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Coordinate space proton-deuteron scattering calculations including Coulomb force effects
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We present a practical method to solve the proton-deuteron scattering problem at energies above the three-body
breakup threshold, in which we treat three-body integral equations in coordinate space accommodating long-range
proton-proton Coulomb interactions. The method is examined for phase shift parameters and then applied to
calculations of differential cross sections in elastic and breakup reactions, analyzing powers, etc., with a realistic
nucleon-nucleon force and three-nucleon forces. The effects of the Coulomb force and the three-nucleon forces
on these observables are discussed in comparison with experimental data.
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I. INTRODUCTION

Scattering observables of three-nucleon (3N ) systems,
proton-deuteron (pd) scattering and neutron-deuteron (nd)
scattering, are good sources of information about unknown
aspects of the nuclear forces such as off-shell differences in
nucleon-nucleon force (2NF) models and possible evidence
of 3N forces (3NFs). Because of the technical advantage of
treating charged particles as beam, target, or detected particles
over using neutral ones, the available data sets of the pd

reaction are richer both in quantity and quality than those of
the nd reaction. However, because of a mathematical difficulty
in treating three-body systems with long-range Coulomb inter-
actions, a precise calculation of the pd scattering, especially
for energies above the three-body breakup threshold (TBT), is
one of the most challenging subjects in physics of few-body
systems.

In the last decade, some developments have been made
in this problem by calculations based on the Kohn variational
principle [1,2] and on the momentum space Faddeev equations
[3] using the screening and renormalization method [4–7].

In this article, we present another approach to the pd

scattering problem, which is based on integral equations
for wave functions in coordinate space. Calculations by this
approach for non-Coulombnic 3N systems with realistic 2NFs
and 3NFs were performed for 3H in Refs. [8,9] and for the
nd scattering at energies above the TBT in Refs. [10–12]. A
direct application of the Faddeev equation to Coulombnic 3N

systems, namely, the 3He bound state and the pd scattering,
is known to bring a severe singularity to the integral kernel
due to the long-range character of the proton-proton (pp)
Coulomb force. In Ref. [13], Sasakawa and Sawada proposed
a modification of the Faddeev equation to treat the singularity
by introducing auxiliary potentials that act between charged
spectator particles and the center of mass (c.m.) of the rest
pair particles. Because we use an iterative method to solve
the integral equations, in which one needs to operate the
integral kernel on known functions repeatedly, it is essential to
establish an accurate kernel operation for precise calculations.
In the integral kernel of this Coulomb-modified Faddeev
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equation, which will be referred to as the SSF equation, the
singularity due to the pp Coulomb potential is expected to
be canceled by the auxiliary potentials, on the condition that
three particles are bound or that no three-body breakup channel
is open. Solutions of the SSF equation were successfully
obtained for the 3He bound state in Refs. [14–16] and for
the pd scattering at energies below the TBT in Refs. [17,18].
However, the cancellation is not trivially expected when a
three-body breakup channel opens. In this article, we treat this
problem and show how our approach practically is applicable
for pd scattering above the TBT.

The next section is devoted to presenting the notation used
in this article and to introducing the SSF equation for the pd

scattering in integral equation form. In Sec. III, we analyze a
problem in the integral kernel of the SSF equation due to the pp

Coulomb force and propose a method to perform numerical
calculations. Then, some numerical results for pd and nd

scattering using a realistic 2NF and 3NFs are presented in
Sec. IV. A summary is given in Sec. V. Our iterative method
[8,19] is reviewed in Appendix A, and some useful functions
and formulas are given in Appendices B and C.

II. THREE-BODY SCATTERING EQUATION WITH
COULOMB FORCE EFFECTS

In this section, we describe our notation and present the SSF
equation by taking a proton(1)-proton(2)-neutron(3) system as
an example. We do not consider spins’ degrees of freedom,
angular momentum dependence of the potentials, or 3NFs in
describing our formalism because of simplicity. The deuteron
thus is supposed to be an s-wave proton-neutron (pn) bound
state with energy Ed . We use sets of coordinate systems
{xk, yk} (the Jacobi coordinates) to describe the three-body
system defined as

xk = r i − rj , yk = rk − 1
2 (r i + rj ), (1)

where (i, j, k) denote (1, 2, 3) or their cyclic permutations and
r i is the position vector of the particle i (see Fig. 1). Subscripts
to indicate particles are omitted when there is no confusion.

We write a three-body Hamiltonian in the c.m. frame as

H = H0 + V1 + V2 + V3, (2)
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FIG. 1. (Color online) The Jacobi coordinates of the three-body
system.

where H0 is the internal kinetic energy operator of the three-
body system,

H0 = Tx(x) + Ty( y) = −h̄2

m
∇2

x − 3h̄2

4m
∇2

y , (3)

with nucleon mass m, and Vk is a potential to describe the
interaction between particles i and j consisting of a short-range
nucleon-nucleon potential (2NP) V S

k (xk) and the pp Coulomb
potential V C(x3) (=e2/x2

3 ):

Vk = V S
k (xk) + δk,3V

C(x3). (4)

We begin with a differential form of the SSF equation for a
three-body c.m. energy E(> 0) [13],[

E − H0 − V S
1 − uC(y1)

]
�1 = [��]1 , (5a)[

E − H0 − V S
2 − uC(y2)

]
�2 = [��]2 , (5b)[

E − H0 − V S
3 − V C(x3)

]
�3 = [��]3 , (5c)

where �k’s are Faddeev components and uC(yk) is an auxiliary
Coulomb potential acting between the particle k and the c.m.
of the pair ij ,

uC(yk) = e2

yk

(k = 1, 2). (6)

The symbols [��]k in the right-hand side denote

[��]k ≡

⎧⎪⎨
⎪⎩

V S
k (�i + �j ) (k = 1, 2),

V S
3 (�1 + �2) + [V C(x3) − uC(y1)]�1

+ [V C(x3) − uC(y2)]�2 (k = 3).

(7)

The auxiliary potentials play different roles on each side of
Eqs. (5a)–(5c). On the left-hand side of Eqs. (5a) and (5b),
these potentials work to distort the spectator proton from a
free state [see Eq. (14)]. On the right-hand side of Eq. (5c),
that is, in [��]3, the auxiliary potential is expected to cancel
out the long-rangeness of the pp Coulomb potential V C . The
latter point is discussed later in this article. It should be noted
that the auxiliary potentials in Eqs. (5a)–(5c) are eliminated
when all the equations are summed up, which makes the sum
�1 + �2 + �3 an eigenstate of the Hamiltonian (2).

We consider a pd scattering state of the initial pd

momentum p0, which gives the three-body c.m. energy

E = Ep0 + Ed, (8)

where

Ep0 = 3h̄2

4m
p2

0. (9)

The integral form of the SSF equation, whose formal derivation
is given in Ref. [17], is

�k = δ̄k,3�
d (xk)FC( yk; p0, η0) + Gk(E) [��]k , (10)

where δ̄i,j = 1 − δi,j ; �d (x) is the deuteron state;
FC( y, p0, η0) is a scattering state in the Coulomb potential
uC(y), which satisfies

[Ty( y) + uC(y)]FC( y; p0, η0) = Ep0F
C( y; p0, η0), (11)

with the Coulomb parameter η0 = η(p0) given by Eq. (B2);
the operators Gk(E) are channel Green’s functions defined as

Gk(E) ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

E + ıε − H0 − V S
k − uC(yk)

(k = 1, 2),
1

E + ıε − H0 − V S
3 − V C(x3)

(k = 3),

(12)

with the parameter ε being a small positive number to give
outgoing waves.

A partial-wave decomposition is performed by introducing
an angular function denoted as |α(x̂, ŷ)),

|α(x̂, ŷ)) = [YL(x̂) ⊗ Y�( ŷ)]J0
M0

, (13)

where L denotes the relative orbital angular momentum of
the pair particles, � denotes the orbital angular momentum
of the spectator particle, and J0(=L + �) and M0 denote the
total angular momentum of the three particles and its third
component, respectively. The set of the quantum numbers
(L, �, J0,M0) is represented by the index α.

We define complete orthogonal sets of functions describing
the angular parts of the three-body system with a state index
α and the radial part of the spectator particle with momentum
p and angular momentum �,

|Fk,α) ≡ |α[(x̂k, ŷk)])

×

⎧⎪⎪⎨
⎪⎪⎩

√
2

π

F�[η(p), pyk]

yk

(k = 1, 2),√
2

π
pj�(pyk) (k = 3),

(14)

where F�(η, r) is the regular Coulomb function of Eq. (B1)
[20,21], η(p) is the Coulomb parameter of Eq. (B2), and
j�(r) is the spherical Bessel function. The underline implies
a dependence on the momentum p. These functions satisfy a
complete relation, ∫

α

|Fk,α)(Fk,α| = 1, (15)

and an orthogonal relation,

(Fk,α|Fk,α′) = δα,α′δ(p − p′) = δα,α′ , (16)

where
∫
α

means
∑

α

∫∞
0 dp, and (|) integrations over the

variables x̂ and y.
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The channel Green’s function is decomposed by the
complete set to give

Gk(E) =
∫

α

|Fk,α)Gk,L(Fk,α|. (17)

Here, Gk,L is a two-body Green’s operator,

Gk,L = 1

Eq + ıε − TL(x) − V S
k (x) − δk,3V C(x)

, (18)

where Eq is the energy of the two-body subsystem given by

Eq = E − 3h̄2

4m
p2 = h̄2

m
q2, (19)

and

TL(x) = −h̄2

m

[
d2

dx2
+ 2

x

d

dx
− L(L + 1)

x2

]
. (20)

III. COULOMB FORCE EFFECTS IN THE SSF
INTEGRAL KERNEL

The SSF integral equation presented in the previous section
has the form of an inhomogeneous linear equation. We are
going to solve this by applying an iterative method developed
in Refs. [8,19] (and references therein) that is called the
Method of Continued Fractions (MCF). In general, iterative
methods to solve a linear equation require operating the kernel
to functions that are given in preceding iterative steps. The
MCF algorithm, which is reviewed in Appendix A, also
includes such operations as indicated in Eqs. (A8) and (A9).
Calculations of the SSF integral kernel consist of two parts: a
particle exchange operation and the operation of the Green’s
functions. Some technical notes on the former part are given in
Refs. [22,23] and those on the latter part for the nd scattering
above the TBT are given in Ref. [10], and are useful also in
the pd scattering. In this section, we study some problems of
the SSF integral kernel proper to the pd scattering problem.

A. SSF integral kernel

Let us consider operating the SSF kernel on given functions
�k(x, y):

	k(xk, yk) ≡ Gk(E)[��]k. (21)

The channel Green’s function for k = 1 or 2, where the pair
is a pn system, possesses a pole corresponding to the deuteron
bound state. To treat this pole, we apply a standard subtraction
method in which we use an identity,

1 =
∑
α0

|α0φ
d〉〈φdα0| +

(
1 −

∑
α0

|α0φ
d〉〈φdα0|

)
, (22)

where φd (x) is the radial part of the deuteron wave function
with orbital angular momentum L0(=0), and the index α0 =
(L0, �0, J0,M0) denotes the three-body partial-wave states that
couple to the two-body state with L0. By applying the identity

to Gk , we obtain

Gk(E) =
∑
α0

|α0φ
d〉ĞC,�0 (Ep0 )〈φdα0| +

∫
α

|Fk,α)Gk,L(Fk,α|

−
∫

α0

∣∣Fk,α0
φd
〉 1

Eq − Ed

〈
φdFk,α0

∣∣
(k = 1, 2). (23)

Here, ĞC,�0 (Ep0 ) is the partial-wave component of the
Coulomb Green’s function for the outgoing proton,

ĞC,�0 (Ep0 ) ≡ 1

Ep0 + ıε − T�0 (y) − uC(y)
, (24)

with

T�(y) = −3h̄2

4m

[
d2

dy2
+ 2

y

d

dy
− �(� + 1)

y2

]
. (25)

The function 	k(x, y) thereby can be written as

	k(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
α0

|α0) φd (x)η(e)
k,α0

(y)

+
∫

α

|Fk,α)
[
θk,α(x) − δα,α0φ

d (x)Ck,α0

]
(k = 1, 2),∫

α

|Fk,α)θk,α(x) (k = 3).

(26)

Here, the function η
(e)
k,α0

(y) (k = 1, 2) represents an elastic
component in the scattering,

η
(e)
k,α0

(y) =
∫ ∞

0
y ′2dy ′ĞC,�0 (y, y ′; Ep0 )ω(e)

k,α0
(y ′), (27)

with

ĞC,�(y, y ′; Ep) ≡ 〈y|ĞC,�(Ep)|y ′〉, (28)

and a source function ω
(e)
k,α0

(y) given by

ω
(e)
k,α0

(y) = 〈φdα0|[��]k〉
= 〈φdα0|V S

k |�i + �j 〉. (29)

The explicit expression of the Green’s function
ĞC,�(y, y ′; Ep), Eq. (B5) [20], gives the asymptotic form of
η

(e)
k,α0

(y) as

η
(e)
k,α0

(y) →
y→∞

eıσ�0 (η0)u
(+)
�0

(η0, p0y)

y
T

(e)
k,α0

, (30)

where T
(e)
k,α0

is an amplitude defined by

T
(e)
k,α0

= −
(

4m

3h̄2p0

)∫ ∞

0
dyF�(η0, p0y)yω

(e)
k,α0

(y). (31)

Above the TBT, the source function ω
(e)
k,α0

(y) reveals a long-
range behavior ofO(y−5/2) even in the case of the nd scattering
due to the particle exchange with breakup channel. This
property was studied to develop a numerical treatment in
Ref. [10].

054002-3



S. ISHIKAWA PHYSICAL REVIEW C 80, 054002 (2009)

The coefficient Ck,α0
(k = 1, 2) and the function θk,α(x)

(k = 1, 2, 3) in Eq. (26) are defined as

Ck,α0
= 1

Eq − Ed

〈
φdFk,α0

∣∣V S
k |�i + �j 〉, (32)

θk,α(x) = 〈x|Gk,L|ωk,α〉, (33)

where a source function ωk,α(x) is composed of a contribution
from the short-range potential and one from the Coulomb
potentials,

ωk,α(xk) = ωS
k,α(xk) + δk,3ω

C
α (xk), (34)

with

ωS
k,α(xk) = (Fk,α|V S

k |�i + �j 〉
= V S

k (xk)(Fk,α|�i + �j 〉, (35)

ωC
α (x3) = (F3,α|V C(x3) − uC(y1)|�1〉

+ (F3,α|V C(x3) − uC(y2)|�2〉. (36)

Note that the apparent singularity of Ck,α0
for Eq = Ed , or

p =
√

4m

3h̄2 (E + |Ed |), [see Eq. (19)] is canceled by that of the
function θk,α(x) arising from the two-body Green’s function
Gk,L and therefore the standard quadrature can be applied to
perform the p integration of Eq. (26) as far as both terms are
treated together as demonstrated in Ref. [10].

In actual calculations of the functions θk,α(x), we consider
an ordinary differential equation that is transformed from
Eq. (33),[
Eq − TL(x) − V S

k (x) − δk,3V
C(x)

]
θk,α(x) = ωk,α(x). (37)

A boundary condition to get the physical solution of this
equation depends on the energy of the two-body subsystem
Eq and thus on the integral variable p in Eq. (26) via
Eq. (19). According to the sign of Eq , the range of p (0 �
p < ∞) is divided into two regions: (i) 0 � p � pc =

√
4m

3h̄2 E,
where Eq � 0, and (ii) pc < p < ∞, where Eq < 0. The
corresponding boundary conditions for k = 1, 2 are

θk,α(x) ∝
x→∞

{
h

(+)
L (qx) (0 � p � pc),

h
(+)
L (ı|q|x) (pc < p < ∞),

(38)

where h
(+)
� (r) is the spherical Hankel function with the

outgoing wave. For k = 3, where the pp Coulomb potential is
acting, we have

θ3,α(x) ∝
x→∞

⎧⎪⎨
⎪⎩

u
(+)
L (γ (q), qx)

x
(0 � p � pc),

W−γ (|q|),L+1/2(2|q|x)

x
(pc < p < ∞),

(39)

where γ (q) is given by Eq. (C6) and Wκ,µ(z) is the Whittaker
function [21]. We solve Eq. (37) with the previously mentioned
conditions by applying the usual techniques we would apply
in the two-body problem, for example, the Numerov algorithm
[23]. Treatments of Eq. (37) for k = 1, 2 in region (i), which
are the same as those for the nd scattering, are described in
Appendix B of Ref. [10]. While those for the k = 3 case,
where we need to consider Coulomb force effects, are given
in Appendix C of this article.

The asymptotic form of the function 	k(x, y) is obtained
by evaluating Eq. (26) with the saddle-point approximation
[24,25] together with an explicit asymptotic form of θ3,α(x) for
0 � p � pc given by Eq. (C26). We notice that the Coulomb
force effects appear in the spectator variable yk for k = 1, 2
and in the pair coordinate xk for k = 3. The result is

	k(x, y) →
x→∞ −e

π
4 ı
∑

α

|α)ı−L−�

(
4K0

3

)3/2

× eı[K0R−δk,3γ (q̄) ln(2q̄x)−δ̄k,3η(p̄) ln(2p̄y)]

R5/2
Bk,α(	),

(40)

where the limit is considered to be taken with x/y being fixed,
a hyper radius R and a hyper angle 	 are introduced as

R =
√

x2 + 4

3
y2, (41)

x = R cos 	, y =
√

3

4
R sin 	, (42)

and K0 and the momenta q̄ and p̄ are given by

K0 =
√

m

h̄2 E, (43)

q̄ = K0 cos 	, p̄ =
√

4

3
K0 sin 	. (44)

Here, Bk,α(	) is a breakup amplitude defined as

Bk,α(	) = − 1

p̄

m

h̄2

1

1 − ıKL(q̄)
〈ψ̄k,L(q̄)|ωk,α〉, (45)

where ψ̄k,L(x; q) is a two-body scattering solution with the
standing wave boundary condition and KL(q) is a scattering
K matrix for the two-body scattering (see Appendix C).

B. Coulomb long-range effects

In solving the differential Eq. (37) numerically, we need to
set a value xM by a condition that the source function ωk,α(x)
should vanish so that the solution reaches its asymptotic form
given by Eqs. (38) or (39) for x > xM . The range of ωk,α(x)
thus is an important issue in our calculations. Equation (35)
shows that the range of the short-range potential term ωS

k,α(x)

for k = 1, 2, 3 is determined by the range of V S
k (x). Therefore,

in the case of k = 1, 2, where there is no contribution from the
Coulomb term, we set xM to be a value larger than the range
of the 2NP, for example, 10 fm.

In the case of k = 3, however, the source function includes
the Coulomb term ωC

α (x3), whose range depends on the factor

[V C(x3) − uC(y1)]�1(x1, y1) + (1 ↔ 2)

=
(

1

x3
− 1

y1

)
�1(x1, y1) + (1 ↔ 2).

In our iterative scheme (see Appendix A), the zeroth order
of the source function ω

[0]
3,α(x3) is calculated by putting

�1(x1, y1) = �d (x1)FC( y1; p0, η0), in which the magnitude
of the variable x1 is restricted within the range of the deuteron
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3x1

x3

uC(y1)

VC(x3 )

y1

1

FIG. 2. (Color online) Jacobi coordinates (x1, y1, and x3) to
describe the pp Coulomb potential V C(x3) and the auxiliary Coulomb
potential uC(y1).

size. Using an expression given by the definition of the Jacobi
coordinates, Eq. (1) (see also Fig. 2),

y1 = x3 + 1
2 x1, (46)

we can easily show that

1

x3
− 1

y1
= 1

x3
− 1∣∣x3 + 1

2 x1

∣∣ →
x3→∞O

(
x−2

3

)
. (47)

The same situation holds for the replacement of (1 ↔ 2). The
source term ωC

α (x3) therefore is supposed to be a short-range
function due to a cancellation between V C and uC .

An example of the cancellation is shown in Fig. 3(a), where
we plot components of ω

[0]
3,α(x3) for a partial-wave state of

1S0(pp) − s1/2 and the total three-body angular momentum
and parity of 1/2+, and p = 0.30 fm−1 for the pd scattering
at incident proton energy Ep = 13.0 MeV using the Argonne
V18 (AV18) 2NP [26]. In the figure, a component due to the
2NP, ωS

3,α(x3) (the solid curve), and components due to the
Coulomb potentials, ωC

α (x3), including only V C (the dotted
curve) and both of V C and uC (the dashed curve) are plotted.
For x3 < 2 fm, only the term ωS

3,α(x3) is plotted because the
Coulomb contributions are very small in this region. As shown
by the dotted and dashed curves in the figure, the contribution
of V C is well canceled by that of uC for large values of x3 in
the zeroth-order calculation.

Figure 3(b) shows the components of ω
[1]
3,α(x3) calculated

from functions �
[1]
k (xk, yk) that are obtained by the operation

of the kernel to the initial state. Once the integral kernel
is operated, the resulting functions include the three-body
breakup component as expressed by Eq. (40), and thus the
range of x1 in such functions is not restricted to the range of
the deuteron. As a result, the cancellation as Eq. (47) is no more
expected for higher order calculations. This is demonstrated
by the fact that dashed curve in the figure, which denotes the
source term ωC

α (x3) including both of V C and uC contributions,
remains non-negligible for a large value of x3.

To include the long-range effect of ωC
α (x3) as much as

possible, one needs to increase the value of xM much more
than 10 fm, which is the standard value in the nd calculation.
This makes pd calculations much harder than nd calculations.
Because Fig. 3 implies that the source function ω3,α(x3) is
dominated by the 2NP contribution ωS

3,α(x3), we decide to
include the effect of the long-range contribution partially by
multiplying ωC

α (x3) by the cutoff factor

e−(x3/RC )N (48)

for higher order than the zeroth order in our iterative procedure
of the MCF.

The validity of this procedure is examined in Table I, where
we compare some results of the pd eigenphase shift and
mixing angle parameters in conventions defined in Ref. [27],
for a partial-wave state with the total angular momentum and
parity of 1/2+ calculated with the AV18 potential. In the table,
the last column shows the results obtained with the Kohn
variational principle (KVP) [28]. The rest of the columns show
our calculations. The first column denoted as WC0 shows
results calculated by completely neglecting ωC

α (x3) in all order
calculations of the MCF iteration scheme to solve the SSF
equation. Calculations with keeping ωC

α (x3) only for the zeroth
order without cutoff but neglecting ωC

α (x3) for higher order
calculations are shown in the second column (WCn). In the
third to fifth columns, we show results with the cutoff for
the nonzeroth order by choosing N = 4 and RC = 4, 6, and
8 fm, respectively. A comparison of the numbers in the table

(a) (b)

FIG. 3. (Color online) Examples of the source functions (a) for the zeroth-order calulations and (b) for the first-order calculations. The
solid curves denote the contribution from the short-range 2NP ωS

3,α(x3), the dotted curves that from the Coulomb potentials ωC
α (x3) neglecting

the contribution from uC , and the dashed curves that from ωC
α (x3) including the contribution from both of V C and uC . Note that the scales of

the vertical axis change at x3 = 2.0 fm.
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TABLE I. The real and complex part of the pd eigenphase shift and mixing angle parameters, which are given in degrees, for the
J π = 1/2+ state with the AV18 potential. See the text for the meaning of the calculations.

WC0 WCn N = 4 N = 4 N = 4 KVPa

RC = 4 fm RC = 6 fm RC = 8 fm

Ep = 5.0 MeV
4D1/2 (−5.33, 0.01) (−5.44, −0.01) (−5.44, −0.01) (−5.45, 0.00) (−5.45, 0.00) (−5.43, 0.004)
4S1/2 (−42.4, 1.93) (−42.4, 1.93) (−41.8, 2.36) (−41.8, 2.30) (−41.8, 2.15) (−41.8, 1.74)
η1/2+ (0.97, −0.04) (1.01, −0.03) (1.05, −0.03) (1.05, −0.04) (1.05, −0.04) (1.05, −0.03)

Ep = 10.0 MeV
4D1/2 (−7.15, 0.24) (−7.32, 0.21) (−7.32, 0.22) (−7.33, 0.22) (−7.34, 0.22) (−7.30, 0.24)
4S1/2 (−61.3, 11.6) (−61.5, 11.5) (−61.0, 12.4) (−60.9, 11.9) (−60.8, 11.9) (−60.6, 11.7)
η1/2+ (0.96, 0.03) (0.98, 0.05) (1.02, 0.05) (1.02, 0.04) (1.01, 0.04) (1.01, 0.06)

aRef. [28].

indicates that effects due to the neglect of the long-range term
ωC

α (x3) in the integral kernel may be an order of a few percent
in the phase shift parameters and suggests that the partial
inclusion with the cutoff factor with (N,RC) = (4, 8 fm), for
example, may produce sufficient results. We remark that the
imaginary part of the 4S1/2 parameter reveals a rather slow
convergence, which might affect scattering observables. This
point is discussed later.

IV. NUMERICAL RESULTS

In this section, we present some numerical results obtained
by using the formulation described in the previous sections.
Technical details of introducing spins’ degrees of freedom,
3NFs, etc., are given in Refs. [8,10,22,23]. As a standard
2NF model, we choose the AV18 potential [26]. Three-
nucleon partial-wave states, for which the 2NF and 3NFs are
active, are restricted to those with total two-nucleon angular
momenta J � 6 for bound state calculations and J � 4 for
scattering calculations. In scattering calculations, total 3N

angular momentum is truncated at J0 = 19/2, whereas 3NFs
are switched off for 3N states with J0 > 13/2.

As described in the previous section, the Coulomb source
term ωC

α (x) in the SSF integral kernel is treated by multiplying
with the cutoff factor Eq. (48) for higher order in the
MCF iteration. Comparisons of calculations performed by
taking three different sets of (N,RC) in Table I show that
a satisfactory convergence is obtained with parameters of
(N,RC) = (4, 8 fm) for elastic observables, and we thus
proceed with these parameters, referring to them simply as pd

calculations. A convergence problem for three-body breakup
observables is discussed in a subsection below.

The calculated binding energy of 3H (3He) with the AV18
potential is 7.626 MeV (6.928 MeV), which is underbound by
about 1 MeV compared to the empirical value of 8.482 MeV
(7.718 MeV). It is well known that a 3NF caused by the
exchange of two pions among three nucleons (2πE-3NF)
produces enough attraction to explain the empirical binding
energy. In this article, we use a new version of the Brazil
2πE-3NF [11] with a dipole form factor of the cutoff mass

parameter �, (�2−m2
π

�2+q2 )2, for the πNN vertex (BR�). In a
combination with the AV18 2NP, � is chosen to be 660 MeV

(AV18 + BR660) to give the binding energy 8.492 MeV
(7.763 MeV) for 3H (3He).

A. Differential cross section in elastic scattering

First, we compare calculations approximately including the
pp Coulomb force effects with those of the pd calculations for
the differential cross section σ (θ ) of the pd elastic scattering,
where θ is the scattering angle in the c.m. system. We take two
approximate calculations: One is the WC0 calculation, which
is presented in the previous section. The other one, denoted as
APn, is an approximate calculation in which the scattering
amplitude due to the short-range 2NF is replaced by a
corresponding nd scattering amplitude [29]. It is expected that
the WC0 calculations are better approximated at lower energies
because breakup effects are smaller. The APn calculations,
however, are expected to be better at higher energies. Figure 4,
where WC0 (bold curves) and APn calculations (thin curves)
of differential cross sections normalized by those with the
pd calculations at Ep = 5.0, 10.0, and 28.0 MeV are plotted,
looks to exhibit roughly these tendencies. It is remarkable that

FIG. 4. (Color online) Differential cross section of pd elastic
scattering normalized by the pd calculation with the AV18 potential.
The bold curves represent the AV18-WC0 calculations, and the thin
curves represent the AV18-APn calculations. The solid curves denote
calculations at Ep = 5.0 MeV, the dashed curves calculations at Ep =
10.0 MeV, and the dotted curves calculations at Ep = 28.0 MeV.
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FIG. 5. (Color online) Differential cross sections of pd elastic
scattering at Ep = 5.0, 10.0, and 28.0 MeV. The dashed curves denote
calculations with the AV18 potential and the solid curves those with
the AV18 + BR660 potential. Experimental data are from Ref. [30]
for Ep = 5.0 and 10.0 MeV and from Ref. [31] for Ep = 28.0 MeV.

deviations of the APn calculations are rather large, about 10%
even at backward angles.

In Fig. 5, the pd calculations for σ (θ ) of the pd elastic
scattering at Ep = 5.0, 10.0, and 28.0 MeV are plotted together
with experimental data [30,31]. Comparing the calculations
with the AV18 potential (the dashed curves) to the exper-
imental data at θ ∼ 120◦, where σ (θ ) takes the minimum,
one finds that the calculations overestimate the data at lower
energies and underestimate the data at higher energies. The
introduction of the 2πE-3NF as shown by the solid curves
reduces almost all of the discrepancies at lower energies. This
systematic difference between the 2NF calculations and the
data, which is referred to as “Sagara discrepancy,” was pointed
out in Ref. [30] using the APn calculations. To study this
discrepancy in detail, we plot a relative discrepancy between
the data [30–32] and calculations defined by

�min = σ calc(θmin) − σ exp(θmin)

σ exp(θmin)
(49)

in Fig. 6, where θmin is the scattering angle where the differen-
tial cross section takes the minimum. The pd calculation shows
that a systematic discrepancy still remains when effects of the
Coulomb force are treated properly, but with shifting transition
energy from the overestimation to the underestimation to a
higher energy of about Ep = 20 MeV as compared to that by
the APn calculation, about 5 MeV. This tendency is consistent
with the results reported in Refs. [2,4].

B. Phenomenological three-nucleon force

In Ref. [18], it is pointed out that the introduction of the
2πE-3NF causes an undesirable effect to the tensor analyzing

FIG. 6. (Color online) Discrepancy of the pd differential cross
section minimum �min defined in Eq. (49) using the experimental
data [30–32]. The solid squares denote the pd calculations with the
AV18 potential, the triangles those with the AV18 + BR660 potential,
and the crosses the APn calculations with the AV18 potential.

power T21(θ ) of the pd elastic scattering at energies below the
TBT. Also, the 2πE-3NF is known to have little effect on the
vector analyzing power Ay(θ ), for which there exists a rather
large discrepancy between experimental data and calculations
(“Ay puzzle”). These facts, which are also demonstrated in
Fig. 7, suggest that the 2πE-3NF is insufficient to comprise a
nuclear Hamiltonian in addition to the realistic 2NF. Because
no possible mechanism to produce additional 3NF to remedy
the previously mentioned defects is established, at the moment
a phenomenological 3NF model is introduced [12], which has
a form that typical components in 2NP, central, tensor, and
spin-orbit components, are modified in the presence of a third
nucleon. The explicit form of the 3NF is

V phe =
∑
i<j

e
−
(

rik
rG

)2−
(

rjk

rG

)2

[V0 + VT ST (ij )P̂11]

+Vlse
−αlsρ

∑
i<j

[�ij · (Si + Sj )]P̂11, (50)

(a) (b)

FIG. 7. (Color online) (a) Proton vector analyzing power Ay(θ )
and (b) deuteron tensor analyzing power T21(θ ) of pd elastic scat-
tering at Ep = 3.0 MeV. The dotted curves denote calculations with
the AV18 potential, the dashed curves those with the AV18 + BR660

potential, and the solid curves those with the AV18 + BR800 + V phe

potential. Experimental data are from Refs. [30,34].
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where ST (ij ) is the tensor operator acting between the nucleon
pair ij , P̂11 is the projection operator to the spin and isospin
triplet state of the pair ij , and ρ2 = 2

3 (r2
12 + r2

23 + r2
31). The

range parameter rG was taken to be 1.0 fm and αls to be
1.5 fm−1. In Ref. [12], the strength parameters, V0, VT , and
Vls , are determined in the following manner: We choose the
combination of the AV18 potential for 2NF and a former
version of the Brazil model [33] with � = 800 MeV for the
2πE-3NF as a starting interaction, which makes the triton
overbound by about 1 MeV. The parameters are decided to
reproduce the following observables: the triton binding energy,
the vector analyzing power Ay(θ ), and the tensor analyzing
power T21(θ ) in pd scattering at Ep = 3.0 MeV. The results
are V0 = 25 MeV, VT = −40 MeV, and Vls = −16 MeV.

In the present work, we use a new version of the Brazil
3NF [11] that is more attractive in the 3N bound states than
the earlier version [33]. We thus need to retune the value of
V0 to be 36 MeV, but without changing the values of VT and
Vls . The calculated binding energy with this set of potentials
(AV18 + BR800 + V phe) is 8.482 MeV (7.757 MeV) for 3H
(3He), and the results for Ay(θ ) and T21(θ ) at Ep = 3.0 MeV
are shown by solid curves in Fig. 7.

C. Polarization observables in elastic scattering

In Ref. [12], it is shown that the use of the phenomenolog-
ical 3NF together with the AV18 + BR800, which is tuned
to reproduce the 3N binding energy, Ay(θ ) and T21(θ ) at
Ep = 3.0 MeV, is also successful in describing the neutron
vector analyzing power Ay(θ ) of the nd scattering at higher
energies. In Fig. 8, calculations of Ay(θ ) of the pd and
nd scattering with the AV18 + BR800 + V phe potentials are
compared with experimental data at some energies above the

(a) (b)

(c) (d)

FIG. 8. (Color online) Nucleon vector analyzing power Ay(θ )
of pd and nd elastic scattering at EN = (a) 5.0 MeV, (b) 10.0 MeV,
(c) 14.0 MeV, and (d) 16.0 MeV. Solid (dashed) curves denote pd (nd)
calculations with the AV18 + BR800 + V phe potential. Experimental
data are from Refs. [30,34] for pd (solid squares) and Refs. [35,36]
for nd (open circles).

TBT [30,34–36]. While the calculations of the nd-Ay(θ ) agree
with the experimental data in a manner similar to that in
Ref. [12], those of the pd-Ay(θ ) overestimate the data at
the maximum region θ ∼ 130◦ as the energy increases. In
another aspect, the calculated difference between the nd- and
the pd-Ay(θ ) at the maximum region is decreasing as the
energy increases, which is contradictory to the tendency of the
experimental data.

In Fig. 9, calculations of the deuteron tensor analyzing
power T21(θ ) of the pd scattering at Ep = 10.0 and 28.0 MeV
are compared with experimental data [31,37]. As in the case
at low energy, the introduction of the 2πE-3NF shifts the
calculations in the wrong direction from the experimental
data around θ = 90◦, and the phenomenological 3NF works
to reproduce the data. Another interesting feature appears
at θ ∼ 130◦, where T21(θ ) takes the maximum as follows:
Although the calculations with the AV18 potential deviate
from the data, those including the 3NFs agree with the
data equally. These suggest that T21(θ ∼ 90◦) is sensitive to
tensor components of nuclear forces and that T21(θ ∼ 130◦) is
sensitive to central components.

In Fig. 10, energy dependence of the deuteron tensor
analyzing power T21(θ ) at θ = 90◦ in the pd elastic scat-
tering for calculations with the AV18, AV18 + BR660, and
AV18 + BR800 + V phe potentials is shown in comparison
with available data [30,31,34,37]. The figure shows that the
introduction of the phenomenological 3NF is still consistent
with data at higher energies. It will be interesting to see if
further T21(θ ) data at Ep = 20 to 30 MeV, where experimental
data are missing, are consistent with the calculation or not.

Polarization-transfer coefficients are another interesting ob-
servable, and they are sensitive to spin-dependent interactions.
In Fig. 11, the polarization-transfer coefficients K

y ′
y (θ ) of pd

and nd elastic scattering at EN = 19.0 MeV are compared
with experimental data [38,39]. One interesting point, which
has been already remarked upon in Ref. [40], is that the
Coulomb force effect in the calculation is opposite to that
in the data at θ ∼ 110◦. In addition, the figure shows that the
experimental data indicate that the AV18 + BR660 potential
is favored over the AV18 + BR800 + V phe potential, implying
that this observable may be useful in distinguishing various
3NF models that reproduce other observables equally.

D. Breakup cross section

Finally, we show some results for differential cross sec-
tions of kinematically complete three-body breakup reactions,
2H(p,pp)n and 2H(n,nn)1H, which are characterized by
configurations of three particles in the final state. Here, we
discuss four different kinematical conditions that include the
following typical configurations, whose experimental data at
EN = 13.0 MeV are available for the pd breakup in Ref. [41]
and for the nd breakup in Refs. [42,43]:

(i) collinear (COL) configuration, in which three nucleons
align on a line with the unobserved nucleon being at
rest in the c.m. system;
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(a) (b)

FIG. 9. (Color online) Deuteron tensor analyzing power T21(θ ) of pd elastic scattering at Ep = (a) 10.0 MeV and (b) 28.0 MeV (or
equivalently Ed = 20.0 and 56.0 MeV, respectively, in a deuteron incident scattering). The dotted curves denote calculations with the AV18
potential, the dashed curves those with the AV18 + BR660 potential, and the solid curves those with the AV18 + BR800 + V phe potential.
Experimental data are from Ref. [37] for Ep = 10.0 MeV and Ref. [31] for Ep = 28.0 MeV.

(ii) final state interaction (FSI) configuration, in which the
relative energy between the unobserved nucleon and
one of the observed nucleons is zero;

(iii) space star (SST) configuration, in which three nucleons
have equal energies and interparticle angles of 120◦ in
the c.m. system, and the plane spanned by the three
nucleons is orthogonal to the beam axis; and

(iv) quasi-free scattering (QFS) configuration, in which the
unobserved nucleon is at rest in the laboratory system.

First, we have checked a convergence of the breakup cross
sections with respect to the cutoff procedure of the long-range
Coulomb force effect with Eq. (48). Calculations with the three
parameter sets shown in Table I, namely, (N,RC) = (4, 4 fm),
(4, 6 fm), and (4, 8 fm), for the SST and the QFS configurations
agree with one another excellently; however, those for the COL
and the FSI configurations agree in part as shown in Figs. 12(a)
and 12(b).

The visible deviations in Figs. 12(a) and 12(b) appear at a
kinematical condition where the relative pn energy is small,

FIG. 10. (Color online) Energy dependence of deuteron tensor
analyzing power T21(θ = 90◦) of pd elastic scattering. The dotted
curve denotes calculations with the AV18 potential, the dashed curve
ones with the AV18 + BR660 potential, and the solid curve ones
with the AV18 + BR800 + V phe potential. Experimental data are from
Ref. [34] (squares), Ref. [37] (circles), and Ref. [31] (triangle).

that is, Epn < 0.5 MeV, which might be caused by a small
change in the pp interaction due to our Coulomb treatment.
To check this peculiar behavior, we have investigated the
dependence of the pn-FSI cross sections in the nd breakup
reaction on the neutron-neutron (nn) interaction using two
different 2NP models: a charge-independent 2NP, Argonne
V14 (AV14) [44], in which the nn force is equal to the pn force
in the 1S0 state, and its modified version (AV14′) made in
Refs. [15,16] by considering a charge-dependent potential to
distinguish the nn force from the pn force. Results are shown
in Figs. 12(c) and 12(d) that demonstrate that a change in a nn

force actually results in non-negligible effects for the pn-FSI
cross sections.

Next, as a reference, cross sections of the FSI configura-
tion for the 2H(p,pn)1H and 2H(n,np)n reactions at EN =
13.0 MeV are plotted in Fig. 13. In this configuration, the
pn-FSI cross section occurs around S = 3 MeV and the pp-
FSI or nn-FSI cross section occurs around S = 11 MeV. The

FIG. 11. (Color online) Polarization-transfer coefficient Ky′
y (θ )

of pd and nd elastic scattering at EN = 19.0 MeV. The dotted curve
denotes the pd calculation with the AV18 potential, the dashed
curve the pd calculation with the AV18 + BR660 potential, the solid
curve the pd calculation with the AV18 + BR800 + V phe potential,
and the bold curve the nd one with the AV18 + BR800 + V phe

potential. Experimental data are from Ref. [38] for pd scattering
(solid squares) and from Ref. [39] for nd scattering (open circles).
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FIG. 12. (Color online) Differential cross sections of pd-breakup reactions (a) for the COL configuration and (b) for the FSI configuration
and those of nd-breakup reactions (c) for the COL configuration and (d) for the FSI configuration at EN = 13.0 MeV. In panels (a) and (b), dotted
curves denote calculations with (N,RC) = (4, 4 fm) for the AV18 potential, dashed curves denote calculations with (N,RC) = (4, 6 fm), and
solid curves denote calculations with (N, RC) = (4, 8 fm). In panels (c) and (d), solid curves denote the calculations with the AV14 potential
and dashed curves denote calculations with the AV14′ potential.

pp-FSI cross sections are suppressed by the pp Coulomb force
compared to the nn-FSI cross sections, but not completely.
This may suggest that we need to improve the Coulomb
cutoff procedure possibly by extending the range of the cutoff
function to treat the pp-FSI cross section more correctly.

From these considerations, we conclude that our calcula-
tions successfully converge for most of breakup configura-
tions, except for possibly a limited region with the relative
energy of two nucleons being close to zero.

In Fig. 14, results of the pd- and nd-breakup cross
sections for the above four configurations with the AV18
and the AV18 + BR660 potentials are compared with the
experimental data. Effects of the Coulomb force are visible
for the COL, SST, and QFS configurations, but not for
the FSI configuration, which is consistent with the result of
the momentum space calculations [6]. However, effects of the
2πE-3NF are small except for the QFS configurations. In the
momentum space approach [6], 3NF effects are incorporated
alternatively in terms of an explicit introduction of a single
virtual �-isobar excitation. The results also show that effects
of the �-isobar in the breakup cross sections are small for the
COL, FSI, and SST configurations and are visible for the QFS
configuration.

FIG. 13. (Color online) Differential cross sections of
2H(p,pn)1H and 2H(n,np)n reactions for the FSI configuration at
EN = 13.0 MeV with the AV18 potential. The dotted curve denotes
calculations for the pd-breakup reaction with (N,RC) = (4, 4 fm),
the dashed curve denotes calculations for the pd-breakup reaction
with (N,RC) = (4, 6 fm), and the solid curve denotes calculations
for the pd-breakup reaction with (N,RC) = (4, 8 fm). The
dot-dashed curve denotes the cross section for the nd-breakup
reaction.
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FIG. 14. (Color online) Differential cross sections of pd- and nd-breakup reactions for (a) the COL configuration, (b) the FSI configuration,
(c) the SST configuration, and (d) the QFS configuration at EN = 13.0 MeV. The bold curves are for pd scattering and the thin curves for nd

scattering. The dashed curves denote the calculations with the AV18 potential, and the solid curves those with the AV18 + BR660 potential.
Experimental data are from Ref. [41] (solid squares) for pd scattering and Ref. [42] (open circles) and Ref. [43] (solid circles) for nd scattering.
The arrows indicate the kinematical points that match the typical configurations.

V. SUMMARY

We presented a practical method to solve the pd scattering
problem at energies above the threshold of the deuteron
breakup to accommodate effects of the long-range pp

Coulomb force as accurately as possible. Although the conver-
gence with respect to the cutoff procedure of the long-range
Coulomb force effect is left as a future problem at a particular
kinematical condition of breakup reactions, a successful
convergence was obtained for elastic observables and for
most of the kinematical regions in breakup reactions. We
thereby calculated some observables in pd and nd reactions
at energies up to 30 MeV. Effects of the two-pion-exchange
3NF and the phenomenological 3NF to reproduce low-energy
3N observables were examined for pd observables at higher
energies, and then some discrepancies between calculations
and experimental data as well as inconsistencies between
calculations and data with respect to Coulomb force effects
were observed. Studies searching for realistic mechanisms
to produce interaction models to remedy these defects with
calculations by the formalism presented in this article are now
in progress.
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APPENDIX A: METHOD OF CONTINUED FRACTION

In this appendix, we summarize the MCF algorithm to solve
the SSF equation (see Refs. [8,19] and references therein). Let
us consider solving the linear integral equation

|�) = |F ) + G� |�) . (A1)

In the notation of the present work, |�) and |F ) are
expressed as vectors,

|�) =

⎛
⎜⎝

�(x1, y1)

�(x2, y2)

�(x3, y3)

⎞
⎟⎠ , (A2)
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|F ) =

⎛
⎜⎝

�d (x1)FC( y1; p0, η0)

�d (x2)FC( y2; p0, η0)

0

⎞
⎟⎠ , (A3)

and G and � are expressed as matrices

G =

⎡
⎢⎣
G1(E) 0 0

0 G2(E) 0

0 0 G3(E)

⎤
⎥⎦ , (A4)

� =

⎡
⎢⎣

0 V S
1 V S

1

V S
2 0 V S

2

V S
3 + V C(x3) − uC(y1) V S

3 + V C(x3) − uC(y2) 0

⎤
⎥⎦.

(A5)

Setting |F [0]) and G[0] as

|F [0]) = |F ), (A6)

G[0] = G, (A7)

we define |F [i]) and G[i] (i = 1, 2, . . .) as follows:

|F [i]) = G[i−1]�|F [i−1]), (A8)

G[i] = G[i−1] − |F [i])
1

(F [0]|�|F [i−1])
(F [0]|

= G[0] −
i∑

j=1

|F [j ])
1

(F [0]|�|F [j−1])
(F [0]|. (A9)

Introducing |�[i]) (i = 0, 1, 2, . . .) as solutions of

|�[i]) = |F [i]) + G[i]�|�[i]), (A10)

we can derive a relation between |�[i]) and |�[i+1]),

|�[i]) = |F [i]) + |�[i+1])
(F [0]|�|F [i])

(F [0]|�|F [i]) − T [i+1]
. (A11)

Here, amplitudes T [i] (i = 0, 1, 2, . . .) are defined as

T [i] = (F [0]|�|�[i]), (A12)

which satisfy

T [i] = (F [0]|�|F [i])2

(F [0]|�|F [i]) − T [i+1]
. (A13)

Calculations of an N th order approximation start by
regarding |F [N]) as |�[N]):

|�[N]) = |F [N]) (A14)

and thereby

T [N] = (F [0]|�|F [N]). (A15)

Then, using Eqs. (A11) and (A13) backward, we calculate
|�[N−1]), |�[N−2]), . . . , successively until |�[0]) as the N th
order approximation for |�).

APPENDIX B: COULOMB FUNCTIONS

In this appendix, we summarize formulas of functions
related to spectator functions modified by the Coulomb
potential. See Ref. [21] for details.

Let F�(η(p), py) and G�(η(p), py) be the regular and
irregular Coulomb functions that satisfy[

T�(y) + e2

y

]
y�[η(p), py] =

(
3h̄2

4m
p2

)
y�[η(p), py], (B1)

where y�[η(p), py] is ether F�[η(p), py] or G�[η(p), py], and

η(p) = 2m

3h̄2

e2

p
. (B2)

A scattering state for the Coulomb potential e2

y
with energy

3h̄2

4m
p2 is written as

Fc[ y; p, η(p)] = 4π
∑
�,m

ı�Ym∗
� ( p̂)Ym

� ( ŷ)

× eıσ�[η(p)] F�[η(p), py]

py
, (B3)

where σ�(η) is the Coulomb phase shift,

σ�(η) = arg�(� + 1 + ıη). (B4)

The analytical form of the Green’s function, Eq. (28), is given
by

ĞC,�(y, y ′; Ep) = − 4m

3h̄2 p
eıσ�[η(p)]u

(+)
� [η(p), py>]

py>

× F�[η(p), py<]

py<

, (B5)

where u
(±)
� (η, r) is defined as

u
(±)
� (η, r) = e∓ıσ�(η) [G�(η, r) ± ıF�(η, r)] , (B6)

giving the asymptotic form as

u
(±)
� (η, r) →

r→∞ exp [±ı(r − η ln 2r − �π/2)] . (B7)

APPENDIX C: GREEN’S OPERATOR

In this appendix, we first review two-body Green’s opera-
tors and then describe how to calculate Eq. (33) for the case
of k = 3 and Eq > 0.

We define Green’s operators for the outgoing (+) and the
incoming (−) boundary conditions with a potential consisting
of a short-range potential V S(x) and a long-range Coulomb
potential V C(x) as

G
(±)
L = 1

Eq ± ıε − TL(x) − V S(x) − V C(x)
, (C1)

G
(±)
C,L = 1

Eq ± ıε − TL(x) − V C(x)
, (C2)

which satisfy the resolvent relations

G
(±)
L = G

(±)
C,L + G

(±)
L V SG

(±)
C,L = G

(±)
C,L + G

(±)
C,LV SG

(±)
L . (C3)

Two-body scattering wave functions corresponding to the
outgoing and the incoming boundary conditions |ψ (±)

L 〉 satisfy
the (partial-wave) Lippmann-Schwinger equations

|ψ (±)
L 〉 = |F̂L〉 + G

(±)
C,LV S |ψ (±)

L 〉, (C4)
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where F̂L[γ (q), qx] is a reduced Coulomb function defined
by

F̂L[γ (q), qx] ≡ FL[γ (q), qx]

qx
, (C5)

with

γ (q) = me2

2h̄2q
. (C6)

For later use, we define the reduced Coulomb functions
ĜL(γ (q), qx) and û

(±)
L (γ (q), qx) similar to Eq. (C5).

Using Eq. (C3), we see that a formal solution of Eq. (C4)
is written as

|ψ (±)
L 〉 = |F̂L〉 + G

(±)
L V S |F̂L〉. (C7)

It is convenient to use the principal values of the two-body
Green’s operators defined as

PGL = P 1

Eq − TL(x) − V S(x) − V C(x)
, (C8)

PGC,L = P 1

Eq − TL(x) − V C(x)
. (C9)

As is G
(±)
C,L, the analytical form of PG

(±)
C,L is known and these

operators are related as

G
(±)
C,L = PGC,L ∓ ıq

m

h̄2 |F̂L〉〈F̂L|. (C10)

A scattering wave function corresponding to PGC,L,
namely, standing wave solution |ψ̄L〉, satisfies

|ψ̄L〉 = |F̂L〉 + PGC,LV S |ψ̄L〉, (C11)

and a formal solution of this is given as

|ψ̄L〉 = |F̂L〉 + PGLV S |F̂L〉. (C12)

From the standing wave solution, the outgoing and the
incoming solutions are obtained as

|ψ (±)
L 〉 = 1

1 ∓ ıKL

|ψ̄L〉, (C13)

where KL is the scattering K matrix defined by

KL = −q
m

h̄2 〈F̂L|V |ψ̄L〉, (C14)

which becomes tan δ with a phase shift parameter δ. Using the
relations above, one obtains a relation between G

(±)
L and PGL

as

G
(±)
L = PGL ∓ ıq

m

h̄2 |ψ̄L〉 1

1 ∓ ıKL

〈ψ̄L|, (C15)

which reduces to Eq. (C10) if V (x) is 0, leading to ψ̄L(x) =
F̂L[γ (q), qx] and KL = 0.

Next, we discuss the asymptotic form of the Green’s
function.

Using the resolvent equation, Eq. (C3), the formal solutions,
Eqs. (C7) and (C12), and the asymptotic forms of the Coulomb
Green’s functions, which are obtained from their analytical
forms,

G
(±)
C,L → −q

m

h̄2 e±ıσL |û(±)
L 〉〈F̂L|, (C16)

PGC,L → q
m

h̄2 |ĜL〉〈F̂L|, (C17)

we obtain the asymptotic form of the Green’s functions,

G
(±)
L → −q

m

h̄2 e±ıσL |û(±)
L 〉〈ψ (∓)

L |, (C18)

PGL → q
m

h̄2 |ĜL〉〈ψ̄L|. (C19)

Finally, we describe how to calculate Eq. (33) for k = 3, which

we write simply as

θ (x) = 〈x|G(+)
L |ω〉. (C20)

Using Eq. (C15), one can write θ (x) as

θ (x) = θ̄ (x) − ıq
m

h̄2 ψ̄L(x)
1

1 − ıKL

〈ψ̄L|ω〉, (C21)

where a new function θ̄ (x) is defined by

θ̄ (x) = 〈x|PGL|ω〉. (C22)

From Eq. (C19), the asymptotic form of θ̄ (x) can be written as

θ̄ (x) →
x→∞ q

m

h̄2 ĜL[γ (q), qx]〈ψ̄L|ω〉. (C23)

In actual calculation, the function θ̄ (x) is obtained by
solving the ordinary differential equation

[Eq − TL(x) − V S(x) − V C(x)]θ̄(x) = ω(x) (C24)

with the boundary condition

θ̄ (x) ∝
x→∞ ĜL[γ (q), qx]. (C25)

These relations give the asymptotic form of θ (x) as

θ (x) →
x→∞ e+ıσL û

(+)
L [γ (q), qx]

1

1 − ıKL

(
−q

m

h̄2

)
〈ψ̄L|ω〉.

(C26)
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