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Microscopic calculation of 240Pu scission with a finite-range effective force
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Hartree-Fock-Bogoliubov calculations of hot fission in 240Pu have been performed with a newly implemented
code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-
octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark
calculation for 226Th is obtained and compared with results in the literature. In addition, technical aspects of the
use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission
configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB
iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of
the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with
up to seven simultaneous constraints.
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I. INTRODUCTION

The last three decades have seen a resurgence of interest
in the microscopic description of nuclear fission. This renais-
sance in fission theory has been ushered in by progress in
formal many-body theory and by the advent of faster and
parallel computers. The microscopic approach can boast a
well-established track record of accomplishment over the
last three decades, such as the prediction of fission barriers
[1–7] and their evolution with temperature [8] and angular
momentum [9], the prediction of fission times [2,10] and
fission-isomer lifetimes [11], the description of hot and cold
fission [2], the prediction of fission yields [12], the description
of cluster radioactivity as very asymmetric fission [13], and
most recently, the calculation of fission-fragment properties
(e.g., excitation energy, shape, kinetic energy, emitted-neutron
multiplicity, and angular momentum) [14,15]. Despite these
successes, however, the microscopic description of fission
remains one of the most difficult challenges in nuclear
physics.

On the other hand, the promise of a microscopic theory
that can reliably predict nearly all aspects of fission within a
single, self-consistent framework is tantalizing. A fully self-
consistent, dynamical approach to fission has been developed
by the group at Bruyères-le-Châtel [2,12,14] and is being
implemented at Livermore [16]. This approach treats both
static and dynamic aspects of fission self-consistently and
requires as its only phenomenological input the effective
interaction between the nucleons.

A Hartree-Fock-Bogoliubov (HFB) code is the central
tool for the description of the static aspects of fission in
the microscopic method. The use of a finite-range effective
interaction, such as the D1S interaction [17], allows the
treatment of pairing within the HFB formalism [18] in
a fully self-consistent manner, and without the need for
additional phenomenological parameters. The HFB calcula-
tions can be constrained by a judicious choice of collective
variables to explore those nuclear shapes that are relevant to
fission. Such constraints have confirmed the richness of fission
phenomena, for example, by revealing the full range of fission

modes from hot (fragments formed in maximally excited
states) to cold (fragments formed with no excitation energy)
[2].

In the dynamical component of the microscopic theory,
a wave packet is built from HFB solutions constrained
over all relevant nuclear shapes using the time-dependent
generator-coordinate method (TDGCM) [19–22]. In practical
applications, the Gaussian-overlap approximation (GOA) to
the TDGCM can be used to produce a collective Schrödinger
equation, and therefore a collective Hamiltonian, constructed
entirely from the single-particle degrees of freedom. The
TDGCM formalism describes the nucleus in its lowest energy
state, as well as its collective excitations [23,24], and can
be extended to include intrinsic excitations as well [25] on
the way to scission. These intrinsic excitations are needed
for a microscopic description of fission that goes beyond
the standard adiabatic approximation usually adopted in
fission calculations [26]. This comprehensive program for the
microscopic description of induced fission has already shown
the importance of dynamical effects in the prediction of fission
times [2] and fission-fragment yields [12], but a great deal
of work remains to include all the relevant physics aspects
in the calculation. In particular, a detailed and quantitative
understanding of scission itself remains to be developed even
at the level of the static calculations.

In this paper, we focus on the static aspect of the
microscopic theory with three goals in mind: (1) to introduce
the newly developed HFB code FRANCHBRIE [16], which
uses a finite-range effective interaction, (2) to examine in
detail some basic technical aspects of fission calculations
with an HFB code, and (3) to present first-time results of
scission properties for the hot fission of 240Pu. In Sec. II,
we review the HFB formalism and discuss in detail some
features of the one-center deformed harmonic-oscillator basis,
formal and practical aspects of HFB fission calculations with
multiple constraints, as well as the HFB convergence algorithm
itself. In Sec. III, we benchmark our HFB code against
two-center calculations of scission properties for 226Th by
Dubray et al. [14]. We then apply the code to the identification
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of hot-scission configurations in 240Pu and the shapes of the
nascent fragments just before scission.

II. THEORY

A. General HFB formalism

For convenience, we recall the main points of the HFB
formalism with a finite-range effective interaction in this
section and refer the reader to the literature for further details
(see, e.g., Refs. [27–29]). We have implemented this formalism
within the code FRANCHBRIE [16].

We start from the many-body Hamiltonian in second-
quantized notation (see, e.g., Chap. 5 in Ref. [27]),

H =
∑
mn

tmna
†
man + 1

4

∑
mnpq

V̄mnpqa
†
ma†

naqap,

with the antisymmetrized two-body matrix elements

V̄mnpq ≡ 〈mn|V|pq〉 − 〈mn|V|qp〉,
and the usual anticommutation rules for particle operators

{am, an} = {a†
m, a†

n} = 0, {a†
m, an} = δmn. (1)

In this paper, we use a finite-range effective interaction which
in coordinate space takes the form [28]

V(�r1, �r2)=
2∑

i=1

(Wi + BiP̂σ − HiP̂τ − MiP̂σ P̂τ )e−(�r1−�r2)2/µ2
i

+ iWLS
←−∇ 12 × δ(�r1 − �r2)

−→∇ 12 · (�σ1 + �σ2)

+ t0(1 + x0P̂σ ) δ(�r1 − �r2)ργ

( �r1 + �r2

2

)
+ VCoul,

(2)

where
←−∇ 12 ≡ ←−∇ 1 − ←−∇ 2,

−→∇ 12 ≡ −→∇ 1 − −→∇ 2, P̂σ is the spin-
exchange operator, and P̂τ is the isospin-exchange operator.
The Coulomb interaction VCoul is added if both particles
are protons, and ρ(�r) denotes the total nuclear density. The
D1S effective interaction [2,4] has been used for the present
calculations. Given the computationally intensive nature of
the calculations, we have omitted contributions from the
spin-orbit and Coulomb interactions to the pairing field. This
approximation is well justified in the case of the spin-orbit
interaction whose intensity in the singlet-even channel is
very weak, but it is less so for the Coulomb term, which
can significantly reduce the pairing correlations for proton
pairs [30]. We note also that the density-dependent part of the
interaction is adjusted to cancel in the singlet-even channel
by setting x0 = 1. Consequently, only the Gaussian terms
contribute to the pairing field, which permits the fully self-
consistent application of the Bogoliubov formalism, without
the need for arbitrary truncations of the space or the use of
ad-hoc pairing forces. The Coulomb exchange contribution
has been treated in the Slater approximation, and the two-body
contribution to the center-of-mass correction has been included
in the mean field.

The Bogoliubov theory [18] takes into account, in an
approximate way, two-body correlations beyond the mean-
field restriction to particle-hole excitations. The approach

defines quasiparticle creation and destruction operators as
linear combinations of the particle creation and destruction
operators

η†
µ ≡

∑
n

(Unµa†
n + Vnµan),

(3)
ηµ ≡

∑
n

(U ∗
nµan + V ∗

nµa†
n).

Assuming there exists a vacuum of the destruction operators
ηµ, denoted by |0̃〉, we identify it as the ground state of the
nucleus, and its energy can be written simply as a functional
of the density matrix and the pairing tensor or, equivalently, as
a functional of the generalized density

R ≡
(

ρ −κ

κ∗ I − ρ∗

)
≡

(
R11 R12

R21 R22

)
. (4)

We recall that the unitarity condition of the transformation in
Eq. (3) is equivalent to

R2 = R, (5)

and we will therefore write the energy as

E(ρ, κ, λp, λn,	) = E(ρ, κ) − λp〈0̃|N̂p|0̃〉 − λn〈0̃|N̂n|0̃〉
− Tr[	(R2 − R)], (6)

where E (ρ, κ) is the expectation value of the Hamiltonian in
the quasiparticle ground state, and λp and λn are the Lagrange
parameters needed to impose the appropriate average number
of protons and neutrons, respectively, given by the matrix R.
The matrix 	 of Lagrange parameters is needed to satisfy
Eq. (5). Thus the determination of the fundamental nuclear
state amounts to finding the generalized density matrix that
minimizes Eq. (6). Some authors recognize Eq. (6) as the
equation of a multidimensional surface and seek its minimum
directly using standard mathematical techniques to find the
minimum of a function. Among these approaches, we cite
the gradient method [31] or an improved variant known as
the conjugate gradient method [32]. The number and diversity
of applications using this method indicate its effectiveness
[7–9,13,33,34]. In our approach to the minimization of Eq. (6),
we start with the variational principle

δE(ρ, κ, λp, λn,	) = Tr{[H − (	R + R	 − 	)]δR},
(7)= 0,

∀δR, where

Hij
mn ≡ 2

δE(ρ, κ, λp, λn)

δR
ji
nm

. (8)

Taking into account Eq. (5), it is possible to eliminate the
constraint matrix 	, leading to the Bogoliubov equation

[H(R), R] = 0. (9)

The Bogoliubov matrix H in Eq. (9) is constructed with the
help of the block matrices defined by Eq. (8). The explicit
form of these matrix elements for the D1S effective interaction
is given by Refs. [28,29,35]. The solution of Eq. (9) is
then found by successive diagonalizations of the Bogoliubov
Hamiltonian. This iterative solution method is described in
greater detail in Sec. II D and Appendix A.
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B. Basis truncation and aspects of one-center basis calculations

In practical applications, the formalism of Sec. II A must be
expressed in some basis. Typically, the deformed harmonic-
oscillator (HO) basis (see, e.g., Chap. 2 in Ref. [27]) has
been used in many HFB calculations, including those dealing
with fission [4,36]. The basis states in cylindrical coordinates
(ρ, z, ϕ) are

〈�r|nr,	, nz, σ 〉
= �nr,|	|(ρ; b⊥)

ei	ϕ

√
2π

�nz
(z; bz)χσ , (10)

where the explicit forms used in this work for the radial
(�nr,|	|) and Cartesian (�nz

) components and their relevant
properties can be found in, e.g., Ref. [35], and χσ is a
spinor function for σ = ±1/2. These basis states assume axial
symmetry of the nucleus explicitly. Other symmetries can also
be imposed on the HFB calculation to reduce the overall size of
the problem. Two symmetries in particular are relevant to the
fission calculations in this paper: the symmetry with respect to
the parity operator �̂

�̂|nr,	, nz, σ 〉 = (−1)|	|+nz |nr,	, nz, σ 〉,
and the symmetry with respect to the z-signature operator
Ŝz = iR̂z (π ), where R̂z (π ) effects a rotation by π in both
spatial and spin space,

Ŝz|nr,	, nz, σ 〉 = σ (−1)|	||nr,	, nz, σ 〉,
Throughout this work, only the z-signature symmetry has
been imposed, leaving the fissioning nucleus free to violate
the symmetry with respect to parity and assume asymmetric
shapes. These symmetries are taken into account explicitly by
rewriting the general Bogoliubov transformation of Eq. (3) in
terms of the relevant quantum numbers as

η†
µ(q, sz,�) ≡

∑
n

[
Uq,sz,�

nµ a†
n(q, sz,�)

+V q,sz,�
nµ an(q, sz, �̄)

]
,

ηµ(q, sz, �̄) ≡
∑

n

[(
Uq,sz,�̄

nµ

)∗
an(q, sz, �̄)

+ (
V q,sz,�̄

nµ

)∗
a†

n(q, sz,�)
]
,

where q distinguishes protons and neutrons, sz = ±1 is the
z-signature quantum number, and �̄ is the total angular-
momentum projection for the time-reversed state.

Even with the z-signature symmetry imposed, the treatment
of fission can require large basis sizes and the calculation
of a large number of two-body matrix elements. To further
limit the size of the problem, various basis truncation schemes
have been devised. Some [37] keep only those basis states
with corresponding HO energies below a given cutoff, while
other schemes [4,38] directly allow for more quanta along
the z direction—the direction of elongation of the fissioning
nucleus—compared to the radial direction. In the truncation
scheme of Ref. [37], the HO quantum numbers must satisfy

h̄ω⊥(n⊥ + 1) + h̄ωz

(
nz + 1

2

)
� h̄ω0 (N + 2), (11)

with n⊥ ≡ 2nr + |	| and for a given maximum shell number
N , where the oscillator frequencies are related to the length

parameters b⊥ and bz in Eq. (10) by

ω⊥ = h̄

mb2
⊥

, ωz = h̄

mb2
z

, ω3
0 = ω2

⊥ωz, (12)

and m is the nucleon mass. With increasing axial elongation
and for fixed N , Eq. (11) adds more shells in the z direction
while simultaneously decreasing the number of shells in the
radial direction, thus keeping the basis size from growing
too quickly with deformation. In the truncation scheme of
Refs. [4,38], the condition

nz

q
+ 2nr + |	| � N (13)

is imposed for a given maximum shell number N and
parameter q. In this work, we have used both truncation
schemes. The truncation given by Eq. (11) has been used for
most calculations in this paper, while the truncation of Eq. (13)
has been used mainly in Sec. III A.

The oscillator lengths b⊥ and bz in Eq. (10), or equivalently
the frequencies ω⊥ and ωz, are variational parameters in the
HFB calculation that must be chosen to minimize the HFB
energy. Through a series of calculations in 240Pu using the
truncation scheme of Eq. (13) with N = 13 and q = 1.5,
and exploring a wide range of values of the constraints
on the quadrupole (Q20) and octupole (Q30) moments, an
approximate dependence was obtained for the frequencies that
minimize the HFB energy, given by

h̄ω0 = 8.4345 − 0.0021668Q20, (14)
ω⊥
ωz

= 1.7041 + 0.0028743Q20, (15)

with Q20 in barns and h̄ω0 in MeV. No significant dependence
on Q30 was observed in the range of interest.

Perhaps the most important aspect of the basis states
in Eq. (10) is that they are centered about the origin by
construction. In particular, the Gaussian factor in Eq. (10)
ensures that the nuclear wave function falls off rapidly with
increasing z. Despite this feature of the basis states, we will
show that it is still possible to describe the exotic shapes
occurring in fission. To describe both the neck (near z = 0)
and nascent fragments (typically 5–10 fm from the origin)
with the basis states of Eq. (10), we are forced to include many
quanta in the z direction and to use relatively large values
of bz.

To justify the use of the one-center basis for the range
of fissioning configurations and quantities examined in this
paper, we have performed separate HFB calculations for 134Te
and 106Mo centered at the origin and translated the resulting
wave functions to the typical positions these nuclei occupy as
240Pu nascent fission fragments. The formalism required for
translating a wave function expressed within a finite HO basis
is given in Appendix B. The basis was truncated according to
Eq. (11) with N = 13, resulting in a maximum number nz =
26 along the z axis. The result is shown in Fig. 1 and compared
with a translation in an infinite-sized basis (obtained in practice
by redrawing the curves at the displaced centroid positions
while preserving their shape). The comparison clearly shows
the appearance of spurious tails for each fragment translated
within a finite-size basis. If the fragments are separated further,
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FIG. 1. (Color online) Nuclear densities for fragments of 134Te
and 106Mo along the axis of elongation of the nucleus, calculated
in the one-center basis and plotted (solid black lines) centered at
z = −7.63 and 9.65 fm, respectively. The dashed red lines represent
the same densities, but translated from the origin to their respective
centroid positions within a finite harmonic-oscillator basis truncated
according to Eq. (11) and with N = 13 shells, using the formalism
in Appendix B.

e.g., by an additional 2.5 fm for each fragment as in Fig. 2, the
tails grow larger. However, the tails caused by the translation
in a finite basis remain relatively small (∼10−4 fm−1 in Fig. 1,
and ∼5 × 10−4 fm−1 in Fig. 2), and the separations between
the fragments in both figures are larger than those encountered
in the remainder of this work. In Sec. III A, we will show that
these tails do not significantly affect the nuclear properties
calculated in this paper. In a forthcoming publication [39], we
will explore a more microscopic definition of scission and of
the fission fragments, and we will calculate quantities such
as the interaction energy between the fragments that may be
more sensitively affected by the presence of these tails [40].

C. Multiple constraints in HFB calculations

In this section, we focus on formal and practical considera-
tions in the choice and control of multiple constraints in HFB
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FIG. 2. (Color online) Same as Fig. 1, but for the 134Te and 106Mo
fragments translated an additional 2.5 fm each, to centroids at z =
−10.13 and 12.15 fm, respectively.

calculations. We will describe a mechanism for the adjustment
of the constraints which generalizes the discussion in Ref. [28].
The formalism described here and used in our calculations is
that of variation with linear constraints. Other approaches for
the adjustment of constraints, such as the quadratic-constraint
method, can also be found in the literature [41]. We have
adopted the linear-variation approach in our work, because we
have found it to be stable and robust, and these are important
qualities needed to map out the scission configurations, which
requires precise control of the nuclear shape. For a process
like fission, these constraints are central not only to being able
to drive the nucleus to scission, but also to uncovering the full
richness of the microscopic method in its ability to describe the
complexities of fission. In Sec. II A, we already discussed the
introduction of constraints on the average number of neutrons
and protons for the HFB Hamiltonian. Further constraints can
be introduced through the external-field one-body operators
λiF̂i ,

H −
∑

i

λiF̂i , (16)

where the parameters λi are used to adjust the field intensities.
Based on Eq. (9), the Bogoliubov equation associated with
Eq. (16) can now be written as[

H(R) −
∑

i

λiFi , R

]
= 0,

where

Fi ≡
(

F̂i 0

0 −F̂ ∗
i

)
(17)

in the particle-hole representation, and H (R) is given by
Eq. (8). In what follows, we will use the notation

H(R, {λi}) ≡ H(R) −
∑

i

λiFi ,

where {λi} represents the set of Lagrange multipliers other
than those associated with the proton and neutron numbers.
The λi Lagrange multipliers can be adjusted to yield an HFB
solution with desired expectation values fi of the fields

〈F̂i〉 = 1
2 TrF̂i + 1

2 TrFiR

= fi.

The formalism used to find the appropriate λi parameters
is derived in Appendix A. In describing fission within the
microscopic approach, we are free to impose any number of
constraints, each defined by a corresponding external-field
operator. We are limited in this task by the computational
requirements, which grow quickly with the number of con-
straints, and by their relevance to the fission process.

In the simplest physical picture of fission, we expect that
the nucleus will stretch along its symmetry axis until scission,
and therefore introduce the mass quadrupole operator Q̂20 as
a constraint. Next, the octupole operator Q̂30 is introduced to
account for the range of mass divisions observed in fragments,
from symmetric to asymmetric. With the introduction of the
octupole constraint, we are forced to impose a constraint on
the dipole moment, Q̂10, as well in order to maintain the center
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FIG. 3. Calculated HFB energy for 240Pu as a function of
hexadecapole moment, and for quadrupole moments of 300 b (cold
fission) and 370 b (hot fission). For the 〈Q20〉 = 300 b case, the
fission valley is seen near 〈Q̂40〉 = 130 b2, and the fusion valley is
near 〈Q̂40〉 = 90 b2. For the 〈Q20〉 = 370 b case, only the fusion
valley is observed, near 〈Q̂40〉 = 140 b2.

of mass of the nucleus fixed. The hexadecapole operator Q̂40

controls the formation of the neck between nascent fragments
and accounts for the range of fission modes from cold to hot
[2]. In addition, we recall that the HFB procedure requires
constraints on the expected values of the proton-number (N̂p)
and neutron-number (N̂n) operators.

In Fig. 3, we show a calculation of the HFB energy for
240Pu as a function of Q40(Q40 ≡ 〈Q̂40〉) at two quadrupole
deformations, 300 and 370 b, which correspond to the so-called
cold and hot fission limits, respectively [2]. These calculations
were performed with five constraints: for the values of 〈N̂p〉 =
94, 〈N̂n〉 = 146, 〈Q̂10〉 = 0, 〈Q̂20〉 = 300 or 370 b, and 80 �
〈Q̂40〉 � 200 b2. In the cold-fission case, a barrier of height
∼4.0 MeV relative to the fission-valley minimum separates
the two valleys. Near the hot-fission limit, the fission valley
has disappeared, and the nucleus spontaneously falls into the
fusion valley near 〈Q̂40〉 = 140 b2. Between the hot and cold
extremes, the nucleus can undergo fission through a range of
intermediate modes.

The energy curves plotted in Fig. 3 effectively represent
slices at fixed values of 〈Q̂40〉 in Fig. 3 of Ref. [2]. The most
striking feature in Fig. 3 is the sudden variation in energy over
a very small step size in 〈Q̂40〉 of 1 b2. In the cold-fission case,
a drop of 2.7 MeV is observed in going from 〈Q̂40〉 = 110 to
109 b2; and in the hot-fission case, a more pronounced drop
of 7.6 MeV occurs in going from 〈Q̂40〉 = 190 to 189 b2.
These abrupt changes in energy, which are in contrast to
the smooth behavior displayed in Ref. [2], correspond to a
sudden reduction in the neck size (Fig. 4), which we take
as an indicator of a transitional phase in which the nucleus
is undergoing scission. Note that the identification of such
transitional phases requires extremely small variations of the
constraints, which could explain why they were not seen in
Ref. [2]. The precise control of the constraints needed to
study the region around scission is one of the important points
that emerges from the present work and is the motivation for
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FIG. 4. (Color online) Calculated nuclear densities in steps of
�〈Q̂40〉 = 1 b2 around the scission configuration for cold (top panel)
and hot (bottom panel) fission. The legends give the values of 〈Q̂40〉
for the different curves.

going into some detail in describing the constraint-adjustment
algorithm in the next section and in Appendix A.

The rapid change of the neck size mentioned above suggests
the introduction of a constraint proportional to the average
number of particles 〈Q̂N 〉 in the neck separating the nascent
fragments, where [4]

Q̂N ≡ exp

[
− (z − zN )2

a2
N

]
, (18)

with aN = 1 fm, and zN is the position of the neck (defined as
the point between the fragments where the matter density is
lowest). As shown in Fig. 5, the energy calculated as a function
of 〈Q̂N 〉 becomes smoother and continuous. A more detailed
discussion of this result is given in the latter part of Sec. II D.
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FIG. 5. Variation of the HFB energy as a function of the number of
particles in the neck, defined by Eq. (18), at the scission configuration
at 〈Q̂40〉 = 189 b2, for the hot-fission calculation with 〈Q̂20〉 = 370 b
in Fig. 3.
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D. The HFB convergence algorithm

The control of HFB calculations with multiple constraints
is a delicate procedure, made difficult by the number of
constraints and their inherent correlations. Because the topic
continues to be of current interest in problems that rely
on constrained-HFB methods even beyond fission [32,42], the
convergence algorithm used in the present HFB calculations is
discussed in detail here. The algorithm must balance, at each
iteration, the diagonalization of the HFB Hamiltonian to ensure
self-consistency, and adjustment of the Lagrange multipliers
in Eq. (16). The main steps of the algorithm are as follows:

(i) Read initial generalized density R and Lagrange mul-
tipliers λi.

(ii) Construct constrained HFB Hamiltonian H(R, {λi}).
(iii) Diagonalize H(R, {λi}).
(iv) Construct new R.
(v) Mix R between consecutive iterations using a mixing

parameter α [see Eq. (20)].
(vi) Adjust the value of α based on the convergence

criterion.
(vii) Calculate δλineeded to yield desired constraint values,

adjust λi.

(viii) Calculate δR corresponding to the δλi , adjust R.

(ix) If HFB solution is not converged, return to step (ii).

The first four steps in this algorithm are fairly self-
explanatory and make use of the formalism derived in Sec. II A.
We will examine the remaining steps in greater detail, since
they are not typically discussed in depth in the literature.

At the end of each iteration i, the convergence of the HFB
solution is assessed by calculating the largest variation from
the previous iteration in the elements of the generalized density
matrix,

εi ≡ sup
∣∣Rpq

mn(i) − Rpq
mn(i − 1)

∣∣. (19)

The quantity εi is also used to determine the coefficient α

in step (v), which mixes the generalized densities between
successive iterations using an adjustable coefficient α,

Rpq
mn(i) → (1 − α)Rpq

mn(i) + αRpq
mn(i − 1), (20)

with 0 � α � 1. This mixing is essential to slow down the
convergence algorithm, which would otherwise often behave
erratically in the first few iterations and could fail to converge
at all. The mixing coefficient α is adjusted in step (vi) in such
a way that it tends to zero as εi decreases. In practice, two
thresholds are supplied, εmin and εmax, along with a maximum
value αmax for the mixing coefficient such that

α =

⎧⎪⎨
⎪⎩

αmax, εi � εmax,

αmax
εi−εmin

εmax−εmin
, εmin < εi < εmax,

0, εi � εmin.

Furthermore, if the HFB solution diverges from one iteration
to the next (i.e., if εi > εi−1), then α is set to αmax and remains
at that value until the HFB solution converges again. Here, we
have used εmin = 10−3 or 10−4, εmax = 10−1, and αmax = 0.5
(or in a few cases, 0.8 for a slower initial convergence). We note
in passing that the mixing of generalized density matrices is a
global operation; i.e., the same coefficient α is used for all the
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FIG. 6. Plot of the convergence metric, given by Eq. (19), as a
function of HFB iteration number for the 〈Q̂40〉 = 110 b2 cold-fission
point in Fig. 3.

matrix elements. The Broyden method, or its more elaborate
modified version [42], could provide a better alternative for
optimizing the choice of the mixing coefficient by associating
an independent value of α to each matrix element.

The formalism needed to adjust the Lagrange parameters in
step (vii), and the generalized density in step (viii) is presented
in Appendix A, and we stress the importance of adjusting both
for a stable convergence of the HFB method. The algorithm
is considered to have converged in step (ix) if εi � εmin for
several iterations (typically two in the present work).

To illustrate various aspects of the convergence algorithm,
we have examined the cold-fission point at 〈Q̂40〉 = 110 b2

in Fig. 3 in detail. Because this point corresponds to a local
maximum in the HFB energy, its calculation is particularly
demanding on the convergence algorithm. In Fig. 6, we show
the convergence criterion ε, calculated using Eq. (19) at each
iteration. The HFB solution is found to better than ε < 10−4

after 156 iterations in this case. We note a region in Fig. 6
roughly between iterations 10 and 40, where ε appears to
be relatively constant and the convergence is correspondingly
slow. In this region, all the constraints appear to be close to their
desired values, except for the dipole moment. The 〈Q̂10〉 value
is still relatively large (∼0.06–0.2 fm) and may be responsible
for the stagnant convergence.

In Fig. 7, we examine the adjustment of the five constraints
at each iteration. The figure shows the relative deviation of
each constraint from the desired value. For all but the dipole-
moment constraint, this relative deviation of the calculated
average value 〈Q̂〉 of the constraint from its desired value q is
given by

∣∣∣∣∣ 〈Q̂〉 − q

q

∣∣∣∣∣ . (21)

In the case of the dipole moment, the desired value is q10 = 0,

and Eq. (21) cannot be used. Instead, we obtain from 〈Q̂10〉
the position of the centroid of the nucleus, given by 〈Q̂10〉/A,

where A = 240 is the total number of nucleons, and we
compare it to the calculated root-mean-squared radius of the
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FIG. 7. (Color online) Relative deviations of the calculated
constraint values from their desired values as a function of HFB
iteration number for the calculation with 〈Q̂40〉 = 110 b2. The relative
deviation for the dipole moment is given by Eq. (22), and by Eq. (21)
for all other constraints. The constraints shown are 〈Q̂10〉 (black solid
line), 〈Q̂20〉 (red dotted line), 〈Q̂40〉 (green dashed line), 〈N̂n〉 (blue
dot-dashed line), and 〈N̂p〉 (turquoise dot-dot-dashed line).

nucleus, Rrms, using the ratio∣∣∣∣∣ 〈Q̂10〉
ARrms

∣∣∣∣∣ . (22)

The calculation is started from an HFB solution that differs
only in the value of the hexadecapole constraint, 〈Q̂40〉 =
115 b2, with all other constraints the same. Hence we see
in Fig. 7 that at the first iteration, all relative deviations except
the one for the hexadecapole-moment constraint are small. The
calculation converges to the desired level of accuracy after 156
iterations.

This difficult convergence should be contrasted with the
calculation of the cold-fission point at 〈Q̂40〉 = 130 b2, near
the bottom of the fission valley in Fig. 3. The relative deviations
of the constraints for this more stable calculation are shown
in Fig. 8. After the tenth iteration, all constraints tend to
the desired value rapidly and smoothly. This calculation
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FIG. 8. (Color online) Same as Fig. 7, but for the calculation with
〈Q̂40〉 = 130 b2.

is converged to the same level of accuracy as the one at
〈Q̂40〉 = 110 b2 after only 33 iterations.

Finally, we discuss in greater detail the discontinuities
observed in Fig. 3. Such discontinuities have been alluded
to in the literature [43] as a potential difficulty for microscopic
calculations. In this section, we show how these discontinuities
are an indicator of a change in the meaning of certain collective
coordinates near the critical scission configurations. We also
show how these discontinuities can be eliminated through the
choice of a more appropriate collective coordinate.

The impact of these discontinuities can be felt even
before the scission configuration is reached. We illustrate this
point by showing the results of HFB calculations performed
with identical multipole constraints up to the hexadecapole
moment, i.e., with the same 〈Q̂10〉, 〈Q̂20〉, 〈Q̂30〉, and 〈Q̂40〉
values, but with different initial densities. We will approach
the cold-fission scission configuration near 〈Q̂40〉 = 110 b2

in Fig. 3 with an initial density corresponding to either a
scissioned or nonscissioned nucleus. The first calculation,
shown in Fig. 9, was performed at 〈Q̂40〉 = 130 b2, near
the bottom of the fission valley. Two curves are shown,
corresponding to a initial choice of the generalized density
calculated at 〈Q̂40〉 = 135 b2 (whole nucleus), and 〈Q̂40〉 =
90 b2 (broken/scissioned nucleus). As expected, both choices
of starting point lead to exactly the same HFB solution, as is
evidenced by the overlapping density curves in Fig. 9. By
contrast, Fig. 10 compares calculations at 〈Q̂40〉 = 115 b2

(i.e., near scission), starting from solutions at 〈Q̂40〉 = 120 b2

(whole) and 〈Q̂40〉 = 90 b2 (broken). Both solutions have the
same values of the first four moments, yet the calculation
started from a whole solution leads to a whole result, while
the broken starting configuration leads to a broken-nucleus
solution. A similar effect is observed in Fig. 11, corresponding
to a calculation very close to scission at 〈Q̂40〉 = 110 b2 with
starting densities from 〈Q̂40〉 = 115 b2 (whole) and 〈Q̂40〉 =
90 b2 (broken) solution. Note that these HFB calculations
are performed with an unprecedented seven simultaneous
constraints.

-20 -10 0 10 20
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15

20
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 (
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)

whole ρ
0

broken ρ
0

FIG. 9. (Color online) Comparison of nuclear densities for the
〈Q̂40〉 = 130 b2 cold-fission point in Fig. 3, starting either from
a whole (solid black line) or scissioned/broken (dashed red line)
initial configuration of the nuclear density in the HFB iterations. All
moments up to the hexadecapole have been constrained to the same
values for the two calculations.
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FIG. 10. (Color online) Same as Fig. 9, but for a calculation at
〈Q̂40〉 = 115 b2.

The densities plotted in Figs. 9–11 reveal a complex
relationship between the hexadecapole and QN degrees of
freedom. These two coordinates are not related by a one-to-one
mapping and cannot be used interchangeably to drive the
system to scission. In Fig. 12, we show the HFB energy
surface as a function of Q40 and QN for the calculation
with all moments up to hexadecapole fixed. In particular,
〈Q̂20〉 = 300 b, and 〈Q̂30〉 = 34.951 b3/2, which is the value of
the octupole moment for the two calculations in Fig. 11. The
shape of the energy surface suggests that energy-minimizing
HFB solutions can exist that have the same value of 〈Q̂40〉 but
distinct values of 〈Q̂N 〉. For most, but not all, values of 〈Q̂40〉,
a small barrier in the surface (marked by a solid line along
the surface in the figure) separates the minima with differing
values of 〈Q̂N 〉. This barrier is at best a few hundred keV high
and decreases rapidly with decreasing 〈Q̂40〉 as we approach
the scission configuration. At 〈Q̂40〉 = 110 b2, the barrier has
dropped to only 1.8 keV and vanishes completely between
〈Q̂40〉 = 104 and 110 b2. This break in the barrier causes the
discontinuity in Fig. 3, where the calculations are performed
without a constraint on 〈Q̂N 〉 to prevent the HFB calculation
from falling into the scissioned configuration.

Near scission, the total multipole moments of the nucleus
are determined by the intrinsic and relative moments of
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FIG. 11. (Color online) Same as Fig. 9, but for a calculation at
〈Q̂40〉 = 110 b2.
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FIG. 12. Energy surface calculated with constraints on 〈N̂n〉 =
146, 〈N̂p〉 = 94, 〈Q̂10〉 = 0, 〈Q̂20〉 = 300 b, 〈Q̂30〉 = 34.951 b3/2,

90 � 〈Q̂40〉 � 130 b3/2, and 0.05 � 〈Q̂N 〉 � 3.05. The dark lines
along the surface mark the position of a small local barrier on the
surface.

the fragments, and rearrangements between these terms can
produce different matter distributions with the same overall
moments, at least up to the hexadecapole. Thus imposing a
constraint on 〈Q̂40〉 will not necessarily result in a constraint
on the neck size near scission. The 〈Q̂N 〉 constraint, on the
other hand, was already shown to produce a smooth energy
dependence in Fig. 5 and is therefore the suitable coordinate
in the study of fission for configurations near and beyond
scission.

E. Scission in the constrained-HFB approach

In this section, we briefly discuss various signatures of
scission. Some of the characteristics of scission have already
been mentioned in Secs. II C and II D. The standard indicators
of scission are sudden changes in either energy (interaction
energy between fragments or total HFB energy) or shape (neck
size or hexadecapole moment) for the nucleus [14]. For the
work in this paper, we use the same semiclassical definition of
the nascent fission fragments as in Ref. [14], where a position
along the symmetry axis of the nucleus is identified as a divider
between left and right fragments, and the fragment properties
are obtained as integrals over the density with this cut as an
endpoint for the integrals. In a forthcoming publication [39],
we will adopt a more microscopic criterion to identify the
fragment [40], based on the individual single-particle wave
functions and using the changes in the interaction energy
between fragments as an indicator of scission. In this paper,
we will focus instead on the HFB energy and the number of
particles in the neck before and after scission.

Consider, for example, the cold-fission calculation in Fig. 3.
At 〈Q̂40〉 = 110 b2, there is still a significant amount of matter
in the neck connecting the nascent fragment with 〈Q̂N 〉 =
2.41. At 〈Q̂40〉 = 109 b2, however, the neck breaks and 〈Q̂N 〉
drops to 0.50 particle. This sudden variation in shape over a
small increment in hexadecapole moment is shown in the top
panel of Fig. 4. At 〈Q̂40〉 = 90 b2, the bottom of the fusion
valley, 〈Q̂N 〉 has been reduced to 0.09 particle. From 〈Q̂40〉 =
110 to 109 b2, the total HFB energy drops by 2.7 MeV, and
the difference in energy between 〈Q̂40〉 = 110 and 90 b2 is
10.2 MeV.
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A similar analysis can be performed for the hot-fission
calculation in Fig. 3. In this case, the last point where a sizable
neck still exists between the nascent fragment is at 〈Q̂40〉 =
190 b2, with 〈Q̂N 〉 = 2.92 particles. By 〈Q̂40〉 = 189 b2, the
neck has essentially disappeared, and 〈Q̂N 〉 has dropped to
0.23 particle. At the bottom of the fusion valley, where 〈Q̂40〉 =
140 b2, there is only 〈Q̂N 〉 = 0.02 particle in the neck. The
change in shape is plotted in the bottom panel of Fig. 4. The
drops in energy are more significant than in the cold-fission
case. From 〈Q̂40〉 = 190 to 189 b2, the total HFB energy drops
by 7.6 MeV, and from 〈Q̂40〉 = 190 to 140 b2, it drops by
20.1 MeV.

III. RESULTS

A. Benchmark: 226Th scission

We have performed HFB calculations of hot-fission prop-
erties for 226Th, in order to compare them with the results in
Ref. [14], which were obtained with two-center HFB calcu-
lations. We have used both the basis truncation of Eq. (13)
with N = 13 and q = 1.5 and the one given by Eq. (11) with
N = 13. The oscillator-frequency parametrization of Eqs. (14)
and (15) was used, even though it was obtained for calculations
in 240Pu. We will show that our results are in good agreement
with those of Dubray et al. [14] for 226Th with either basis
truncation scheme.

In Fig. 13, we plot the hot-scission line for 226Th and
compare it to the one obtained in Ref. [14]. The scission
line was determined by performing a series of calculations
at fixed 〈Q̂30〉 and increasing the values of 〈Q̂20〉 by 5 b, each
calculation using the previous one as a starting point, until an
HFB solution was found in which the neck size decreased
drastically. Lines separated by �〈Q̂20〉 = 5 b connecting
the HFB solutions just before and just after the breaking
of the neck are displayed in Fig. 13, bracketing the actual
scission line. These lines are in good agreement with the
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FIG. 13. (Color online) Scission line for 226Th obtained in this
work and compared with the result of Dubray et al. [14]. The solid
disks connected by a solid green line represent HFB solutions just
before scission in this work, and the solid disks connected by a dashed
red line represent solutions immediately after scission in this work.
The thick solid black curve is the scission line taken from Ref. [14].
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FIG. 14. (Color online) Large-basis HFB calculations in 226Th
along lines with fixed 〈Q̂20〉 performed to reproduce the details of the
scission line found in Dubray et al. [14]. A dashed line connects the
last point before scission and should be compared with the Dubray
et al. result (solid line).

226Th scission line in Ref. [14]. In Fig. 14, we examine the
region with 〈Q̂30〉 = 25–35 b3/2 in greater detail. A series of
HFB calculations were performed at constant 〈Q̂20〉 values of
280, 310, 360, and 400 b starting from 〈Q̂30〉 = 25 b3/2 in
each case and proceeding in steps of �〈Q̂30〉 = 1 b3/2. For
these calculations, the basis truncation of Eq. (11) was used
with N = 13 in order to provide a larger number of oscillator
shells (up to 26 in practice) in the z direction, while keeping
the overall number of basis states relatively low. With these
large-basis calculations, we find that the results of Dubray
et al. [14] are very well reproduced.

In Fig. 15, we compare the mass quadrupole moment
calculated for the fragments for the HFB solutions just before
scission (solid disks connected by solid lines in Fig. 13) to
the corresponding result in Ref. [14]. As in Ref. [14], the
Q20 values were calculated by integration over the left- and
right-fragment densities, truncated at the neck position. The
results of Ref. [14] are well reproduced by our calculations.
Similarly, in Fig. 16, we show the octupole moment of the
fragments compared with the Dubray et al. results. In this case
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FIG. 15. (Color online) Comparison of fission-fragment
quadrupole moments as a function of fragment mass number between
this work and the results in Ref. [14].
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FIG. 16. (Color online) Same as Fig. 15, but for the fission-
fragment octupole moments.

as well, the agreement between the two sets of calculations is
good.

The agreement between one-center and two-center calcu-
lations in Figs. 13–16 is reassuring, both as a benchmark for
the HFB code used in this work and as an assessment of the
applicability of the one-center basis near scission. With these
results in mind, we turn next to the fission properties of 240Pu.

B. 240Pu scission

For the 240Pu calculations, we have used the truncation
scheme of Eq. (11) with N = 13. The parametrization in
Eqs. (14) and (15) was adopted for the HO frequencies.

Figure 17 illustrates the search for the hot-scission line in
240Pu. Points along lines with fixed 〈Q̂30〉 or 〈Q̂20〉 increasing
in steps of 1 b3/2 and 5 b near the scission line, respectively,
denote individual HFB calculations, each using the previous
one as a starting point. As in the case of 226Th in Fig. 13,
the nucleus tends to stretch to much larger deformations in
the symmetric limit. This leads to fragments that are formed
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FIG. 17. (Color online) Scission line for 240Pu obtained in this
work. All calculations were done using the basis truncation of
Eq. (11). The solid green disks represent HFB calculations producing
a whole (nonscissioned) nuclear density. The empty red circles
connected by a solid line represent scissioned configurations.
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FIG. 18. (Color online) HFB energy of the fissioning nucleus,
plotted as a function of the heavy-fragment mass number, obtained
from the HFB pre-scission and post-scission calculations in Fig. 17.

much farther apart in symmetric fission and a corresponding
drop in their mutual Coulomb repulsion—and therefore their
total kinetic energy—as observed experimentally [44]. As in
the case of 226Th, we also observe regions around Q20 =
550 b,Q30 = 35 b3/2 and Q20 = 400 b,Q30 = 38 b3/2 where
the scission line “bulges out.” In these regions, for a given
Q30 value, the nucleus may scission at more than one value
of Q20.

Figure 18 compares the total HFB energy of the fissioning
nucleus just before and just after scission. In general, scission
is accompanied by a marked drop in HFB energy. That
drop, however, is much more pronounced for fission near the
symmetric limit, where it can be as large as ∼50 MeV over
the �〈Q̂20〉 = 5 b change in quadrupole moment. Note that
the fragment masses in Fig. 18 are not the same before and
after scission. This difference is an indication of the drastic
variations in the nuclear density and the redistribution of
particles in the neck between the two fragments at scission.

The number of particles in the neck just before and after
scission is shown in Fig. 19 as a function of the heavy-fragment
mass. The variation in 〈Q̂N 〉 is quite large (typically by an
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FIG. 19. (Color online) Number of particles in the neck of the
fissioning nucleus, plotted as a function of the heavy-fragment
mass number, obtained from the HFB pre-scission and post-scission
calculations in Fig. 17.
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FIG. 20. (Color online) Identification of the last configuration
before scission for HFB calculations at fixed Q30 = 10 and 55 b3/2,
as a function of the QN constraint. The circled points on each curve
were chosen as the last pre-scission configuration, before the drop in
HFB energy as a function of decreasing QN .

order of magnitude, but near the symmetric limit, by more
than a factor of 1000).

As in Ref. [14], we extract the fragment properties for each
mass division from the HFB calculation just before scission.
However, we go further than the calculation in Ref. [14] by
attempting to approach the scission configuration even more
closely. We introduce an additional constraint on QN to each
point in the Q20–Q30 map of Fig. 17 just before the scission
line, and search for the QN value marking a point just before
a drop in EHFB occurs. Figure 20 shows some typical choices
for this point. In Fig. 21, the charge and mass of each fragment
is plotted, covering the range A = 93–147. We note that there
is a nearly linear relationship between the mass and charge of
the fragments, which can be fitted as

Z = 3.5349 + 0.36221A.

This result is consistent with the prediction of the unchanged-
charge division (UCD) model [45], also shown in Fig. 21 for
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FIG. 21. (Color online) Fission-fragment charge number as a
function of mass number, obtained from the HFB calculations
immediately prior to scission in Fig. 17. The UCD prediction is
plotted for comparison.
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FIG. 22. (Color online) Fission-fragment quadrupole moments
as a function of fragment mass number, obtained from the HFB
calculations immediately prior to scission in Fig. 17. A line has been
drawn through the HFB results to guide the eye.

comparison, which for 240Pu yields

Z = 94

240
A ≈ 0.3917A.

The moments of the fragments are shown in Figs. 22–24.
The overall shape of the quadrupole moment in Fig. 22
is similar to the one shown for 226Th in Fig. 15, with a
maximum at the symmetric limit and a drop-off on either
side. There is also a significant dip in the 〈Q̂20〉 value near
the nearly spherical 134Te fragment. The fragment octupole
moment, plotted in Fig. 23, also shows similarities in shape
as well as magnitude to the 226Th case in Fig. 16.1 Finally,
we also show the hexadecapole moment of the fragments
in Fig. 24. There as well, the value of 〈Q̂40〉 reaches a
maximum near the symmetric limit and drops off on either

1In our original HFB calculations for 240Pu, the 〈Q̂30〉 values for
the light fragments are negative, but since the sign carries no relevant
physical meaning for this quantity, we have taken its absolute value
in Fig. 23.
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FIG. 23. (Color online) Same as Fig. 22, but for the fission-
fragment octupole moments.
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FIG. 24. (Color online) Same as Fig. 22, but for the fission-
fragment hexadecapole moments.

side. In all cases, a line has been drawn to guide the eye
using a polynomial fit to the points. The HFB calculations in
Figs. 22–24 exhibit a great deal of fluctuation about the smooth
polynomial fit. These fluctuations are for the most part due to
the difficulty in identifying a scission configuration based on
the criterion of sudden changes in global nuclear properties,
such as the total energy. In a forthcoming paper [39], we will
embark on a more detailed study of the scission configurations
at the microscopic level and extract the excitation, kinetic,
and interaction energies of the fragments. The merits and
difficulties of a scission criterion based on the interaction
energy between the fragments will be discussed in detail.

IV. CONCLUSION

We have developed the HFB code FRANCHBRIE for mi-
croscopic fission studies using the finite-range D1S effective
interaction. The code allows for the multiple constraints
needed to explore the nuclear densities relevant to fission and is
based on matrix elements calculated in a one-center deformed
harmonic-oscillator basis. We have provided a detailed deriva-
tion of the formalism required for the adjustment of those
multiple constraints.

We have applied the code to the calculation of scission
configurations in the hot fission of 240Pu. These calculations
are relevant to studies of thermal neutron-induced fission on
a target of 239Pu. We have focused on the technical aspects of
using the HFB formalism for fission studies. In particular, we
have discussed some aspects of fission calculations within a
one-center basis and the importance of the choice of collective
coordinates in the HFB iterations for nearly scissioned con-
figurations. A scission line in the quadrupole-octupole plane
was obtained and shows a tendency for the nucleus to reach
much larger elongations in the symmetric limit before scission
occurs. A similar feature was observed in the scission line of
226Th by Dubray et al. [14] using two-center HFB calculations,
reproduced in this work with a one-center calculation. The
increased “malleability” of the nucleus near the symmetric
limit is reflected in the various moments (quadrupole, octupole,
and hexadecapole) calculated for the fission fragments and
presented here.

In a forthcoming publication, we will extract the excitation
and kinetic energies of the fission fragments. We will intro-
duce a microscopic criterion for the identification of fission
fragments and calculate their interaction energies, with special
attention to the density tails discussed in this paper. Finally,
the static calculations of hot fission presented here are the first
step in a fully dynamical calculation of 240Pu fission. Further
developments are planned to explore all fission modes, from
hot to cold, and to include the dynamical aspects of the theory
in the calculations.

ACKNOWLEDGMENTS

This work was performed under the auspices of the US
Department of Energy by the Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

APPENDIX A: MULTIPLE CONSTRAINT FORMALISM

1. Effect of the variation of a single Lagrange multiplier on the
generalized density

In this appendix, we derive the formalism for solving
the HFB equation with multiple constraints. The derivation
generalizes the discussion in Ref. [28] to the case of multiple
constraints. In the first section, we give the essential formulas
used in the adjustment of constraints. A second section
illustrates the formalism with the special case of a single
constraint, and the last section presents the general case of
multiple constraints.

Starting from the HFB equation (9), we write for a
Hamiltonian with a single constraint λF̂ introduced as in
Eq. (16),

[H (R (λ) , λ) , R (λ)] = 0,

where

〈λ|F̂ |λ〉 ≡ f (λ)

= 1
2 TrF̂ + 1

2 Tr FR(λ) (A1)

is the expectation value of F̂ in the corresponding HFB
solution |λ〉, with F given by Eq. (17). Consider a small
variation δλ of the Lagrange multiplier, leading to a new HFB
solution with

[H(R(λ + δλ), λ + δλ), R(λ + δλ)] = 0, (A2)

where

〈λ + δλ|F̂ |λ + δλ〉 ≡ f (λ + δλ)

= 1
2 TrF̂ + 1

2 Tr FR(λ + δλ) (A3)

We will now derive an explicit relation between the generalized
density

R(λ) ≡ (0)R

and its perturbed value, expanded to first order in δλ,

R(λ + δλ) ≡ (0)R + (1)R.

054313-12



MICROSCOPIC CALCULATION OF 240Pu SCISSION . . . PHYSICAL REVIEW C 80, 054313 (2009)

Note that the idempotent condition in Eq. (5) implies that the
matrix (1)R has the form

(1)R̃ =
(

0 (1)R̃12

(1)R̃21 0

)
(A4)

in the quasiparticle representation that diagonalizes (0)R. A
straightforward linearization of Eq. (A2) about (0)R gives the
relation

(1) �R = δλM−1 �F, (A5)

where M is the QRPA matrix, whose elements are given by
second-order derivatives of the energy with respect to the
generalized density matrix [28], and where we have introduced
the vector notation

�F =
(

F (1,2)

F (1,2)∗

)
, (A6)

and similarly for (1) �R. Next, from Eqs. (A1) and (A3), we
deduce

δf ≡ f (λ + δλ) − f (λ)

= 1
2

�F † · (1) �R. (A7)

Combining this result with Eq. (A5), we can express δλ in the
form

δλ = 2δf

�F † · (M−1 �F )
. (A8)

Equations (A5) and (A8) are the basis for the iterative
procedure used to solve the HFB equation under constraint
and described in the next section.

To obtain a computationally efficient expression for the
inverse QRPA matrix M−1 in Eq. (A8), we adopt the so-called
cranking approximation in which the residual interaction
between quasiparticles is neglected in the QRPA matrix. In
this case, M−1 takes the block-diagonal form

M−1 =
(

[(εµ + εν)−1δµσ δντ ] [0]

[0] [(εµ + εν)−1δµσ δντ ]

)
,

and therefore,

(1)R21
µν = δλ

εµ + εν

∑
mn

(FmnVmµUnν − F ∗
mnUmµVnν), (A9)

with a corresponding expression for δλ.

2. Adjustment of the HFB solution in the case of one constraint

In this section, we examine in greater detail steps (vii) and
(viii) in the description of the HFB algorithm listed in Sec. II D.
In this case, the constrained HFB equation is written

[H(R) − λF, R] = 0,

with

f = 1
2 TrF̂ + 1

2 Tr FR,

where f is the expectation value of the constraint operator.
The solution of the HFB equation then consists in determining
not only R but also the Lagrange multiplier λ that satisfies

the constraint. To solve this problem, we are led to an
iterative procedure wherein the Lagrange multiplier is adjusted
at each iteration. Consider the nth iteration, such that the
generalized density matrix obtained in the previous iteration
is R(n−1) with a corresponding Lagrange multiplier λ(n−1).
The diagonalization of H(R(n−1)) − λ(n−1)

F leads to a new
generalized density, which we will denote R̄(n). At this stage,
the constraint is no longer necessarily satisfied, and we
calculate the deviation from the desired value

δf (n) = f − f (n).

We correct the Lagrange multiplier using Eq. (A8),

λ(n) = λ(n−1) + 2δf (n)

�F † · (M−1 �F )
,

and the generalized density using Eq. (A5),

R(n) = R̄(n) + δλM−1 �F,

with

δλ = λ(n) − λ(n−1).

We define the nth iteration with the self-consistent pair of R(n)

and λ(n). Note that the constraint is satisfied at each iteration.
This iterative process generally converges, i.e.,

R(n) → R̄(n) → R,

λ(n) → λ,

f (n) → f.

If the difference in constraint values is very large between
successive iterations (as may be the case in the first few iter-
ations), the convergence rate can be improved by calculating
the generalized density matrix at the nth iteration according to

R(n) = (1 − α)(R̄(n) + δλM−1 �F ) + αR(n−1),

with the associated Lagrange multiplier

λ(n) = (1 − α)(λ(n−1) + δλ) + αλ(n−1),

where the weight α tends to zero as the solution converges.
With this prescription, the convergence of the generalized
density and Lagrange multiplier are slowed down by the same
amount. In other words, the desired value f for the constraint
is approached in a gradual manner, so that at the nth iteration,

〈λ(n)|F̂ |λ(n)〉 = f (n) = (1 − α)f + αf (n−1).

3. Adjustment of the HFB solution in the case of multiple
constraints

The results in the previous section can be readily general-
ized to an arbitrary number N of constraints. In this case, the
HFB procedure minimizes the energy

〈{λ}|H −
N∑

i=1

λiF̂i |{λ}〉

subject to the set of constraints

〈{λ}|F̂i |{λ}〉 = fi, i = 1, . . . , N.
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The generalized density matrix is now a function of N

Lagrange multipliers, R({λ}). We write

R ({λ + δλ}) − R ({λ}) ≡ (1)R

=
N∑

i=1

∂R

∂λi

δλi

=
N∑

i=1

(1)Ri. (A10)

Clearly, (1)Ri is a variation in which all the Lagrange
multipliers are held fixed except for the one associated with
F̂i . Therefore, (1)Ri is given by Eq. (A5) with the substitutions
δλ → δλi and F̂ → F̂i . In the case of multiple constraints,
Eq. (A5) is therefore replaced by

(1) �R =
N∑

i=1

δλiM
−1 �Fi. (A11)

Furthermore, using the generalization of Eq. (A7) to multiple
constraints,

δfi ≡ 〈{λ + δλ}|F̂i |{λ + δλ}〉 − 〈{λ}|F̂i |{λ}〉
= 1

2
�F †
i · (1) �R,

and taking into account Eq. (A11), we finally obtain

δλ = T −1δf, (A12)

where the N × N matrix T is defined by

Tlm ≡ 1
2

�F †
l · (M−1 �Fm). (A13)

Note that this matrix introduces correlations between all the
constraints. We assume in our discussion that the inverse
matrix T −1 exists, i.e., that the constraints are independent.
Equations (A11) and (A12) then replace Eqs. (A5) and (A8)
in the adjustment method described above.

APPENDIX B: TRANSLATION IN A FINITE HARMONIC
OSCILLATOR BASIS

In this section, we give the explicit form for the expansion
of a translated harmonic-oscillator function in a harmonic-
oscillator basis. We begin with the generating function for the
Cartesian harmonic-oscillator function [Eq. (A1) in Ref. [35]].

e−t2+2tx/b−x2/(2b2) =
√

b
√

π

∞∑
k=0

2k/2

√
k!

t k�k (x; b). (B1)

Letting x → x + �x on both sides of Eq. (B1) after some
simplification, the left-hand side (LHS) can be written as

LHS =
√

b
√

πe−�x(x+�x/2)/b2

×
∞∑

m=0

∞∑
n=0

2m+n/2 (�x/b)m

m!
√

n!
�n (x; b) tm+n,

where we have used Eq. (B1) to express the LHS in terms
of harmonic-oscillator functions. Equating like powers of the

arbitrary variable t between the LHS and right-hand side
(RHS), we obtain

�k (x + �x; b) = e−�x(x+�x/2)/b2

×
k∑

m=0

2m/2
√

k! (�x/b)m

m!
√

(k − m)!
�k−m (x; b ).

(B2)

This is still a finite sum over harmonic-oscillator functions;
however, an overall exponential factor depending on x remains
and must be eliminated in order to obtain the expansion
of �k (x + �x; b) on the harmonic-oscillator basis. Thus, in
general, we need to derive an expansion for the expression

e2αx/b2
�i (x; b) , (B3)

where α = −�x/2 and i = k − m in our case. Starting from
the generating function in Eq. (B1), and multiplying both sides
by the exponential factor in Eq. (B3), the LHS of Eq. (B1)
becomes after some simplification

LHS =
√

b
√

πeα2/b2
∞∑
l=0

2l/2

√
l!

e2αt/b
(
t + α

b

)l

�l (x; b )

Expanding in powers of the arbitrary variable t , this takes the
form

LHS =
√

b
√

πeα2/b2
∞∑
l=0

∞∑
p=0

l∑
q=0

×
(

l

q

)
2p+l/2

p!
√

l!

(α

b

)l+p−q

�l (x; b) tp+q .

Therefore, equating like powers of t between LHS and RHS,
we obtain

e2αx/b2
�k (x; b) = eα2/b2

∞∑
l=0

l∑
q=0

(
l

q

)
2(k+l)/2−q

√
k!

(k − q)!
√

l!

×
(α

b

)l+k−2q

�l (x; b ).

Using this result in Eq. (B2), we obtain

�k (x + �x; b) = e−�x2/(4b2)
∞∑
l=0

Cl

(
−�x

2b

)
�l (x; b) ,

(B4)

where

Cl (ξ ) = 2(k+l)/2

√
k!

l!
ξ (k+l)/2

×
k∑

m=0

l∑
q=0

(−1)m 2m−q

m! (k − m − q)!

(
l

q

)
ξ−2q .

Note that the expansion of the translated harmonic-oscillator
function requires in principle an infinite number of terms. In
practice, these translations are performed in a finite-sized basis,
and the truncation of the sum in Eq. (B4) to those shells within
the basis can lead to the appearance of tails for translated
nuclear densities expanded in a finite harmonic-oscillator
basis, as shown in Figs. 1 and 2.
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