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We study nucleon momentum distributions of even-even isotopes of Ni, Kr, and Sn in the framework of
deformed self-consistent mean-field Skyrme HF + BCS method, as well as of theoretical correlation methods
based on light-front dynamics and local density approximation. The isotopic sensitivities of the calculated neutron
and proton momentum distributions are investigated together with the effects of pairing and nucleon-nucleon
correlations. The role of deformation on the momentum distributions in even-even Kr isotopes is discussed. For
comparison, the results for the momentum distribution in nuclear matter are also presented.
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I. INTRODUCTION

The study of nuclei close to the nuclear drip line and even
beyond it has been greatly extended in recent years. This
increased interest is based on new phenomena that already
have been observed or that are predicted to occur in these
nuclei. Since the first experiments [1–6], it has been found
from analyses of total interaction cross sections that weakly
bound neutron-rich nuclei, e.g., 6,8He, 11Li, 14Be, 17,19B, have
increased sizes that deviate substantially from the R � A1/3

rule. It was realized (e.g., Refs. [7–9]) that such a new
phenomenon is due to the weak binding of the last few nucleons
that form a diffuse nuclear cloud (the “nuclear halo”) due to
quantum-mechanical penetration. Another effect is that the
nucleons can form a “neutron skin” [3] when the neutrons are
on average less bound than the protons. The origin of the skin
lies in the large difference of the Fermi energy levels of protons
and neutrons so that the neutron wave function extends beyond
the effectively more bound proton wave functions [9].

The experiments on scattering of radioactive nuclear
beams on proton target at various incident energies (e.g.,
less than 100 MeV/nucleon for He isotopes [10–19] and
700 MeV/nucleon for He and Li isotopes [20–24]) have
allowed one to study the charge and matter distributions of
these nuclei using different phenomenological and theoretical
methods (e.g., Refs. [18–38]).

As known, the most accurate determination of the charge
distributions in nuclei can be obtained from electron-nucleus
scattering. For the case of the unstable exotic nuclei the
corresponding charge distributions are planned to be studied
by colliding electrons with these nuclei in storage rings (see,
e.g., the GSI physics program [39] and the plan of RIKEN
[40,41]). A number of interesting issues can be analyzed by
the electron experiments. One of them is to study how the
charge distribution evolves with increasing neutron number at
fixed proton number or to what extent the neutron halo or skin
may trigger sizable changes of the charge root-mean-squared
(rms) radius and the diffuseness in the peripheral region
of the charge distribution. In Ref. [42] we studied charge

form factors of light exotic nuclei (6,8He, 11Li, 14Be, 17,19B)
using various theoretical predictions of their charge densities.
Among the latter we used those from Tanihata et al. [6] for
the He isotopes, those from the cluster-orbital shell-model
approximation (COSMA) for the He [28] and Li [18] isotopes,
those from the microscopic large-scale shell-model (LSSM)
method (for He [43] and Li [44]), and those from Suzuki et al.
[45] for 14Be and 17,19B nuclei. In Ref. [46] our calculations
of the charge form factors of exotic nuclei were extended
from light (He, Li) to medium and heavy nuclei (Ni, Kr,
and Sn). For the He and Li isotopes the proton and neutron
densities obtained in the LSSM method have been used, while
for Ni, Kr, and Sn isotopes the densities have been obtained in
the deformed self-consistent mean-field Skyrme-Hartree-Fock
(HF) + BCS method [47–49]. In contrast to the work in
Ref. [42], in Ref. [46] we calculated the charge form factors
not only within the PWBA but also in DWBA by the numerical
solution of the Dirac equation [50–52] for electron scattering
in the Coulomb potential of the charge density of a given
nucleus. The role of the neutrons has been taken into account.
A detailed study of the charge radii and neutron skin in Ni, Kr,
and Sn nuclei, as well as of the formation of the proton skin,
has been performed within the same method in Ref. [53].

Another important characteristic of the nuclear ground
state is the nucleon momentum distribution (NMD) n(k). The
scaling analyses of inclusive electron scattering from a large
variety of nuclei (see, e.g., Refs. [54,55] for the y scaling
and [56–63] for ψ ′ scaling and superscaling) showed the
evidence for the existence of high-momentum components of
NMD at momenta k > 2 fm−1. It has been shown [60–63] that
it is due to the presence of nucleon-nucleon (NN ) correlations
in nuclei (for a review, see, e.g., Ref. [64]). It has been pointed
out that this specific feature of n(k)/A is similar for all nuclei
and that it is a physical reason for the scaling and superscaling
phenomena in nuclei. As known [64,65], the mean-field
approximation (MFA) is unable to describe simultaneously the
two important characteristics of the nuclear ground state: the
density and momentum distribution. Therefore, a consistent
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analysis of the effects of the NN correlations on both quantities
is required using theoretical methods beyond the MFA in the
description of relevant phenomena, e.g., the scaling ones.
Particular attention has been paid to the NMD in a given
single-particle state analyzing the (e, e′p) reactions in nuclei
(see, e.g., the review in Ref. [66] and the work in Refs. [67–71]
and references therein). The self-consistent density-dependent
HF (DDHF) approximation has been applied in Ref. [48]
to calculate NMD in spherical and deformed Nd isotopes,
studying the effects of deformation, as well as those of pairing
and of dynamical short-range NN correlations.

It is of importance to study the NMD not only in stable
but also in exotic nuclei. It is known (see, e.g., Ref. [72]) that
in the reactions with exotic nuclei the momentum distribution
of a core fragment of the projectile reflects the momentum
distribution of the valence nucleons in the projectile near
the surface [73]. Many experimental (e.g., Ref. [74]) and
theoretical [75] works have been carried out to study the
momentum distribution from the breakup of the projectile. For
instance, in Ref. [76] the momentum distribution of relative
motion between two nucleons has been calculated for both
6He and 6Li two-neutron halo nuclei. The obtained results
in the case of realistic NN interaction show two interesting
predictions: (i) S-wave dominance in the NMD of 6He and
(ii) the 6Li momentum distribution is very similar to that of
the deuteron. In Ref. [77] the neutron and proton momentum
distributions in some stable nuclei (12C, 16O, 40Ca, 56Fe, and
208Pb) were calculated along with those of light neutron-
rich isotopes of Li, Be, B, and C using the natural-orbital
representation (NOR) on the basis of the empirical data for
n(k) in 4He and, especially, those for the high-momentum
components of the latter.

The main aim of our work here is to calculate the NMD for
the same isotopic chains of neutron-rich nuclei (Ni, Kr, and Sn)
for which we had studied charge densities, radii, form factors,
halo, and skin in our previous works, Refs. [46] and [53]. The
mean-field contributions to n(k) in these nuclei are calculated
within the same self-consistent approach applied there in
which the one-body energy density functional is obtained
starting from a two-body density-dependent Skyrme interac-
tion and a pairing interaction that is treated in the BCS limit.
The HF equations are solved for the (N,Z) nucleus using a
deformed harmonic-oscillator basis in cylindrical coordinates
with oscillator lengths used as variational parameters. The BCS
equations are solved at each HF iteration and the occupation
numbers are used to construct the density-dependent mean
field for the next HF iteration. We refer to this mean-field
approach as DDHF + BCS. The remaining effects of the
NN interactions, to which we refer as NN correlations, are
considered in two of the correlations approaches, namely in the
approach (see Refs. [61,63,78]) using the light-front dynamics
(LFD) method (e.g., Ref. [79]) and in that [80] based on
the local density approximation (LDA). Several questions are
investigated, such as the sensitivity of n(k) to all details of
the calculations, e.g., (i) to different types of Skyrme forces,
(ii) to the pairing correlation effects, (iii) to the effects of
nuclear deformation, and (iv) to the strength of the NN corre-
lations included in the LFD and LDA approaches (respectively,
to the values of the correlations strength parameters β and γ ).

Special attention is paid to the isotopic and isotonic sensitivity
of the proton and neutron momentum distributions. The results
for n(k) in the exotic nuclei are compared with that in nuclear
matter (NM).

The article is organized in the following way. Section II
contains the formalism of the deformed Skyrme HF + BCS
method and the approaches based on the LFD and LDA
methods that provide the model nucleon momentum distribu-
tions. The numerical results and discussions are presented in
Sec. III. Finally, we draw the main conclusions of this study
in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Deformed Skyrme HF + BCS formalism

Some of the results discussed in the next section have
been obtained from self-consistent deformed Hartree-Fock
calculations with density-dependent Skyrme interaction [49]
and pairing correlations. Pairing between like nucleons has
been included by solving the BCS equations at each iteration
either with a fixed pairing-gap parameter (determined from
the odd-even experimental mass differences) or with a fixed
pairing-strength parameter. We consider in this article the
Skyrme force SLy4 [81] that gives an appropriate description
of bulk properties of spherical and deformed nuclei.

Assuming time reversal invariance, the single-particle
Hartree-Fock solutions for axially symmetric deformed nuclei
are characterized by the eigenvalue �i of the third component
of the total angular momentum on the symmetry axis and by
the parity πi . The state i can be written as

�i (�r, σ, q) = χqi
(q)[�+

i (r⊥, z)ei	−ϕχ+(σ )

+�−
i (r⊥, z)ei	+ϕχ−(σ )], (1)

where χqi
(q), χ±(σ ) are isospin and spin functions, 	± =

�i ± 1/2 � 0, and r⊥, z, and ϕ are the cylindrical coordinates
of �r .

The wave functions �i are expanded into the eigenfunctions
φα of an axially symmetric deformed harmonic-oscillator
potential in cylindrical coordinates. We use 12 major shells
in this expansion,

�i (�r, σ, q) = χqi
(q)

∑
α

Ci
αφα (�r, σ ) , (2)

with α = {n⊥, nz,	,
} and

φα (�r, σ ) = ψ	
n⊥ (r⊥)ψnz

(z)
ei	ϕ

√
2π

χ



(σ ), (3)

in terms of Hermite and Laguerre polynomials

ψnz
(z) =

√
1√

π2nznz!
β1/2

z e−ξ 2/2 Hnz
(ξ ), (4)

ψ	
n⊥ (r⊥) =

√
n⊥

(n⊥ + 	)!
β⊥

√
2 η	/2 e−η/2 L	

n⊥ (η) (5)

with

βz = (mωz/h̄)1/2, β⊥ = (mω⊥/h̄)1/2,
(6)

ξ = zβz, η = r2
⊥β2

⊥.
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From the expansion (2) we may conveniently express the
single-particle Hartree-Fock wave functions in momentum
space, which we denote as �̃i(�k, σ, q). They are given by [48]

�̃i(�k, σ, q) = χqi
(q)

∑
α

Ci
αφ̃α(�k, σ ) (7)

with

φ̃α(�k, σ ) = 1

(2π )3/2

∫
d�re−i�k�rφα(�r, σ ) (8)

normalized to 1.
The spin-independent proton, neutron, and total densities

are given by

ρ(�r) = ρ(r⊥, z) =
∑

i

2v2
i ρi(r⊥, z), (9)

in terms of the occupation probabilities v2
i resulting from the

BCS equations and the single-particle densities ρi

ρi(�r) = ρi(r⊥, z) = |�+
i (r⊥, z)|2 + |�−

i (r⊥, z)|2, (10)

with

�±
i (r⊥, z) = 1√

2π

∑
α

δ
,±1/2 δ	,	∓ Ci
α ψ	

n⊥ (r⊥) ψnz
(z).

(11)

Similarly, we define in momentum space the proton, neutron,
and total momentum distributions by

n(�k) = n(k⊥, kz) =
∑

i

2v2
i ni(k⊥, kz), (12)

where k⊥, kz are the cylindrical coordinates of �k. The single-
particle momentum distributions ni(�k) are given by

ni(�k) = ni(k⊥, kz) = |�̃+
i (k⊥, kz)|2 + |�̃−

i (k⊥, kz)|2, (13)

where

�̃±
i (k⊥, kz) = 1√

2π

∑
α

δ
,±1/2δ	,	∓

×Ci
α(−i)Nψ	

n⊥ (kη)ψnz
(kξ ), (14)

kξ = kz/βz, kη = k2
⊥/β2

⊥ = k2
x + k2

y

β2
⊥

, (15)

and N = 	 + nz + 2n⊥ is the major shell quantum number of
the basis state α.

The multipole decomposition of the momentum distribution
can be written as

n(�k) =
∑

λ

nλ(k)Pλ(cos θk)

= n0(k) + n2(k) P2(cos θk) + · · · (16)

with multipole components λ

nλ(k) = 2λ + 1

2

∫ +1

−1
Pλ(cos θk)n(k cos θk, k sin θk)d(cos θk).

(17)

B. Methods going beyond the mean-field approximation

It is well known (e.g., Ref. [64]) that the methods within
the MFA (e.g., shell-model, Hartree-Fock, and others) can
describe the nucleon momentum distribution n(k) only for
momentum values k < 1.5 fm−1 and are unable to explain
n(k) for larger k. The high-momentum components of n(k)
(k > 1.5 fm−1) are due to the specific forces between
the nucleons near the nuclear core (rc ≈ 0.4 fm) that are the
reasons for the short-range and tensor NN correlations. The
differences between the values of n(k) for large k obtained
within the correlation methods (e.g., exp(S)-method [82], the
Jastrow correlation method, and others; for a review see,
e.g., Ref. [64]) reach orders of magnitude. In this subsection
we consider the effects of NN correlations included in two
correlation methods on the high-momentum contributions to
the nucleon momentum distribution.

1. Theoretical approach based on the light-front dynamics method

Here we derive the NMD obtained within the LFD approach
developed in Refs. [61,78]. The latter is based on the nucleon
momentum distribution in the deuteron from the light-front
dynamics method (e.g., Ref. [79]). Using the natural-orbital
representation of the one-body density matrix [83], n(k) is
written as a sum of the contributions from the hole-states
[ñh(k)] [states up to the Fermi level (F.L.)] and the particle-
states [ñp(k)] (see also [61]) for protons (Z) and neutrons (N ):

nZ(N)(k) = ñh
Z(N)(k) + ñ

p

Z(N)(k), (18)

where

ñh
Z(N)(k) = C(k)

Z(N )

F.L.∑
nlj

2(2j + 1)λnlj |R̃nlj (k)|2 (19)

and

ñ
p

Z(N)(k) = C(k)

Z(N )

∞∑
F.L.

2(2j + 1)λnlj |R̃nlj (k)|2. (20)

In Eqs. (19) and (20)

C(k) = mN

(2π )3
√

k2 + m2
N

, (21)

with mN being the nucleon mass, λnlj the natural occupation
numbers, and R̃nlj (k) the corresponding wave functions in k

space of protons (neutrons) in states with quantum numbers
nlj . The momentum distribution (18) is normalized to unity:∫

nZ(N)(k)d�k = 1. (22)

As shown in Ref. [78], in the NOR the hole-state contribu-
tion ñh

Z(N)(k) to the momentum distribution can be represented
to a good approximation by the momentum distribution from
the spherical mean-field methods, i.e., λnlj are taken to be
unity and R̃nlj (k) are replaced by the corresponding mean-field
eigenfunctions. In our work we substitute ñh

Z(N)(k) in Eqs. (18)
and (19) by

ñh
Z(N)(k) = C(k)

Z(N )
ñZ(N)(k), (23)
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where ñZ(N)(k) is expressed by the NMD nDDHF
Z(N) (k) obtained

within the DDHF formalism (see Sec. II A)

ñZ(N)(k) = Z(N )nDDHF
Z(N) (k)∫

d�k′C(k′)nDDHF
Z(N) (k′)

(24)

and the normalization is∫
C(k)ñZ(N)(k)d�k = Z(N ). (25)

We note that ñh
Z(N)(k), ñp

Z(N)(k), and ñZ(N)(k) include the
function C(k) that originates from the relativistic LFD
approach.

Concerning the particle-state contribution [ñp

Z(N)(k)] in
Eqs. (18) and (20) we used in Refs. [61,78] the well-known
facts that: (i) the high-momentum components of n(k) caused
by short-range and tensor correlations are almost completely
determined by the contributions of the particle-state natural
orbitals (e.g., Ref. [84]) and (ii) the high-momentum tails
of the momentum distributions per particle are approxi-
mately equal for all nuclei and are a rescaled version of
the nucleon momentum distribution in the deuteron nd (k)
[85,86],

nA(k) � CAnd (k), (26)

where CA is a constant. These facts made it possible to
assume in Refs. [61,78] and later, using the modification
of the approach in Ref. [63], that ñ

p

Z(N)(k) is related to
the high-momentum components of the nucleon momentum
distributions in the deuteron. Thus ñ

p

Z(N)(k) from Eq. (20) can
be substituted by (up to a normalization factor):

ñ
p

Z(N)(k) = β[n2(k) + n5(k)], (27)

where β is a parameter and n2(k) and n5(k) are expressed by
angle-averaged functions [78] as:

n2(k) = C(k)f 2
2 (k) (28)

and

n5(k) = C(k)(1 − z2)f 2
5 (k). (29)

In Ref. (29) z = cos(�̂k, �n), �n is a unit vector along the three-
vector ( �ω) component of the four-vector ω that determines the
position of the light-front surface [79]. The functions f2(k)
and f5(k) are two of the six scalar functions f1−6(k2, �n · �k)
that are the components of the deuteron total wave function
�(�k, �n). It was shown [79] that f5 largely exceeds other f

components for k � 2.0–2.5 fm−1 and is the main contribution
to the high-momentum component of nd (k), incorporating
the main part of the short-range properties of the NN

interaction. It was shown in Ref. [63], however, that not only
n5(k) [originating from f5(k) (29)] but also n2(k) [related to
f2(k) (28)] has to be included partially in the particle-state
contribution ñ

p

Z(N)(k) to the momentum distribution. The latter
leads to a successful explanation of the experimental data
for the quasielastic scaling function f QE(ψ ′) (see Fig. 4 of
Ref. [63]) extracted from inclusive electron scattering off
nuclei.

Finally, the normalized to unity proton (neutron) momen-
tum distribution [Eqs. (18)–(22)] has the form:

nZ(N)(k) = C(k)ñZ(N)(k) + Z(N )β[n2(k) + n5(k)]∫
d�k′{C(k′)ñZ(N)(k′) + Z(N )β[n2(k′) + n5(k′)]}

(30)

[with normalization of ñZ(N)(k) presented by Eq. (25)].
For the value of the parameter β we choose β = 5.0 because

of three reasons. First, our calculations of nZ(N)(k) for various
nuclei using this value lead to results very close to the empirical
data for the nucleon momentum distribution nCW (see Fig. 2
of Ref. [61] and Fig. 3 of Ref. [63]) extracted in Refs. [55,87]
from the y-scaling analyses of inclusive electron scattering
off nuclei. Second, our estimations of the high-momentum
components of nZ(N)(k) [Eq. (30)] showed that the value of
β must be similar to the value of CA [Eq. (26)]. It is shown
(see Table I in Ref. [86]) that the value of CA estimated from
the height of the plateau exhibited by the ratio of the nucleon
momentum distribution of a nucleus to the one of the deuteron
at k > 2.0 fm−1 ranges from 4.0 for 12C to 4.4 for 40Ca, 4.5 for
56Fe, 4.8 for 208Pb, and 4.9 for nuclear matter (A = ∞). Third,
our results for the NMD (e.g., for 12C, 64Ni, and others) in LFD
approach for large values of k (k > 2.0 fm−1) are similar to
those obtained in the local density approximation using the
Jastrow correlation method [80].

2. Theoretical approach based on the local density approximation

It is well known that the inclusion of correlations in nuclear
matter modifies the occupation probability predicted by the
local density Fermi gas model. It was shown in Ref. [80]
that for a finite nucleus the separation between the mean-
field contribution and correlation effects can be performed in
an analogous way. According to Ref. [80] one can introduce
proton (neutron) momentum distribution in a general way:

nZ(N)(k) = nMFA
Z(N)(k) + δnZ(N)(k), (31)

where nMFA
Z(N)(k) is the mean-field contribution that can be

momentum distribution corresponding to a Slater determinant
generated by the single-particle wave functions in the mo-
mentum space or HF momentum distribution, while δnZ(N)(k)
embodies the corrections due to dynamical correlations not
included in the MFA. If one applies the LDA to the second
term of Eq. (31), the nucleon momentum distribution nZ(N)(k)
can be written in the form:

nZ(N)(k) = nMFA
Z(N)(k) + 1

4π3

∫
δν

[
k

Z(N)
F (r), k

]
d�r, (32)

where δν[kZ(N)
F (r), k] corresponds to the occupation probabil-

ity that is entirely due to the effects of dynamical correlations
induced by the NN interaction. The local Fermi momentum
k

Z(N)
F (r) is related to the proton (neutron) density through the

relation

k
Z(N)
F (r) = [3π2ρZ(N)(r)]1/3. (33)

By definition of k
Z(N)
F (r) one has

∫
δν[kZ(N)

F (r), k]d�k = 0.
For convenience, a phenomenological procedure based on
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the results of the lowest-order cluster (LOC) approximation
developed in Ref. [88] has been followed to evaluate explicitly
the correlated term. Choosing a correlation function of the
form

f (r) = 1 − e−γ 2r2
, (34)

the LOC gives for δν[kZ(N)
F , k] [80]

δν
[
k

Z(N)
F (r), k

] = [Y (k, 8) − kdir] �
[
k

Z(N)
F (r) − k

]
+ 8{kdirY (k, 2) − [Y (k, 4)]2}, (35)

where

c−1
µ Y (k, µ) = e−k̃2

+ − e−k̃2
−

2k̃
+

∫ k̃+

0
e−y2

dy (36)

+ sgn(k̃−)
∫ |k̃−|

0
e−y2

dy

with

cµ = 1

8
√

π

(µ

2

)3/2
, k̃ = k

γ
√

µ
, (37)

k̃± = kF ± k

γ
√

µ
, sgn(x) = x

|x| . (38)

The quantity

kdir = 2
[
k

Z(N)
F

]3

3π2

∫
[f (r) − 1]2d�r

= 1

3
√

2π

[
k

Z(N)
F

γ

]3

(39)

is the direct part of the Jastrow wound parameter.
As in the approach based on the LFD method discussed

before, in our work we use for nMFA
Z(N)(k) the momentum

distributions obtained from DDHF calculations nDDHF
Z(N) (k) with

normalization given by:∫
nDDHF

Z(N) (k)d�k = Z(N ). (40)

For the densities ρZ(N)(r) entering Eq. (33) we use the
HF + BCS proton (neutron) densities [53] normalized as:∫

ρDDHF
Z(N) (r)d�r = Z(N ). (41)

For the correlation factor in Eq. (34) we adopt the same
value γ = 1.1 fm−1 as in Ref. [80] which is taken from the
microscopic nuclear matter calculations [89] but seems to
agree also with the data on momentum distributions n(k) in
finite nuclei.

III. RESULTS OF CALCULATIONS AND DISCUSSION

We start by showing the results of our calculations for the
monopole components of n(�k) and ρ(�r) in the 100,120,136Sn
isotopes. As discussed in Refs. [48,53] these are the only
important components for the HF momentum distributions
(n(�k) ∼= n0(�k) ≡ n(k) [Eq. (16)]). For easier reading, in the
figures we will omit the subscript Z(N ) indices of n(k) for

the proton and neutron momentum distributions replacing
them by p(n), respectively. In Fig. 1(a) are given the total
momentum distributions for 100Sn, 120Sn, and 136Sn plotted in
nonlogarithmic scale. One can observe in the figure an appre-
ciable difference between the curves in the low-momentum
region and, at the same time on this scale, no sensitivity of
n(k) at k > 1 fm−1 when increasing the number of neutrons.
As can be expected, the momentum distributions calculated
within the DDHF approach show a steep decrease up to
k � 2 fm−1 that can be seen in all mean-field calculations.
Here we emphasize that the effects of NN correlations on
the momentum distributions can be seen at higher momenta
(k � 2 fm−1) when we will compare the DDHF results with
those obtained in the approaches that take them into account.
The results for n(k) are related with the total density profiles
of the selected three Sn isotopes shown in Fig. 1(b). For a
comparison, in the same figure we present the total density
ρ(r) of 100Sn obtained in Ref. [90] within the Hartree-Fock-
Bogoliubov model using the SLy4 parametrization of the
Skyrme force. We note, following the discussion concerning
Fig. 5 in Ref. [53], that the effect of adding more and more
neutrons leads to an extension of the total density ρ(r) as one
goes from 100Sn to 136Sn and to an emergence of a region at
the nuclear surface quantified as a “neutron skin.” The latter
is due to the larger spatial extension of the neutron density
relatively to the proton one. The same consistent trends of
the matter densities when increasing the mass number A were
found in Ref. [90]. One can see from Fig. 1(b) that the densities
of 100Sn obtained in our previous work [53] and in Ref. [90]
are very similar. Second, the same choice of two extreme
neutron-deficient and neutron-rich isotopes and one stable
isotope between them in the Sn chain [53] makes the difference
in the results for n(k) at low k more pronounced with respect
to those for ρ(r) at large r .

The effect of pairing correlations on the momentum
distribution can be seen in Fig. 2. We restrict the discussion
to the stable 84Kr isotope that is weakly deformed. In this
case the pairing correlations have been included by solving
the BCS equations in the constant pairing gap mode. Figure 2
shows that the effect of pairing correlations is small. At high
k this effect plays some role resulting in more pronounced
tails when BCS correlations are included in the calculations.
Nevertheless, as we will illustrate and discuss later, the effects
of pairing correlations on the HF momentum distribution of
nuclear matter and of finite nuclei are very different being
much larger in the case of NM. Because there is no big
difference among the results for np(k), nn(k), and n(k) with
or without BCS correlations included, afterwards we will
use in our consideration only the results from the complete
DDHF + BCS calculations.

Our next step is to present and discuss the results for the
NMD’s of exotic nuclei obtained also in correlation methods.
A comparison of these results for the neutron and proton
momentum distributions of 64Ni, 84Kr, and 120Sn nuclei is
given in Fig. 3 together with the HF momentum distributions.
As can be seen, for all nuclei the inclusion of NN correlations
strongly affects the high-momentum region of NMD. At k >

1.5 fm−1 both LFD and LDA momentum distributions start
to deviate from the DDHF + BCS case. They behave rather
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FIG. 1. (a) Total momentum distribution for 100Sn, 120Sn, and 136Sn isotopes resulting from DDHF calculations. The normalization is∫
n(k)d�k = 1; (b) total density distributions for the same Sn isotopes. The normalization is

∫
ρ(r)d�r = A.

similarly in the interval 1.5 < k < 3 fm−1. At k > 3 fm−1

the LFD method predicts systematically higher momentum
components compared to LDA momentum distributions. This
observation can be explained by the different extent to which
NN correlations are taken into account in both approaches.
Our results for the NMD’s in the LFD method for large values
of k (k > 2 fm−1) are similar to those obtained within the
Jastrow correlation method and, thus, the high-momentum
tails of n(k) are caused by the short-range NN correlations.
The LDA approach through the nuclear matter dynamic effects
and using the local Fermi momentum k

Z(N)
F (r) calculated self-

consistently by means of the HF density [Eq. (33)] produces
less pronounced high-momentum tail, yet even so the results

are very close to those obtained in the LFD method. As was
already shown, at k > 1.5 fm−1 the DDHF + HF momentum
distributions fall off rapidly by several orders of magnitude
in contrast to the correlated NMD’s. In addition, we observe
that (i) the results shown above are similar for all nuclei in
a given isotopic chain and going from Ni to Sn isotopes,
as well; (ii) the behavior of n(k) is similar for protons and
neutrons; (iii) at high k the proton and neutron NMD’s obtained
within the LFD method cannot be distinguished from each
other because the high-momentum tails in this approach are
determined by the high-momentum component of the nucleons
in the deuteron [78]; (iv) concerning the NMD’s calculated in
the LDA approach, some difference between n(k) for protons

FIG. 2. DDHF results for the total (a), neutron (b), and proton (c) momentum distributions with (dashed line) and without (solid line)
pairing for 84Kr. The normalization is

∫
nn(p)(k)d�k = ∫

n(k)d�k = 1.
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FIG. 3. (Color online) Neutron (solid line) and proton (dashed line) momentum distributions obtained within the DDHF + BCS (black),
LFD (blue), and LDA (red) methods for 64Ni (a), 84Kr (b), and 120Sn (c) nuclei. The normalization is

∫
nn(p)(k)d�k = 1.

and neutrons can be observed due to Z(N ) dependence of the
local Fermi momentum kF .

In Figs. 4–7 we show the neutron nn(k) (Figs. 4 and 6) and
proton np(k) (Figs. 5 and 7) momentum distributions of some
selected isotopes in the Ni and Sn chains, the same that have
been considered in Ref. [53] to calculate important nuclear
properties in coordinate space. The results are presented in both
logarithmic and linear scales to study the isotopic sensitivity of
these momentum distributions in the high-momentum region
and in the region of small momenta, respectively. In addition,
in each of the figures the results for neutron and proton
momentum distributions in the DDHF + BCS method and in
the correlation LFD and LDA approaches at k < 2 fm−1 are
given separately in panels (b) and (c). First, it is seen from
the figures that the general trend in the behavior of NMD’s
obtained within the methods used in the calculations and

already shown in Fig. 3 is preserved. Second, the evolution
of the NMD’s as we increase the number of neutrons consists
of an increase of the high-momentum tails (for k > 1.5 fm−1)
of nn(k), while the effect on np(k) is opposite. However,
the spreading of the tails corresponding to np(k) of the
considered isotopes is of the same order although the number
of protons remains the same. In this respect, the results
presented in Figs. 5 and 7 are challenging because they
show how proton momentum distributions “feel” the different
number of neutrons in exotic nuclei. We also emphasize that
the LFD method does not show this isotopic sensitivity, in
contrast to the HF and LDA methods that still demonstrate this
trend. Concerning the low-momentum region it can be seen
from Figs. 4–7 that NMD’s are very sensitive to the details
of the calculations. In this region nn(k) decreases while, on
the contrary, np(k) increases with the increase of the number

FIG. 4. (Color online) (a) Neutron momentum distributions obtained within the DDHF + BCS, LFD, and LDA methods for 50Ni (solid
line), 64Ni (dashed line), and 78Ni (dotted line) isotopes. The normalization is

∫
nn(k)d�k = 1. The DDHF + BCS results, as well as the LFD

and LDA results, are separately shown in a linear scale in (b) and (c), respectively.
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FIG. 5. (Color online) The same as in Fig. 4 but for the proton momentum distributions.

of neutrons N . This is a common feature of the calculated
results obtained in all methods. Nevertheless, in this region the
spreading is considerably reduced. From the comparison of the
proton and neutron momentum distributions at low momenta it
comes out that the protons exhibit the same trend [Figs. 5(b),
5(c), 7(b), and 7(c)], while the neutrons are more sensitive
to nuclear shell effects (see panels (b) and (c) of Figs. 4
and 6).

The isotonic sensitivity of the neutron, proton, and total
momentum distributions of 78Ni, 86Kr, and 100Sn nuclei (N =

50) is shown in Fig. 8. It can be seen from the figure a small
difference between the different curves when using a given
approach (DDHF + BCS or LDA). The neutron momentum
distributions nn(k) do not differ so much in comparison
to the proton momentum distributions np(k). The relative
contributions of nn(k) and np(k) to the total momentum
distribution n(k) lead to almost equal high-momentum tails
of n(k) for these isotones. This is in accordance with the
well-known results showing that the tails of n(k)/A are almost
equal for all nuclei (for a review, see, e.g., Ref. [64]).

FIG. 6. (Color online) The same as in Fig. 4 but for the 100Sn (solid line), 120Sn (dashed line), and 136Sn (dotted line) isotopes.
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FIG. 7. (Color online) The same as in Fig. 6 but for the proton momentum distributions.

The role of the deformation of the mean field on the NMD
is studied on the example of 98Kr isotope. For this purpose, we
show in Fig. 9 the intrinsic momentum distribution for neutrons
and protons and for oblate and prolate shapes of 98Kr. The
results of the three methods considered in our work are given
and compared together with the result for the spherical case
obtained within the HF method. The differences between the
momentum distributions calculated within a given theoretical
method are negligible (especially at high k) and practically
cannot be distinguished. Thus, we find almost no dependence
of the nn(k) and np(k) on the character of deformation.

The effects of the correlations included in the LFD and
LDA methods on the neutron momentum distribution of 120Sn

are presented in Fig. 10(a). The parameters that govern the
correlations in the two approaches are β and γ , respectively.
The results of the calculations for three values of each of them
are shown by thick lines in the case of LDA and by thin lines
in the case of LFD method. The value β = 5 is the upper limit
of this parameter [86] and, therefore, we give in Fig. 10(a)
also the results for nn(k) for two smaller values β = 4.4 and
β = 4.7. It turns out that nn(k) does not change significantly
for different values of β, thus showing the strong presence of
correlations at short distances within the LFD method not only
for the stable but also for the exotic nuclei. However, a larger
sensitivity of nn(k) on the parameter γ in the LDA approach
appears, particularly in the interval 1.5 < k < 3 fm−1. The

(a) (b) (c)

FIG. 8. (Color online) Neutron (a), proton (b), and total (c) momentum distributions obtained within the DDHF + BCS, LFD, and LDA
methods for 78Ni (solid line), 86Kr (dashed line), and 100Sn (dotted line) isotones. The normalization is

∫
nn(p)(k)d�k = ∫

n(k)d�k = 1.
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FIG. 9. (Color online) Neutron (a) and proton (b) momentum distributions obtained within the DDHF + BCS, LFD, and LDA methods
corresponding to oblate (dashed line) and prolate (solid line) shape of 98Kr. For comparison, the spherical case (dotted line) within the
DDHF + BCS method is also given. The normalization is

∫
nn(p)(k)d�k = 1.

value γ = 1.1 fm−1 (from Ref. [80]) and two more values
γ = 0.9 fm−1 and γ = 1.3 fm−1 are used in the calculations.
As expected, the obtained neutron momentum distributions
contain smaller correlation effects at larger values of γ .
This is in accordance with the behavior of the correlation
function f (r) [see Eq. (34)]. At k > 3 fm−1 the LDA results
start to deviate in an opposite way, but in this very high-
momentum region no definite conclusion about the role of
correlations can be drawn.

In our work we study also the sensitivity of our results
for NMD to different effective NN forces. In Fig. 10(b) we

show the neutron momentum distributions of 120Sn obtained
by using SLy4 Skyrme force together with the results obtained
from other parametrizations, namely Sk3 [91] and SG2
[92]. For stable spherical nuclei it is known that all the
Skyrme-type effective interactions give similar results for the
total momentum distribution [93]. We would like to resolve
possible ambiguities concerning exotic nuclei by comparing
the momentum distributions for neutrons on the example of
the stable 120Sn isotope. In fact, some sensitivity to different
Skyrme forces can be observed in the inset of Fig. 10(b) for
momenta k < 0.5 fm−1. This is due to shell effects that are

FIG. 10. (a) Neutron momentum distributions obtained within the LFD (for different values of the parameter β) and LDA (for different
values of the parameter γ ) methods for 120Sn; (b) neutron momentum distributions obtained within the DDHF + BCS method for 120Sn and for
different Skyrme forces. The normalization is

∫
nn(k)d�k = 1.
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FIG. 11. Comparison of DDHF results for the momentum distri-
butions of nuclear matter with (dashed line) and without (solid line)
pairing correlations with the results from LFD (dotted line) and LDA
(dash-dotted line) methods.

found also in the density profiles of the nucleus. Generally,
as it has been pointed out in Ref. [53], the predictions for
the charge and matter rms radii do not differ too much when
different Skyrme forces are used. In analogy, different Skyrme
interactions also produce similar results for the NMD.

Finally, in Fig. 11 a comparison of the results for the
total momentum distribution n(k) of nuclear matter calculated
within the MFA and correlation methods used in our work is
shown. The HF momentum distribution is strongly affected by
pairing correlations that build up a long tail at high momentum
(k > kF ). Comparing this result with the result illustrated in
Fig. 2 for 84Kr, the different role played by pairing correlations
on the DDHF momentum distribution of NM and of finite
nuclei becomes clear. Moreover, it is interesting to explore
the case when one includes other type of correlations in NM.
Stringari et al. [80] have already shown in their model based on
the LDA the prediction for n(k) in the case of nuclear matter.
An enhancement of the high-momentum components of n(k)
can be seen from Fig. 11 when both LDA and LFD methods
are used. Hence, in nuclear matter the effects of short-range
and tensor correlations are much stronger than the BCS corre-
lations taken into account in the DDHF + BCS calculations.

IV. CONCLUSIONS

In this work we investigated the properties of the mo-
mentum distributions of medium and heavy exotic nuclei,
especially of Ni, Kr, and Sn even-even isotopes. The theoretical
study was performed on the base of the mean-field method,
as well as of two correlation methods taking into account the
NN correlations at short distances. The neutron, proton, and
total momentum distributions of these nuclei were calculated
within (i) a deformed DDHF + BCS method with Skyrme-
type effective interactions [47,48], (ii) a theoretical approach

[61,63,78] based on the light-front dynamics method [79],
and (iii) a theoretical model based on the local density
approximation [80]. In the DDHF + BCS calculations we
consider the monopole component of n(�k) (n(�k) ∼= n0(�k))
because this is the only important component in the expansion
of the HF ground-state momentum distribution [Eq. (16)].
However, the two correlation approaches allow one to include
both the mean-field and short-range effects for the description
of the nucleon momentum distribution.

The study of the isotopic sensitivity of various kinds of
momentum distributions shows different trends. For a given
isotopic chain, we find that in the high-momentum region (k >

1.5 fm−1) the high-momentum tails of the neutron momentum
distributions nn(k) increase with the increase of the number
of neutrons N , whereas the proton momentum distributions
np(k) exhibit an opposite effect. In the same region the LFD
method does not show this isotopic sensitivity, in contrast to
the DDHF + BCS and LDA methods. At low momenta nn(k)
decreases while, on the contrary, np(k) increases with the in-
crease of N . Additionally to the isotopic sensitivity we studied
how the momentum distributions of some isotones are modi-
fied keeping the neutron number constant. We find that the total
momentum distributions of 78Ni, 86Kr, and 100Sn nuclei (N =
50) reveal the same high-momentum tails in all methods used.

The role of the deformation on the momentum distributions
is discussed in the present work on the example of 98Kr isotope.
As it has been found in Refs. [48,94], the isotropy of the
total momentum distribution is a property of the nucleus at
equilibrium. Our results for the neutron and proton momentum
distributions of this nucleus show small changes in the overall
behavior for the oblate and prolate shapes. Although the
neutron and proton densities change with deformation [53],
the momentum distributions demonstrate a very weak depen-
dence on the character of deformation. This is valid for all
three theoretical approaches explored in our work.

The pairing correlations are shown to influence the high-
momentum behavior of the neutron nn(k), proton np(k), and
total n(k) momentum distributions in the case of 84Kr, but
the differences between the results with or without BCS
correlations included in the calculations are very small. The
latter are even smaller considering nuclei from the Ni and
Sn isotopic chains that have a spherical shape. The effect
of pairing correlations on the HF momentum distribution is
much stronger in the case of nuclear matter producing a tail
for momenta k > kF .

The effects of the dynamical correlations on the momentum
distributions have been calculated using approaches that
account for correlations at short distances. In the correlation
approach based on LFD, the incorporation of the LFD result
for the nucleon momentum distribution in the deuteron makes
it possible to study NMD’s also for exotic nuclei, especially
at high momenta (k � 2 fm−1). It is known [85,86] that the
latter are rescaled versions of n(k) in the deuteron. This
is the main reason for the fact that the LFD calculations
do not show isotopic sensitivity on the obtained NMD’s.
Concerning the NMD’s calculated in the LDA approach in
which a Jastrow-type correlation function is adopted, some
difference between n(k) for protons and neutrons is observed
due to Z(N ) dependence of the local Fermi momentum kF . In
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general, a strong enhancement of the momentum distributions
at large k is observed in comparison to the MFA result and,
at the same time, both LFD and LDA results are similar in
the high-momentum region. In our work we pay a particular
attention to the dependence of the results for the momentum
distributions on the correlation parameters β and γ . In the
LFD calculations we used the value of the parameter β = 5.0.
It turned out that this value leads to a good agreement with the
empirical data for n(k) extracted from the y-scaling analyses
of inclusive electron scattering off nuclei [55,87]. The LDA
calculations have been carried out for γ = 1.1 fm−1, the same
value being adopted in nuclear matter and also providing a
good choice for finite nuclei. In addition, we note that our
prediction for n(k) in NM obtained within the LFD method is in
agreement with the LDA result [80]. In our opinion, however,
the question for the specific values of the parameters β and γ

that determine the strength of the correlations is still open.
We emphasize that, in our work, a possible practical way

to make predictions for the momentum distributions of exotic
nuclei far from the stability line is proposed that provides a

systematic description of n(k) in medium-weight and heavy
nuclei. The comparison of the predicted nucleon momentum
distributions with the results of possible experiments using a
colliding electron-exotic nuclei storage rings would show the
effect of the neutron excess in these nuclei and will be also
a test of various theoretical models of the structure of exotic
nuclei.
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