliubov (HFB) method based on an
effective in-medium interaction, this framework has often
been characterized as “nuclear DFT” [9–15]. The similarities
become particularly obvious when the effective interaction is
explicitly constructed as an energy functional depending on
various local densities and currents [16]. There are, however,
important conceptual differences that prevent the straightfor-
ward mapping of the existing nuclear SCMF schemes onto the
standard KS formalism for electronic systems. For example,
nuclei are self-bound, the intrinsic nuclear states obtained by
SCMF methods often break several symmetries of the nuclear

Hamiltonian, and many extensions of the nuclear SCMF
method aim to explicitly calculate correlation effects instead
of absorbing them into the functional. The present article add-
resses the first of these points by aiming at a KS scheme for
self-bound systems. Similar efforts leading to approximate KS
schemes have been made before [17,18]. Here, we propose an
alternative demonstration of the HK theorem that carefully
considers the technical issues arising from the separation of
the internal and center-of-mass coordinates that is required to
apply it to self-bound systems and that leads to an internal KS
scheme.1

II. THE PROBLEM

A. Role of the external potential

In electronic systems, the wave function and density are
defined in the frame attached to the center-of-mass (c.m.)
of the atomic nuclei. The latter also provides naturally the
external potential vext(r), whose presence is compulsory to
bind electrons that repel each other. The key point of the
HK theorem is that the pure electronic problem is universal,
whatever the external field (provided it gives a bound state).

In self-bound systems (such as atomic nuclei or He
droplets), the situation is intrinsically different because the
net fermion-fermion (or boson-boson) interaction is attractive.
Thus, external fields are not necessary to obtain bound states,
so that we are immediately in the corresponding “pure” system,
with the big difference being that such systems physically
exist. The absence of an external potential, however, has as a
consequence that the modeling of isolated self-bound systems
is plagued by a c.m. problem. For any stationary state with
arbitrary total momentum P, the c.m. will be delocalized
and evenly distributed over the whole space. An even more
critical issue is that such laboratory wave functions are not
normalizable, which prevents any attempt to formulate DFT
for isolated, self-bound systems in terms of the laboratory

1We follow here the nomenclature of [24] by referring to coordinates
independent of the center-of-mass as “internal” ones, whereas we
reserve the label “intrinsic” for symmetry-breaking states from which
bands of rotational states and/or parity vibrations can be modeled.
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density by simply taking the limit vext(r) → 0 in the HK
theorem. Indeed, this density is an indeterminate constant
[17,19], which prevents constructing from it a universal
functional. It is of course the “internal density” ρint (i.e., the
density relative to the system’s c.m.) that is of interest. But
standard DFT concepts as formulated so far are not applicable
yet in terms of a well-defined internal density.

B. The center-of-mass problem

A second key point is that in a description of an iso-
lated, self-bound system based on a Hamiltonian and a
wave function, the Hamiltonian should explicitly be invariant
under translation to ensure Galilean invariance of the wave
function.2 Thus, the N -body wave function ψ can be separated
into a wave function � that depends on the position R =
1
N

∑N
j=1 rj of the c.m. only, and an “internal” wave function

ψint that depends on the remaining (N − 1) Jacobi coordi-
nates ξα defined as ξ1 = r2 − r1, ξ2 = r3 − r2+r1

2 , . . . , ξN−1 =
N

N−1 (rN − R),

ψ(r1, . . . , rN ) = �(R) ψint(ξ1, . . . , ξN−1). (1)

The function �(R) describes the motion of the isolated system
as a whole in any chosen inertial frame of reference, such as
the laboratory. It is a plane wave, thus not normalizable, as we
will detail thereafter. The function ψint describes the internal
properties and is a function of the (N − 1) Jacobi coordinates.
Of course, it could also be written as a function of the N

coordinates ri , but one of them would be redundant [20].
In this context, the internal density ρint associated to ψint,

rather than the laboratory density ρ, becomes the natural
quantity from which to construct DFT in a self-bound system.
We note that for such a finite system it is impossible to
construct a product state that has the required structure of ψint.
In a HF framework, one directly approximates ψ(r1, . . . , rN )
by a Slater determinant in N coordinates ri in the c.m. frame of
the system. Consequently, the HF state contains (at least) one
redundant coordinate, which introduces a spurious coupling
between the internal properties and the c.m. motion [21].
For this reason, the HF approximation sacrifices “Galilean
invariance for the sake of the Pauli principle,” to quote
Ref. [22]. A rigorous remedy is to perform projected HF,
where projection before variation on c.m. momentum restores
Galilean invariance at the price of abandoning the independent-
particle description [22,23]. This reasoning does not hold, in
principle, for DFT, where the key ingredient is the density, not
an explicit N -body wave function.

A demonstration of a rigorous internal HK theorem has
been made recently in Refs. [17,18] in two different ways,
with the aim of correctly separating the internal properties

2Translational invariance, which states that the observables do
not depend on the position of the c.m., is a necessary but not
sufficient condition for the more fundamental Galilean invariance,
which ensures that observables are the same in all inertial frames. For
a relativistic description of the quantum N -body system [15], Lorentz
invariance must be considered instead of Galilean invariance.

from the c.m. motion—but neither of them led to a rigorous
internal KS scheme. A source term coupled to the N -body
internal density operator was introduced in Ref. [17], allowing
the authors to express the exact total energy of a self-bound
system as a functional of this operator. A scheme to construct
a corresponding noninteracting system in a systematic manner
was proposed, but its link with the KS scheme of traditional
DFT remains unclear. In Ref. [18], it was shown that the
internal energy of a self-bound system can be written as a
functional of the internal one-body density and an approximate
KS scheme was proposed that is valid only if the c.m.
coordinate is treated as an adiabatic variable. A different
approach to the problem is taken in Refs. [24,25], where
an oscillator potential (not invariant under translation) that
traps the c.m. is added to the self-bound Hamiltonian. This
approach has the particular characteristic that it does not
affect the internal properties of the system—the ground-state
wave function is a wave packet that factorizes into the
form of Eq. (1), with �(R) now being a Gaussian and thus
normalizable. The laboratory density ρ is then well defined
and a KS scheme for ρ can be rigorously set up. The internal
density ρint can be deduced from ρ by deconvolution. However,
the resulting energy functional and KS equations are neither
an internal energy functional nor internal KS equations. Thus,
the question of a rigorous formulation of an internal KS
scheme comparable to SCMF calculations using an effective
interaction remains open. Here, we propose an approach to
demonstrate the internal HK theorem that is complementary to
those found in Refs. [17,18], and that has the advantage that the
link to the traditional HK theorem is more clear. This directly
leads to the formulation of a general internal KS scheme.

III. DFT IN INTERNAL DEGREES OF FREEDOM

A. Separation of internal and c.m. coordinates

We start from a general, translationally invariant, N -body
Hamiltonian composed of the usual kinetic energy term and
a two-body potential u that describes the fermion-fermion (or
boson-boson) interaction:

H =
N∑

i=1

p2
i

2m
+

N∑
i,j=1
i>j

u(ri − rj ). (2)

For the sake of simplicity of the demonstration, we assume a
momentum-independent, two-body interaction and N identi-
cal particles. The generalization to three-body interactions is
straightforward, and the generalization to systems containing
different types of particles will be discussed elsewhere. We
rewrite the Hamiltonian using the N − 1 Jacobi coordinates
ξα to decouple the internal properties from the c.m. motion.
The ξα are to be distinguished from the N “laboratory
coordinates” ri and the N “c.m. frame coordinates” (ri − R)
relative to the total c.m. R. One can then separate Eq. (2)
into H = Hc.m. + Hint, where Hc.m. = −(h̄2/2M)�R (with
M = Nm being the total mass) is a one-body operator acting
in R space only, and Hint is an (N − 1)-body operator in ξα

space. Hint contains the interaction u that can be rewritten as a
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function of ξα , which we denote as u({ξα}) for simplicity, and
the internal kinetic energy, which is expressed in terms of the
conjugate momentum τα of ξα and the corresponding reduced
mass µα = m α

α+1 . Because [Hc.m., Hint] = 0, the eigenstate ψ

of H can be built as a product of the form of Eq. (1) with

− h̄2

2M
�R� = Ec.m.�, (3)

Hintψint = Eintψint, (4)

where

Hint =
N−1∑
α=1

τ 2
α

2µα

+ u({ξα}). (5)

There is no bound state for �(R) because the solutions are
arbitrary, stationary plane waves, which leads to an arbitrary
c.m. energy Ec.m. = h̄2K2/(2M) and delocalization of R.
We will come back to the interpretation of �(R) below. By
definition of a self-bound system, ψint is a bound state and
is therefore normalizable. The corresponding total energy
E = Ec.m. + Eint splits into

E(K)[ψint] = h̄2K2

2M
+ Eint[ψint]

(ψint|ψint)
, (6)

Eint[ψint] = (ψint|Hint|ψint), (7)

where the internal energy is obviously a functional of ψint,
and the c.m. energy is parametrized by an arbitrary K. We see
that the c.m. properties (given by K) and the internal properties
(given by ψint) are fully decoupled. The ground state ψint of Hint

is obtained by minimization of the total energy E(K)[ψint] for a
given K, or equivalently of Eint[ψint], under the normalization
constraint.

The previous steps allow us to uniquely identify and
separate the c.m. motion. In traditional electronic DFT the
problem does not show up as the electronic properties are
defined in the frame attached to the c.m. of the nuclei, where
the nuclear background is accounted for by introducing an
external, local, one-body potential vext(r) that provides the key
ingredient of the HK theorem. For a self-bound system, vext

is not compulsory. To facilitate the proof of the HK theorem,
however, we introduce an arbitrary potential vaux, which serves
as a mathematical auxiliary and can be safely dropped at the
end to recover an isolated self-bound system.

B. An auxiliary translational invariant potential

To conserve the separation of the c.m. and the internal
properties, we cannot simply use a one-body potential of
the form vaux(r). The potential vaux should necessarily verify
two conditions: (1) translational invariance and (2) because
we are interested in the internal properties, the redundant
c.m. coordinate should be removed (as discussed previously).
These two conditions impose the form

∑N
i=1 vaux(ri − R) as

already used in Refs. [17,18], which corresponds to an arbitrary
potential seen in the c.m. frame. It can be expressed as a
function of only the Jacobi coordinates,

∑N
i=1 vaux(ri − R) =

vaux({ξα}), so it does not couple to the c.m. properties, and

the decomposition of Eq. (1) for ψ still holds with Hint →
Hint + vaux({ξα}) in Eq. (4). Of course, the associated internal
wave function is modified accordingly and consequently all
internal observables are also modified, but for the sake of
simplicity we keep the same notations (ψint, Eint,Hint).

For the next step, we evaluate the contribution of the auxil-
iary potential term (ψint|vaux({ξα})|ψint) to the internal energy.
First, we note that for any operator f̂ that can be expressed
through Jacobi coordinates in position representation [we
write f̂ ({ξα}) when expressed through Jacobi coordinates and
f̂ ({ri}) when expressed through the laboratory coordinates],
we have the relation

(ψint|f̂ ({ξα})|ψint)

=
∫

dξ1 · · · dξN−1ψ
∗
int({ξα})f̂ ({ξα}) ψint({ξα})

=
∫

dR dξ1 · · · dξN−1 δ(R) ψ∗
int({ξα})f̂ ({ξα}) ψint({ξα})

=
∫

dr1 · · · drNδ(R) ψ∗
int({ri})f̂ ({ri}) ψint({ri}) . (8)

We see that the “internal mean values” calculated with
ψint expressed as a function of the (N − 1) {ξα} can also
be calculated with ψint expressed as a function of the N

coordinates {ri}. The transformation from the {ξα} to the
{ri} introduces a δ(R) that represents the dependence of the
redundant coordinate on the others.3

For the mean value of the auxiliary potential, Eq. (8) leads
to

(ψint|vaux({ξα})|ψint)

=
∫

dr1 · · · drNδ(R)|ψint({ri})|2
N∑

i=1

vaux(ri − R)

=
N∑

i=1

∫
dη vaux(η)

∫
dr1 · · · drN |ψ(r1, . . . , rN )|2

× δ[η − (ri − R)]

=
N∑

i=1

∫
dr vaux(r)

ρint(r)

N

=
∫

dr vaux(r)ρint(r), (9)

where we have introduced the internal density

ρint(r)/N

=
∫

dr1 · · · drN δ(R)|ψint({ri})|2δ[r − (ri − R)]

=
∫

dr1 · · · drN δ(R)|ψint({ri})|2δ[r − (rN − R)]

=
(

N

N − 1

)3 ∫
dRdξ1 · · · dξN−1δ(R)

3More generally, we can introduce a δ(R − a) where a is an arbitrary
translation vector that represents the position of the system’s c.m. in
the laboratory coordinates {ri}. For sake of simplicity of notation, we
choose a = 0 without loss of generality.
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× |ψint({ξα})|2δ
(

ξN−1 − Nr
N − 1

)

=
(

N

N − 1

)3 ∫
dξ1 · · · dξN−2

×
∣∣∣∣ψint

(
ξ1, . . . , ξN−2,

Nr
N − 1

)∣∣∣∣
2

. (10)

The density ρint(r) is normalized to N and a function of the
c.m. frame coordinates. The laboratory density is obtained by
convolution with the c.m. wave function as in Refs. [24,26].
The potential vaux that is N -body with respect to the laboratory
coordinates [and (N − 1)-body when expressed with Jacobi
coordinates] becomes one-body (and local) when expressed
with the c.m.-frame coordinates. The energy Eint[ψint] [7] and
thus the total energy E(K)[ψint] given by Eq. (6) are then to be
complemented by

Eint → Eint +
∫

dr vaux(r)ρint(r). (11)

C. The Hohenberg-Kohn theorem

The internal energy Eint remains obviously a functional
of ψint. Because an arbitrary one-body potential in the c.m.
frame of the form

∫
dr vaux(r) ρint(r) enters in its definition, and

because the ground state of Hint is obtained by minimization of
Eint, we can directly apply the usual proof of the HK theorem
[4] and claim that for a nondegenerate ground state ψint and
for a given fermion or boson type (i.e., a given interaction u),
ψint and thus the internal energy Eint of a self-bound system
[Eq. (11)] can be expressed as unique functionals of ρint. As
already emphasized, the HK theorem is valid only for arbitrary
“external” potentials that lead to bound ground states [5]. As a
direct consequence, the internal DFT scheme is valid only for
potentials vaux that lead to bound internal ground states ψint.
For self-bound systems, described by our formalism in the limit
vaux → 0, ψint should by definition be a bound ground state,
so that the previous conclusions still hold without breaking the
consistency of the scheme.

D. The internal Kohn-Sham scheme

To recover the “internal” KS scheme, we assume, as in the
traditional KS scheme, that there exists in the c.m. frame a local
single-particle potential (i.e., a N -body noninteracting system)
that reproduces the density ρint of the interacting system. We
develop ρint in the corresponding basis ϕi

int of one-body orbitals
expressed in c.m. frame coordinates r4:

ρint(r) =
N∑

i=1

∣∣ϕi
int(r)

∣∣2
. (12)

4Even if only (N − 1) coordinates are sufficient to describe the
internal properties, we still deal with a system of N particles. Thus,
we have to introduce N orbitals in the KS scheme if we want
them to be interpreted (to first order) as single-particle orbitals and
obtain a scheme comparable to SCMF calculations using effective
interactions.

The KS assumption implies ϕi
int[ρint] [1], so we can rewrite

Eint as5

Eint[ρint] =
N∑

i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
+ EH [ρint]

+EXC[ρint] +
∫

dr vaux(r)ρint(r),

EXC[ρint] = 1

2

∫
drdr′ γint(r, r′)u(r − r′) − EH [ρint]

+
(
ψint

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣∣ψint

)
−

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ ϕi
int

)
,

(13)

where we added and subtracted the internal Hartree energy
EH [ρint] = 1

2

∫
drdr′ ρint(r)ρint(r′)u(r − r′) for the direct part

and the noninteracting kinetic energy
∑N

i=1(ϕi
int| p2

2m
|ϕi

int). For
convenience, we introduced the local part of the two-body
internal density matrix,
γint(r, r′)

=
∫

dr1 · · · drNδ(R)|ψint({ri})|2

× δ[r − (ri − R)]δ[r′ − (rj �=i − R)]

= N (N − 1)

2

(
N − 1

N − 2

)3(
N

N − 1

)3 ∫
dξ1 · · · dξN−3

×
∣∣∣∣ψint

(
ξ1, . . . , ξN−3,

r′ + (N − 1)r
N − 2

,
Nr′

N − 1

)∣∣∣∣
2

, (14)

using steps similar to those used in Eq. (10) and using
rN − R = N−1

N
ξN−1 and rN−1 − R = N−2

N−1ξN−2 − ξN−1

N
. The

quantity γint, which normalizes as required to N (N − 1)/2, is a
function of the c.m.-frame coordinates and gives the two-body
density matrix γ (r, r′) in the laboratory by convolution with
the c.m. wave function �(R). Applying Eq. (8) to the u({ξα})
part of Hint and inserting Eq. (14) gives directly

(ψint|u({ξα})|ψint) = 1

2

∫
dr dr′γint(r, r′)u(r − r′). (15)

Following steps similar to those used in Eq. (8), one can show
that the interacting kinetic energy can be rewritten as(

ψint

∣∣∣∣
N−1∑
α=1

τ 2
α

2µα

∣∣∣∣ψint

)

=
(

ψint

∣∣∣∣ − h̄2�R

2M
+

N−1∑
α=1

τ 2
α

2µα

∣∣∣∣ψint

)

=
∫

dr1 · · · drNδ(R)ψ∗
int({ri})

N∑
i=1

p2
i

2m
ψint({ri}). (16)

5To keep close contact with standard DFT, we make here the
usual separation of the energy into direct (Hartree) and exchange-
correlation parts. Owing to the complexity of the nucleon-nucleon
interaction in the vacuum, strong correlations in the nuclear medium,
and the appearance of three-body forces, it is common practice in
nuclear applications to construct approximate expressions for the
entire functional. This, however, does not affect the conclusions of
the present article.
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Equation (16) makes it clear that the difference with the non-
interacting kinetic energy

∑N
i=1

∫
drϕi∗

int(r) p2

2m
ϕi

int(r) comes
not only from the correlations neglected in the traditional
independent-particle framework, but also from the c.m. cor-
relations [the δ(R) term in the previous expression]. The
inclusion of the c.m. correlations in the functional is the main
difference with the traditional KS scheme. Still, the key point
is that the internal, pure exchange-correlation energy EXC[ρint]
can be expressed as a functional of ρint. Varying EK[ρint] in
Eq. (6) or, equivalently, Eint[ρint] in Eq. (13) with respect to
ϕi∗

int and imposing normality of the {ϕi
int},

δ

δϕi∗
int(r)

[
Eint[ρint] −

N∑
i=1

εi

(
ϕi

int

∣∣ϕi
int

)] = 0, (17)

leads to the “internal” Kohn-Sham equations for the {ϕi
int}(

− h̄2

2m
� + UH [ρint] + UXC[ρint] + vaux

)
ϕi

int = εiϕ
i
int,

(18)

with UH [ρint](r) = δEH [ρint]/δρint(r) and UXC[ρint](r) =
δEXC[ρint]/δρint(r), which is local as expected. Equation (18)
has the same form as the traditional KS equations formulated
for nontranslationally invariant Hamiltonians [7]. Here, how-
ever, we have justified its use in the c.m. frame for self-bound
systems described with translationally-invariant Hamiltonians
and have shown that the functional form of UXC[ρint] differs
because of the inclusion of the c.m. correlations. Together with
Eqs. (6) and (13), Eq. (18) completely defines the total energy
EK[ρint] as the sum of the c.m. kinetic energy and the internal
energy.

E. The laboratory density

It is instructive to calculate the laboratory density ρ.
Following Ref. [24], one obtains

ρ(r) =
∫

dR|�(R)|2ρint(r − R). (19)

As �(R) is a plane wave, ρ(r) is constant. This confirms that the
usual definition of the “laboratory density” lacks a meaningful
interpretation for isolated, self-bound systems. Of course, this

full delocalization does not occur in an experiment because
observed self-bound systems are not isolated anymore. The
observables related to �(R) (i.e., position, momentum, or
kinetic energy) are used to transform all observables into the
c.m. frame, thereby explicitly using the Galilean invariance.
The key point is that the decoupling of the c.m. motion allows
one to deduce the internal properties that preserve Galilean
invariance, whereas �(R) is left to the choice of experimental
conditions.

IV. SUMMARY AND CONCLUSIONS

In summary, we have shown in a way complementary to
those proposed in Refs. [17,18] that the many-body internal
wavefunction ψint and thus the internal energy of a self-bound
system can be expressed as unique functionals of the total
one-body internal density ρint. Next, we have shown rigorously
that the internal properties of the system are described by an
internal KS scheme. The key difference with the traditional
HK/KS functional is the inclusion of the c.m. correlations.
However, the question about the validity of the Kohn-Sham
hypothesis, known as the “noninteracting v-representability”
problem [1], remains to be answered, as in traditional DFT. The
internal DFT scheme proposed here provides a justification for
the application of DFT to isolated 3He and 4He droplets [27].
The present article establishes also the first step toward a
Kohn-Sham scheme applicable to nuclear-structure physics.
Further necessary developments are the generalization to two
(or more) species of interacting particles, and the treatment of
broken rotational and space-inversion symmetry that requires
the formulation of the theory in terms of the so-called
“intrinsic” one-body density, as defined in Ref. [28].
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