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We perform a fully relativistic calculation of the 2 �H(e,e′p)n reaction in the impulse approximation employing
the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full NN
scattering amplitude to describe the final state interactions (FSIs). The formalism for treating target polarization
with arbitrary polarization axes is discussed, and general properties of some asymmetries are derived from it.
We show results for momentum distributions and angular distributions of various asymmetries that can only be
accessed with polarized targets.
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I. INTRODUCTION

There are many interesting questions to be answered in
investigating exclusive electron scattering from the deuteron:
What does the nuclear ground state look like at short distances?
Are there any six-quark contributions to the wave function?
When does a description in terms of hadronic degrees of
freedom break down? To answer any of these questions, a
precise understanding of the reaction mechanism is mandatory.
Final state interactions are the most relevant components
of the reaction mechanism at GeV energies, but meson
exchange currents and isobar states will also contribute.
The fact that the deuteron is the simplest nucleus enables
us to study all facets of the reaction mechanism in great
detail. Anything that can be gleaned from the deuteron
will be highly useful for heavier nuclei. Exclusive electron
scattering from nuclei is one type of reaction in which one
may observe color transparency [1], and the deuteron itself
provides a laboratory for the study of neutrons, e.g., the
neutron magnetic form factor [2]. The short-range structures
studied in exclusive electron scattering might even reveal
information about the properties of neutron stars [3]. For
some recent reviews of exclusive electron scattering, see, e.g.,
Refs. [4–6].

Recently [7], we performed a fully relativistic calculation
of the 2H(e,e′p)n reaction, using a relativistic wave function
[8] and NN scattering data [9] for our calculation of the
full, spin-dependent final state interactions (FSIs). The main
difference from many other high quality calculations using the
generalized eikonal approximation [10–12] or a diagrammatic
approach [13] is the inclusion of all the spin-dependent
pieces in the nucleon-nucleon amplitude. Full FSIs have
recently been included in Ref. [14]. Several experiments
with unpolarized deuterons are currently under analysis or
have been published recently, [2,15–18]. There are also
new proposals for 2H(e,e′p) experiments at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab)
[19].

In Ref. [7], we focused on observables that are accessible for
an unpolarized target and an unpolarized nucleon detected in

the final state. The spin-dependent pieces in our FSI calculation
were particularly relevant for the fifth response function, an
observable that can be measured only with polarized electron
beams. Naturally, experiments with polarization of the target
or ejectile are harder to perform than their unpolarized counter-
parts. However, the extra effort allows one to study otherwise
inaccessible observables that are rather sensitive to certain
properties of the nuclear ground state and the reaction mecha-
nism. In this paper, we investigate the asymmetries that can be
measured with a polarized deuteron target. These observables
are of particular interest to us because we have a precise, fully
spin-dependent description of the final state interactions. As
before, the focus of our numerical calculations is the kinematic
region accessible at GeV energies, i.e., the kinematic range
of Jefferson Lab. Currently, some deuteron target polarization
data taken in Jefferson Lab’s Hall B are being analyzed [20]. At
lower energies, measurements of the beam-vector asymmetry
AV

ed have been performed at NIKHEF (the National Institute
for Nuclear Physics and High Energy Physics, Amsterdam)
[21] and at MIT Bates [17,22]. A formalism was developed
within a nonrelativistic framework, and calculations of various
asymmetries at lower energies were performed in Ref. [23].
The tensor asymmetry has been discussed at higher energies
within a Glauber theory approach, with just a central FSI, in
Ref. [24].

The paper is organized as follows. First, we establish the
general formalism necessary to calculate response functions
for polarized targets, and we discuss how to perform these
calculations in two different coordinate systems. Then, we
continue with the calculation of asymmetries and with the
issues presented in using the experimental convention of
measuring polarizations along the electron beam direction
versus the theoretical choice of polarization axis along the
three-momentum transfer �q. In the next section, we present our
numerical results, in a kinematic region relevant to experiments
at Jefferson Lab. We show both momentum distributions and
angular distributions, and we discuss the contributions of the
various spin-dependent parts of the final state interactions, as
well as the influence of the ground-state wave function. We
conclude with a brief summary.
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II. FORMALISM

A. Differential cross section

The standard coordinate systems used to describe the
2H(e,e′p) reaction are shown in Fig. 1. The initial and final
electron momenta k and k′ define the electron scattering plane
and the xyz-coordinate system is defined such that the z axis,
the quantization axis, lies along the momentum of the virtual
photon q, with the x axis in the electron scattering plane
and the y axis perpendicular to the plane. The momentum p

of the outgoing proton is in general not in this plane and is
located relative to the xyz system by the polar angle θp and
the azimuthal angle φp. A second coordinate system x ′y ′z′ is
chosen such that the z′ axis is parallel to the z axis, the x ′ axis
lies in the plane formed by p and q, and the y ′ axis is normal
to this plane.

The general form of the 2H(e,e′p) cross section can be
written in the laboratory frame as [25,26](

dσ 5

dε′d�ed�p

)
h

= mpmnpp

8π3Md

σMottf
−1
rec [vLRL + vT RT

+ vTTRTT + vLTRLT + hvLT ′RLT ′

+hvT ′RT ′], (1)

where Md , mp, and mn are the masses of the deuteron,
proton, and neutron, pp = p1 and �p are the momentum
and solid angle of the ejected proton, ε′ is the energy of
the detected electron, and �e is its solid angle, with h = ±1
for positive and negative electron helicity. The Mott cross
section is

σMott =
(

α cos(θe/2)

2ε sin2(θe/2)

)2

, (2)

and the recoil factor is given by

frec =
∣∣∣∣1 + ωpp − Epq cos θp

Mdpp

∣∣∣∣ . (3)

The leptonic coefficients vK are

vL = Q4

q4
, (4)

FIG. 1. (Color online) Coordinate systems for the 2H(e,e′p)
reaction. k and k′ are the initial and final electron four-momenta,
q is the four-momentum of the virtual photon, and p is the four-
momentum of the final state proton.

vT = Q2

2q2
+ tan2 θe

2
, (5)

vTT = − Q2

2q2
, (6)

vLT = − Q2

√
2q2

√
Q2

q2
+ tan2 θe

2
, (7)

vLT ′ = − Q2

√
2q2

tan
θe

2
, (8)

vT ′ = tan
θe

2

√
Q2

q2
+ tan2 θe

2
. (9)

Within this general framework, we have two options for
evaluating the response functions. First, we will give expres-
sions for the response functions in terms of matrix elements
that are defined with respect to the electron plane, i.e., the
xyz plane. These matrix elements are implicitly dependent
on φp, the angle between the hadron plane and electron
plane, and these are the responses used, e.g.. in Ref. [25].
Second, we give expressions for the responses in the x ′y ′z′
plane. All quantities given relative to the x ′y ′z′ coordinate
system are denoted by a line over the quantity. The current
matrix elements, and therefore the response functions, in the
x ′y ′z′ coordinate system do not have any φp dependence.
It is much more practical to evaluate the responses in the
x ′y ′z′ coordinate system. The commonly used responses in
the xyz system can then easily be obtained by accounting
for the φp dependence explicitly [see Eq. (17) below],
instead of newly evaluating matrix elements for each value
of φp.

Note that both coordinate systems use the same quanti-
zation axis: the z axis and the z′ axis are parallel. We will
discuss the use of a different polarization along the beam, as
commonly done by experimentalists, in the next subsection on
asymmetries.

The hadronic tensor for scattering from polarized deuterons
is defined as

wλ′
γ ,λγ

(D) =
∑

s1,s2,λd ,λ′
d

〈 p1s1; p2s2; (−)|Jλ′
γ
|Pλ′

d〉∗

×〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉ρλdλ′

d
, (10)

where

J±1 = ∓ 1√
2

(J 1 ± J 2), (11)

and

J0 = J 0 (12)

is the charge operator. The notation (−) in the final state
indicates that the state satisfies the boundary conditions
appropriate for an “out” state. The deuteron density matrix
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in the xyz frame is

ρ = 1

3

⎛⎜⎜⎜⎝
1 +

√
3
2T10 + 1√

2
T20 −

√
3
2 (T ∗

11 + T ∗
21)

√
3T ∗

22

−
√

3
2 (T11 + T21) 1 − √

2T20 −
√

3
2 (T ∗

11 − T ∗
21)

√
3T22 −

√
3
2 (T11 − T21) 1 −

√
3
2T10 + 1√

2
T20

⎞⎟⎟⎟⎠ , (13)

and the set of tensor polarization coefficients is defined as

D = {U, T10, T11, T20, T21, T22}, (14)

with U designating the contribution from unpolarized
deuterons. The derivation of the density matrix and the
conventions used are described in the Appendix.

The response functions in the xyz frame are given by

RL(D) = w00(D),

RT (D) = w11(D) + w−1−1(D),

RTT (D) = 2Re(w1−1(D)),
(15)

RLT (D) = −2Re(w01(D) − w0−1(D)),

RLT ′(D) = −2Re(w01(D) + w0−1(D)),

RT ′(D) = w11(D) − w−1−1(D).

Now we proceed to write expressions for the responses
in the x ′y ′z′ coordinate system. Calculating the responses in
this system offers a faster alternative to the above calculation,
which requires a new evaluation of the current matrix elements
for each φp value. The response functions defined above are
implicitly dependent upon the angle φp between the electron
plane and the hadron plane containing the proton and neutron
in the final state. This dependence can be made explicit by
noting that

〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉

= ei(λd+λγ −s1−s2)φp 〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉, (16)

where the line over the matrix elements is used to indicate that
they are quantized relative to the x ′y ′z′ coordinate system. The
hadronic tensor can then be written as

wλ′
γ ,λγ

(D) = e−i(λ′
γ −λγ )φpwλ′

γ ,λγ
(D), (17)

where

wλ′
γ ,λγ

(D) =
∑

s1,s2,λd ,λ′
d

〈 p1s1; p2s2; (−)|Jλ′
γ
|Pλ′

d〉
∗

× 〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉ρλdλ′

d
, (18)

and

ρλdλ′
d
= ei(λd−λ′

d )φpρD
λdλ′

d
(19)

is the density matrix defined relative to the x ′y ′z′ coordinate
system.

Using Eq. (17) and the definition of the responses in the xyz

system, Eq. (15), the response functions in the x ′y ′z′ system

then become

RL(D) = R
(I )
L (D),

RT (D) = R
(I )
T (D),

RTT (D) = R
(I )
TT (D) cos 2φp + R

(II)
TT (D) sin 2φp,

(20)
RLT (D) = R

(I )
LT (D) cos φp + R

(II)
LT (D) sin φp,

RLT ′ (D) = R
(I )
LT ′(D) sin φp + R

(II)
LT ′ (D) cos φp,

RT ′ (D) = R
(II)
T ′ (D),

where the reduced response functions for the classes I and II
are defined in terms of the hadronic tensors as

R
(I )
L (D) =

∑
i

R
(I )
L

(
τ

(I )
i

)
T

(I )
i = w00(D),

R
(I )
T (D) =

∑
i

R
(I )
T

(
τ

(I )
i

)
T

(I )
i = w1,1(D) + w−1,−1(D),

R
(I )
TT (D) =

∑
i

R
(I )
TT

(
τ

(I )
i

)
T

(I )
i = 2Re(w1,−1(D)),

R
(II)
TT (D) =

∑
i

R
(II)
TT

(
τ

(II)
i

)
T

(II)
i = 2Im(w1,−1(D)),

R
(I )
LT (D) =

∑
i

R
(I )
LT

(
τ

(I )
i

)
T

(I )
i = −2Re(w01(D) − w0−1(D)),

R
(II)
LT (D) =

∑
i

R
(II)
LT

(
τ

(II)
i

)
T

(II)
i = 2Im(w01(D) + w0 − 1(D)),

R
(I )
LT ′(D) =

∑
i

R
(I )
LT ′

(
τ

(I )
i

)
T

(I )
i = 2Im(w01(D) − w0−1(D)),

R
(II)
LT ′ (D) =

∑
i

R
(II)
LT ′

(
τ

(II)
i

)
T

(II)
i =−2Re(w01(D)+w0 − 1(D)),

R
(II)
T ′ (D) =

∑
i

R
(II)
T ′

(
τ

(II)
i

)
T

(II)
i = w1,1(D) − w−1,−1(D),

(21)

where

T
(I )
i ∈ {U, Im(T 11), T 20, Re(T 21), Re(T 22)},

(22)
T

(II)
i ∈ {T 10, Re(T 11), Im(T 21), Im(T 22)},

and

τ
(I )
i ∈ {

1, τ Im
11 , τ 20, τ

Re
21 , τRe

22

}
,

(23)
τ

(II)
i ∈ {

τ 10, τ
Re
11 , τ Im

21 , τ Im
22

}
.
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The τ matrices are defined by Eqs. (A20), (A28), and (A29).
The type I and II response functions can be obtained directly
by noting that the density matrix can be written as

ρ = 1

3

(
1 +

∑
i

τ
(I )
i T

(I )
i +

∑
i

τ
(II)
i T

(II)
i

)
. (24)

Defining a set of projected hadronic tensors as

wλ′
γ ,λγ

(
τ

(I,II)
i

) = 1

3

∑
s1,s2,λd ,λ′

d

〈 p1s1; p2s2; (−)|Jλ′
γ
|Pλ′

d〉
∗

× 〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉

(
τ

(I,II)
i

)
λdλ′

d

,

(25)

the type I and II response functions are then obtained by
replacing the hadronic tensors on the right-hand side of
the expressions in Eq. (21) with each appropriate projected
hadronic tensor in turn. Note that the τ matrices satisfy(

τ
(I )
i

)
−λ−λ′ = (−1)M

(
τ

(I )
i

)
λλ′ , (26)

and (
τ

(II)
i

)
−λ−λ′ = (−1)M+1

(
τ

(II)
i

)
λλ′ . (27)

B. Symmetries of the current matrix elements

The current matrix elements used here are defined in
Ref. [7]. The matrix elements quantized in the hadron plane
x ′y ′z′ can be shown to satisfy the symmetry

〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉

= (−1)λγ +λd−s1−s2〈 p1 − s1; p2 − s2; (−)|Jλγ
|P − λd〉

(28)

by starting with

i�2γ
0u( p, s) = (−1)

1
2 +su( p,−s), (29)

which relies on the fact that the nucleon momenta have, by
construction, no y ′ component when quantized in the hadron
plane.

Application of parity and time reversal to these matrix
elements requires that

〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉

= (−1)λγ +λd−s1−s2〈P − λd |Jλγ
| p1 − s1; p2 − s2; (+)〉.

(30)

Combining this with Eq. (28) gives

〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉 = 〈Pλd |Jλγ

| p1s1; p2s2; (+)〉
= 〈 p1s1; p2s2; (+)|Jλγ

|Pλd〉∗.
(31)

In the plane-wave approximation, there is no difference
between the (−) and (+) boundary conditions. So in this
approximation, the current matrix elements are real.

C. Asymmetries

The simple form of Eq. (1) is due to the choice of
quantization axis associated with the plane determined by
the virtual photon momentum and the ejectile momentum. In
practice, the polarization coefficients are determined relative
to a coordinate system fixed in the laboratory with the axis
of quantization along the electron beam momentum. This can
be easily accommodated by rotating the density matrix. The
relationship between the density matrix in the x ′y ′z′ coordinate
system and the system with the quantization axis z′′ along the
electron momentum k and with y ′′ parallel to y is

ρλdλ′
d
=

∑
��′

D1
λd�(−φp, θkq, 0)D1

λ′
d�′(−φp, θkq, 0)ρ̃D

��′ ,

(32)

where the tilde denotes the density matrix for the x ′′y ′′z′′
coordinate system, and θkq is the angle between the beam
momentum k and the momentum transfer q. The polarization
coefficients T JM can be found as functions of the T̃JM by using

T J0 = Tr(τ †
J0ρ),

Re(T JM) = 1
2 Tr

[
τRe

JM
†
ρ
]
, (33)

Im(T JM) = 1
2 Tr

[
τ Im

JM
†
ρ
]
.

The response functions for the x ′′y ′′z′′ coordinate system can
by found by using these in Eq. (21).

The asymmetries that we will calculate here involve
the case where T̃10 is nonzero with all other polarization
coefficients equal to zero, or where T̃20 is nonzero with all
other polarization coefficients equal to zero. In the first case,

T 10 = cos θkq T̃10,

Re(T 11) = − 1√
2

sin θkq cos φpT̃10,

(34)

Im(T 11) = 1√
2

sin θkq sin φpT̃10,

T 2M = 0,

while in the second case,

T 1M = 0,

T 20 = 1

4
(1 + 3 cos 2θkq)T̃20,

Re(T 21) = −
√

3

8
sin 2θkq cos φpT̃20,

(35)

Im(T 21) =
√

3

8
sin 2θkq sin φpT̃20,

Re(T 22) =
√

3

32
(1 − cos 2θkq) cos 2φpT̃20,

Im(T 22) = −
√

3

32
(1 − cos 2θkq) sin 2φpT̃20.

A similar relation between the xyz and x ′′y ′′z′′ coordinates
systems is given by

ρλdλ′
d
=

∑
��′

d1
λd�(θkq)d1

λ′
d�′(θkq)ρ̃D

��′ . (36)
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Then,

TJM = TJM(D̃). (37)

The relations between the polarization coefficients can be
obtained from Eqs. (34) and (35) by setting φp = 0 and making
the replacements T JM → TJM .

The single and double asymmetries for these two polariza-
tions are defined as

AV
d = vLRL(T̃10) + vT RT (T̃10) + vTTRTT (T̃10) + vLTRLT (T̃10)

T̃10�
,

AT
d = vLRL(T̃20) + vT RT (T̃20) + vTTRTT (T̃20) + vLTRLT (T̃20)

T̃20�
,

AV
ed = vLT ′RLT ′(T̃10) + vT ′RT ′(T̃10)

T̃10�
,

AT
ed = vLT ′RLT ′(T̃20) + vT ′RT ′(T̃20)

T̃20�
, (38)

where

� = vLRL(U ) + vT RT (U ) + vTTRTT (U ) + vLTRLT (U ).

(39)

Here Ri(T̃10) and Ri(T̃20) denote the response functions where
only T̃10 is nonzero or only T̃20 is nonzero. Ri(U ) denotes the
unpolarized response functions.

Using the definitions of the asymmetries, the expressions
for the T̄JM as a function of the T̃ , and the definitions of
the response functions in the x ′y ′z′ system, one obtains the
following symmetry relations with respect to φp:

AV
d (φp) = −AV

d (360◦ − φp),

AT
d (φp) = AT

d (360◦ − φp),
(40)

AV
ed(φp) = AV

ed(360◦ − φp),

AT
ed(φp) = −AT

ed(360◦ − φp).

D. Current matrix elements

A detailed description of the impulse approximation current
matrix elements used here is presented in Ref. [7]. These
matrix elements are constructed based on the covariant
spectator approximation [27]. A relativistic wave function [8]
and NN scattering data [9] are used for our calculation of
the full, spin-dependent final state interactions. The main
difference from many other high quality calculations using the
generalized eikonal approximation [10–12] or a diagrammatic
approach [13] is the inclusion of all the spin-dependent pieces
in the nucleon-nucleon amplitude. Full FSIs have recently been
included in Ref. [14].

To construct the scattering amplitudes needed for the
calculation of the FSIs, we start with np helicity matrices
extracted from SAID [9]. The on-shell scattering amplitudes
can be given in terms of five Fermi invariants as

Mab;cd = FS(s, t)δacδbd + FV (s, t)γac · γbd

+FT (s, t)σµν
ac (σµν)bd + FP (s, t)γ 5

acγ
5
bd

+FA(s, t)(γ 5γ )ac · (γ 5γ )bd, (41)

where s and t are the usual Mandelstam variables. The Fermi
invariants are then determined using the helicity amplitudes. A
table of the invariant functions is constructed in terms of s and
the center-of-momentum angle θ . The table is then interpolated
to obtain the invariant functions at the values required by the
integration.

To estimate the possible effects of this contribution to the
current matrix elements, we use a simple prescription for
the off-shell behavior of the amplitude. Although additional
invariants are possible when the nucleon is allowed to go
off-shell, we keep only the forms in Eq. (41). The center-
of-momentum angle is calculated using

cos θ = t − u
√

s − 4m2
√

(4m2−t−u)2

s
− 4m2

. (42)

The invariants are then replaced by

Fi(s, t) → Fi(s, t, u)FN (s + t + u − 3m2), (43)

where

FN (p2) =
(
�2

N − m2
)2

(p2 − m2)2 + (
�2

N − m2
)2 , (44)

and the Fi(s, t, u) are obtained from interpolation of the on-
shell invariant functions with the center-of-momentum angle
obtained from Eq. (42). The form factor (44) is used as a cutoff
to limit contributions where the nucleon is highly off-shell.
We use a value of �N = 1 GeV in this paper. The numerical
effects of variations in the cutoff parameter have been studied
in Ref. [7].

III. RESULTS

All results are shown for a quantization axis along the beam
direction, as measured in experiments, not along the direction
of the three-momentum transfer.

1. Momentum distributions

In Fig. 2, we show the four asymmetries for a four-
momentum transfer of Q2 = 2 GeV2 and x = 1. These
kinematics correspond to quasielastic scattering. Note that in
the plane-wave approximation, the asymmetries AV

d and AT
ed

vanish. They are nonzero only when the FSIs are included. This
is predicted in nonrelativistic plane-wave impulse approxima-
tion (PWIA) calculations, and our relativistic approach does
not change this feature. In the cases where the asymmetries
are nonzero for PWIA, the inclusion of FSIs leads to a shift,
and a slight distortion, of the features that are already present
in the asymmetries. The dips and bumps become narrower
when FSIs are included, and they appear at somewhat lower
missing momenta. The difference between just on-shell FSIs
and full FSIs including on-shell and off-shell distributions is
very small. The largest off-shell FSI effects are present for
larger missing momenta in AT

ed.
From our discussion in Sec. II B, we can now explain the

observed behavior of the asymmetries in PWIA: all PWIA
current matrix elements are real, and so any response that
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FIG. 2. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, x = 1, and φp = 35◦,
are shown calculated in PWIA (dotted line), with on-shell FSI (solid line), and with on-shell and off-shell FSI (dashed line), as a function of
the missing momentum.

consists of taking the imaginary part of any part of the hadronic
tensor will vanish in PWIA. When consulting Eq. (22), we see
that the vector asymmetries with T̄10 �= 0 are associated with
the class II responses, and that the tensor asymmetries with
T̄20 �= 0 are associated with the class I responses. From its
definition, we can see that AV

d is associated with the vector,
i.e., class II, contributions to the L, T, TT, and LT responses.
The L and T responses have no class II versions, and the class
II versions of the TT and LT responses are proportional to the
imaginary part of certain pieces of the hadronic tensor. Thus,
AV

d vanishes in PWIA. A similar argument shows that AT
ed

must vanish in PWIA, whereas the other two asymmetries will
always have nonzero contributions. This argument was made
in the hadron plane, in the x ′y ′z′ frame. It is also valid when
the quantization axis is rotated, as the rotation itself will not
lead to a nonzero value for an asymmetry that vanishes for one
set of quantization axes.

In Fig. 3, we show the four asymmetries for a four-
momentum transfer of Q2 = 2 GeV2 and x = 1.3. These
kinematics are away from the quasielastic peak, and we
expect off-shell contributions to the FSIs to be more relevant
here. We have observed the increase in relative importance
of the off-shell FSIs already for unpolarized observables in
Ref. [7]. Due to the chosen kinematics, smaller values of the
missing momentum are not accessible. As for the quasielastic
kinematics shown above, AV

d and AT
ed are nonzero only after

FSIs are included, and the FSIs shift the bumps and dips
to lower missing momenta. The shift to lower momenta is
much smaller here than for the quasielastic case, though.
In contrast to the x = 1 kinematics, the off-shell FSIs now
play a more prominent role. The differences between just
on-shell FSIs and off-shell and on-shell FSIs are large for
AV

d and AT
ed, and they are apparent already at low missing

momentum. For the two other asymmetries, AV
ed and AT

d , the
differences are less pronounced and are most significant at the
largest missing momenta considered here. Having a nonzero
asymmetry already in PWIA makes the asymmetry less
sensitive to off-shell effects: if the PWIA results are nonzero,
the FSIs are very relevant corrections, and the off-shell FSIs
are less significant corrections of the correction; if the PWIA
results are zero, the FSIs provide the entire asymmetry, and
the off-shell FSI corrections are relevant.

The asymmetries that we investigate here also have a
dependence on the azimuthal angle φp of the outgoing proton.
The two sets of figures above were shown for a value of
φp = 35◦. This value was chosen to avoid any special cases
for φp = 0◦, 45◦, or 90◦. However, the overall φp dependence
is interesting, too. We show this dependence for all four
asymmetries in Fig. 4 in a three-dimensional plot.

One can see that for AV
d , the broad bump and dip structures

observed for φp = 35◦ turn into a broad dip and bump for φp

values above 180◦, inverting the original, low φp structure. A
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FIG. 3. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, x = 1.3, and
φp = 35◦ are shown calculated in PWIA (dotted line), with on-shell FSI (solid line), and with on-shell and off-shell FSI (dashed line), as a
function of the missing momentum.

(a) (b)

(c) (d)

FIG. 4. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d), for a beam energy of 5.5 GeV, Q2 = 2 GeV2, and x = 1 are
shown calculated with on-shell FSI as a function of the missing momentum and the proton’s azimuthal angle.
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FIG. 5. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, pm = 0.4 GeV, and
φp = 35◦ are shown calculated in PWIA (dotted line), with on-shell FSI (solid line), and with on-shell and off-shell FSI (dashed line), as a
function of the polar angle of the missing momentum.

very similar inversion of the structures is observed for AT
ed: the

broad ridge at lower φp turns into a valley for large φp, and
the sharp dip at low missing momenta and medium φp turns
into a peak at φp > 180◦. For the other two asymmetries, AT

d

and AV
ed, the plots are symmetric around φp = 180◦. This is

the behavior predicted by Eq. (40) for the four asymmetries.
For the kinematics away from the quasielastic peak, for

x = 1.3, the same type of φp dependence and the same φp

symmetries are observed, and we therefore do not display a
separate figure. The asymmetries reach much larger maximum
values for x = 1.3, though.

2. Angular distributions

We now discuss our results for angular distributions. Note
that for the FSI calculations, there is a limit to the kinematic
region in which we can calculate, because the proton-neutron
scattering amplitude that we use is available only for pn

energies up to 1.3 GeV; see Ref. [7] for details.
In Fig. 5, we show the four asymmetries as functions of the

angle for a fixed missing momentum value of pm = 0.4 GeV,
and for a fixed φp = 35◦. The nonrelativistic, factorized PWIA
prediction for AT

d is AT
d ∝ 1 − 3 cos2 θ , which leads to zeros

for θ = 54.7◦ and θ = 125.3◦. If we use only the S-wave and
D-wave contributions to the ground-state wave function, and
perform the PWIA calculation with the quantization axis along

the three-momentum transfer �q, we observe exactly this type
of angular dependence. The P -wave contributions lead to
slight deviations from the nonrelativistic angular pattern. In our
figures, we used a quantization axis along the beam, and this
rotation obscures the original structure of the asymmetry. In
practice, experimentalists polarize their targets with respect to
the beam. The angular dependence of AV

ed even in nonrelativis-
tic PWIA is much more complicated than the structure for AT

d ,
because the beam-vector asymmetry AV

ed is equal to the ratio of
helicity-dependent and helicity-independent responses. This
prevents the cancellations of helicity-independent expressions
in numerator and denominator that is present in the tensor
asymmetry AT

d , and causes its simple angular structure. For AV
d

and AT
ed, the nonrelativistic result predicts zero for all angles,

and this result persists for our fully relativistic calculation, for
the reasons discussed above.

Again, we observe the same pattern that was apparent for
the momentum distributions: for AT

d and AV
ed, the FSI effects

are small for small angles and become important only for larger
angles. The differences between on-shell FSI calculations and
FSI calculations including off-shell FSIs, too, is very small.
For AV

d and AT
ed, the off-shell FSI effects are more pronounced,

in particular for AV
d . Note that when calculating an angular

distribution for a fixed missing momentum, we slice through
various values of x, and therefore the relative importance of
the off-shell FSI contribution is different for different angles θ .
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FIG. 6. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, pm = 0.2 GeV, and
φp = 35◦ are shown calculated in PWIA (dotted line), with on-shell FSI (solid line), and with on-shell and off-shell FSI (dashed line), as a
function of the polar angle of the missing momentum.

At the four-momentum transfer of 2 GeV2, we are limited
in the range of polar angles θ that we may access, as complete
np scattering amplitudes are available only up to 1.3 GeV. The
results for Q2 = 1 GeV2 and otherwise identical kinematics
are not qualitatively different from what we see at smaller
angles.

We show in Fig. 6 the asymmetries at a lower missing
momentum value, pm = 0.2 GeV, as functions of the angle.
Overall, it is clear that for the lower missing momentum value,
pm = 0.2 GeV, the influence of FSIs is not that large. As
before, the asymmetry AV

d shows an off-shell FSI result that
differs from the on-shell FSI for a larger range of angles, but the
effect is much less pronounced than for higher pm. Both AV

ed
and AT

ed show small off-shell FSI effects in the region where
the asymmetries are large. The off-shell FSI contributions
are somewhat limited here, because for pm = 0.2 GeV, the
maximum kinematically possible x value is 1.3.

Summarizing, it is interesting to note that the tensor
asymmetry AT

d and the double spin asymmetry AV
ed exhibit

rather similar behavior, even though they have quite different
structures: the former depends on the helicity-independent
terms of the cross section and has a tensor (T20) structure,
whereas the latter depends on the helicity-dependent terms
of the cross section and has a vector structure (T10). Due
to invariance under parity and time reversal, both responses
are nonzero in PWIA, and they show similar structures and

sensitivity to FSI effects. Their φp dependence is similar, too,
showing a mirror symmetry along φp = 180◦. In the same way,
the target spin asymmetry AV

d (helicity-independent, vector)
and the tensor-beam asymmetry AT

ed (helicity-dependent,
tensor) show similar traits: they are both zero in PWIA
and are more sensitive even to off-shell FSI effects. Their
φp dependence leads to an inversion of all features above
φp = 180◦.

3. Contributions from individual parts of the NN scattering
amplitude to the FSIs

In our calculation of the final state interactions, we use
the full nucleon-nucleon scattering amplitude. There are
several ways to decompose and parametrize the NN scattering
amplitude. It can be parametrized with five terms: a central,
spin-independent term, a spin-orbit term, and three double
spin-flip contributions. It can also be given in terms of
invariants, using a scalar, vector, tensor, pseudoscalar, and
axial term. Some of these parametrizations may be useful and
enlightening in trying to understand what is happening. As we
are interested in the effects of target polarization, investigating
the effects of spin-dependent terms in the FSIs is a logical and
interesting step. We separate the NN amplitudes into a central
term, a single spin-flip (i.e., spin-orbit) term, and three double
spin-flip terms.
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FIG. 7. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, pm = 0.4 GeV, and
φp = 35◦ are shown calculated with on-shell FSI (solid line), without any double spin-flip terms in the on-shell FSI (dashed line), and with
central on-shell FSI only (dash-double-dotted line), as a function of the angle θm of the missing momentum.

Figure 7 shows the contributions of the central, central
and single spin-flip, and full FSIs to the four asymmetries at
Q2 = 2 GeV2 and pm = 0.4 GeV as a function of the angle
of the missing momentum. The tensor asymmetry AT

d shows
little sensitivity to the details of the FSIs, it just shows some
minor quantitative changes in the dip and peak region. The
beam-vector asymmetry AV

ed is insensitive at lower angles, but
shows small changes in magnitude at larger angles. In both
cases, there is no shape change when the different parts of the
FSIs are added. This changes when considering the target-spin
asymmetry AV

d and the tensor-beam asymmetry AT
ed. For these

asymmetries, the shape is quite different when only the central
part of the FSIs is included. The central FSI result for AT

ed is
rather small and even takes some negative values in a shallow
dip around θ ≈ 45◦. Once the single spin-flip FSI is included,
the asymmetry changes and shows a steep rise with a shallow
shoulder at larger angles. With the inclusion of the double
spin-flip FSIs, the magnitude of the asymmetry increases a bit
at larger angles.

For AV
d , the influence of the spin-dependent FSIs is most

pronounced: while the asymmetry is very small and changes
sign twice with central FSIs, the inclusion of the single spin-flip

term leads to an asymmetry that is similar in shape, albeit a bit
larger than with central FSIs, and of opposite sign. The double
spin-flip terms completely change the shape of the asymmetry,
leading to a pronounced peak and a much larger maximum
value. Here, for AV

d , the effect of the double spin-flip FSIs is
most pronounced and most relevant.

Figure 8 shows the contributions of the central, central
and single spin-flip, and full FSIs to the four asymmetries
at Q2 = 2 GeV2 and x = 1 as a function of the missing
momentum. While the angular distributions for pm = 0.4 GeV
shown in Fig. 7 do not show a very pronounced effect of
the double spin-flip terms on AT

d and AV
ed, the momentum

distribution for AT
d shows that especially for larger missing

momenta, the spin-dependent FSIs are very relevant. Starting
for pm = 0.4 GeV, the results without the full spin-dependence
deviate significantly from the full FSI result, and for pm >

0.5 GeV, an interesting inversion happens: the result for central
FSI only is closer to—but still far from—the full FSI result
than the calculation without double spin-flip. This indicates
that interference effects are relevant for AT

d in this kinematic
region. For AV

d , a similar picture emerges for larger missing
momentum: for pm > 0.4 GeV, central FSI only results are
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FIG. 8. (Color online) Asymmetries AV
d (a), AT

d (b), AV
ed (c), and AT

ed (d) for a beam energy of 5.5 GeV, Q2 = 2 GeV2, x = 1, and φp = 35◦

are shown calculated with the full on-shell FSI (solid line), without any double spin-flip terms in the on-shell FSI (dashed line), and with central
on-shell FSI only (dash-double-dotted line) as a function of the missing momentum.

above the full result, while the no double spin-flip result is
below it. For this asymmetry, for pm > 0.1 GeV, all types
of spin-dependent FSI are very important. The tensor-beam
asymmetry, AT

ed, shows that while the double spin-flip terms
have only a small effect, the single spin-flip term, i.e., the
spin-orbit term, gives a huge contribution.

Overall, the tensor asymmetry AT
d and the double spin

asymmetry AV
ed exhibit rather similar behavior, showing

some quantitative and no large qualitative dependence on
spin-dependent FSIs. The target-spin asymmetry AV

d and
the tensor-beam asymmetry AT

ed show large qualitative and
quantitative sensitivity to spin-dependent FSIs, each in a
different way.

In a previous paper [7] dealing with unpolarized ob-
servables, we investigated the influence of the different
invariant amplitudes of the NN amplitude parametrization by
calculating the FSIs with only one of the invariant amplitudes.
For the unpolarized case, we found that the role of interference
is huge, and that there is no single dominant amplitude. For the
asymmetries, we find that for small angles, the pseudoscalar
amplitude seems to be very close to all asymmetries except
for AT

ed, but this behavior is confined to θ < 30◦. Deviations
beyond that are significant, in particular for AV

d . The results
show that overall, there are many relevant interference effects,
and no single part of the NN amplitude is dominant.

4. Influence of the D wave

A question often discussed is the influence of correlations
in the nuclear ground state and, in the case of the deuteron,
the role played by D-wave and P -wave admixtures. Due
to the rather different predictions of various nonrelativistic
NN models for the D-wave content, the hunt for observables
sensitive to this part of the wave function has been going on
for a long time. It should be noted that on theoretical grounds,
the attempts to extract the D-wave contribution to the deuteron
bound state are ill considered. The wave function is not an ob-
servable, and unitary transformations can change the D-state
contribution while leaving the matrix elements unchanged.
Thus an actual observable contains information about initial
and final states, as well as about the current operator, with the
various quantities changing with unitary transformation, and
one cannot be uniquely separated from the others.

In our calculation, because of the normalization of the
ground-state wave function, there are some issues with directly
isolating the D-wave contribution. Just to give an impression
of the influence of the D-wave contribution on the asymmetries
we study here, we have simply switched off the D-wave
contributions, without changing the normalizations. In our
relativistic calculation, there is also a P -wave contribution
present. We study its effect, too. In general, P -wave effects
are expected to be very small.
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FIG. 9. (Color online) Asymmetry AT
d , for a beam energy of 5.5 GeV, Q2 = 2 GeV2, and pm = 0.4 GeV is shown calculated (a) with

on-shell FSI, (b) without a D-wave contribution to the ground state, (c) without a P -wave contribution to the ground state, and (d) with only an
S-wave contribution to the ground state, as a function of the polar angle of the missing momentum θm and the proton’s azimuthal angle.

While the other asymmetries also show significant de-
pendence on the D-wave, we will focus here for brevity
on the effects of the D-wave and P -wave contributions on
the tensor asymmetry AT

d (see Fig. 9). As expected, the
difference between the calculation with the full ground-state
wave function [Fig. 9(a)] and the calculation without the
D wave [Fig. 9(b)] is large: a prominent dip is turned
into a peak, and the maximum values reached change. In
nonrelativistic PWIA, this asymmetry would be zero without
the D wave, but with FSI (even just central FSI), the tensor
asymmetry acquires a nonzero value, because the relative
positions of the neutron and the knocked-out proton influence
the strength of the FSI that is experienced.

Performing a calculation without the P -wave contribution
[Fig. 9(c)] does not lead to any significant changes, the peak
heights vary a little, but there are no qualitative changes.
Figure 9(d) shows the results for just the S-wave part of the
wave function. Here, the missing P -wave contribution—still
present in the top right panel without the D wave—leads to a
somewhat different shape and an increased magnitude for the
dip structure at lower φp values. It is interesting to note that
in PWIA, if we switch off the D-wave contribution, the tensor
asymmetry is small but still nonzero because of the P -wave
contributions.

IV. SUMMARY AND OUTLOOK

In this paper, we have presented a formalism for the cal-
culation of responses and asymmetries for polarized deuteron

targets. We have shown how to evaluate these observables in
different reference frames and for different polarization axes.
Symmetries of the current matrix elements were pointed out,
and together with the behavior under parity and time reversal
transformations, exploited to show that two of the asymmetries
we discuss, the target-spin asymmetry AV

d and the tensor-beam
asymmetry AT

ed, vanish in PWIA.
We performed a relativistic calculation of various asym-

metries accessible with a polarized deuteron target. We have
included a full FSI calculation, with on-shell and off-shell
contributions, using experimental data on the pn scattering
amplitude as input. Final state interactions are very relevant for
all asymmetries in most kinematics. Two of the asymmetries
vanish in PWIA and are therefore more sensitive to FSI effects,
even to the off-shell FSI contributions. An important result of
our paper is that even in the region of the quasielastic ridge,
x = 1, the influence of FSIs on the asymmetries is large,
and a straightforward extraction of D-wave properties from
measured data will not be possible. This is true even though
the influence of the D wave on the asymmetries is large, as
commonly assumed. The influence of the P waves, a purely
relativistic phenomenon, is generally small, unless we consider
situations where the D wave is switched off.

One interesting and conspicuous feature of the asymmetries
is the fact that the target-spin asymmetry AV

d and the tensor-
beam asymmetry AT

ed have very similar properties, i.e., they
vanish in PWIA, have similar sensitivity to FSIs, and a similar
dependence on φp, just as the tensor asymmetry AT

d and the
beam-vector asymmetry AV

ed show similar properties in these
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respects. We have shown that this can be understood in terms
of their behavior under parity and time reversal in PWIA.

We have tested the sensitivity of our results to the different
parts of the FSIs. As expected, spin-dependent FSIs are
relevant, and depending on the kinematics and observable,
even the double spin-flip terms are extremely important.

Our calculation has been performed in an impulse approx-
imation, i.e., assuming that the detected proton is the nucleon
that interacted with the photon initially. Contributions from the
Born term, where the photon interacts with the neutron, will in
general be small for most observables in most kinematics, but
they may contribute noticeably for larger missing momenta
(pm > 0.6 GeV).

It is always an interesting question to consider which
observable should be measured in which kinematic region.
With polarized targets and beams, experiments require a
lot of effort and beam time, so very careful planning is
necessary. In this paper, we have focused on the final state
interaction effects, which can safely be assumed to be the major
contributors to the reaction mechanism. Other mechanisms,
such as meson exchange currents and isobar contributions, will
be less important but might also be interesting to investigate,
and they may change the FSI-only picture somewhat. Clearly,
an important message from our paper is that two asymmetries
each show similar behavior, so measuring one from each
category will give the optimum information. If one is interested
in studying FSIs, the kinematic regions with large FSI
effects—both on-shell and off-shell—are attractive candidates.
A measurement of the momentum distribution of AV

d or AT
ed

at larger x, e.g., x = 1.3 as shown in Fig. 3, would be
highly interesting. In addition, any measurement of polarized
observables in regions where the unpolarized observables have
already been measured might be very helpful in improving our
knowledge of the reaction mechanism and the deuteron itself.

Next, we plan to perform calculations for an unpolarized
deuteron target and a polarized ejected nucleon.
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APPENDIX: THE DENSITY MATRIX

Consider an object with total angular momentum j and
projection m. An arbitrary state of angular momentum j can
be written as

|j 〉i =
j∑

m=−j

ci
m|jm〉, (A1)

where normalization of the state requires that

j∑
m=−j

∣∣ci
m

∣∣2 = 1. (A2)

The expectation value of some operator Â for this state is given
by

〈Â〉i =
j∑

m′=j

ci
m′

∗〈jm′|Â
j∑

m=−j

|jm〉ci
m

=
j∑

m′=j

j∑
m=−j

〈j,m′|Â|jm〉ci
mci

m′
∗
. (A3)

Any attempt to polarize a target consisting of a collection
of these objects by applying magnetic fields will in general
produce not a single state, such as that described above, but
rather a statistical ensemble of such states with probabilities
Pi such that ∑

i

Pi = 1. (A4)

The statistical average of the expectation value of operator Â

is then given by

〈Â〉 =
∑

i

Pi〈Â〉i =
j∑

m′=−j

j∑
m=−j

〈j,m′|Â|jm〉
∑

i

ci
mPic

i
m′

∗
.

(A5)

Defining the density matrix

ρmm′ =
∑

i

ci
mPic

i
m′

∗
, (A6)

and

Am′m = 〈j,m′|Â|jm〉, (A7)

the average expectation value of Â can be written as

〈Â〉 =
j∑

m′=−j

j∑
m=−j

Am′mρmm′ = Tr(Aρ), (A8)

where A and ρ are the matrix representation of Â and the
density matrix in the subspace of total angular momentum j .

From Eq. (A6),

ρ∗
mm′ =

∑
i

ci
m′Pic

i
m

∗ = ρm′m, (A9)

or in matrix form

ρ† = ρ. (A10)

So the density matrix is Hermitian. Also,

Tr(ρ) =
j∑

m=−j

∑
i

ci
mPic

i
m

∗ =
∑

i

j∑
m=−j

∣∣ci
m

∣∣2
Pi =

∑
i

Pi = 1.

(A11)

A further constraint on density matrix is given by

Tr(ρ2) � (Tr(ρ))2 = 1. (A12)
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It is often convenient to express the density matrix for
angular momentum j in terms of spherical tensor operators
such that

ρ̂ = 1

2j + 1

2j∑
J=0

J∑
M=−J

T ∗
JM τ̂JM, (A13)

where τ̂JM is an irreducible spherical tensor operator of rank
J and projection M , and TJM are complex coefficients that
describe the average polarization of the target. These are
defined such that

T ∗
JM = (−1)MTJ−M, (A14)

and
τ̂
†
JM = (−1)Mτ̂J−M. (A15)

Since we are concerned with a polarized deuteron target in
this paper, we will now confine the argument to the case j = 1.
In this case, matrix elements of the density operator are given
by

ρλλ′ = 〈1λ|ρ̂|1λ′〉 = 1

3

2∑
J=0

J∑
M=−J

T ∗
JM〈1λ|τ̂JM|1λ′〉. (A16)

This can be written in matrix form as

ρ = 1

3

2∑
J=0

J∑
M=−J

T ∗
JMτ JM. (A17)

If we choose normalizations such that

T00 = 1, (A18)

and

〈1||τ̂J ||1〉 =
√

3
√

2J + 1, (A19)

the matrices τ JM are

τ 00 =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ ,

τ 10 =
√

3

2

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠ , τ 11 =
√

3

2

⎛⎝0 −1 0
0 0 −1
0 0 0

⎞⎠ ,

τ 20 = 1√
2

⎛⎝1 0 0
0 −2 0
0 0 1

⎞⎠ , τ 21 =
√

3

2

⎛⎝0 −1 0
0 0 1
0 0 0

⎞⎠ ,

τ 22 =
√

3

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , (A20)

and the remaining matrices can be obtained from

τ
†
JM = (−1)Mτ J−M. (A21)

These matrices have the properties

Tr(τ JM) = 0, (A22)

and

Tr(τ †
J ′M ′τ JM) = 3δJ ′J δM ′M. (A23)

So,

Tr(τ †
JMρ) = T ∗

JM. (A24)

The constraint given in Eq. (A12) requires that

1

3

(
1 +

2∑
J=1

J∑
M=−J

|TJM|2
)

� 1. (A25)

Using the matrices defined by Eq. (A20), we can write

ρD = 1

3

{
1 +

2∑
J = 1

[
TJ0τ J0 +

J∑
M = 1

(T ∗
JMτ JM + T ∗

J−Mτ J−M )

]}
.

(A26)

The last term of this can be rewritten using Eq. (A14) to give
J∑

M=1

(T ∗
JMτ JM + T ∗

J−Mτ J−M )

=
J∑

M=1

(T ∗
JMτ JM + (−1)MTJMτ J−M )

=
J∑

M=1

[Re(TJM)(τ JM + (−1)Mτ J−M )

+ Im(TJM)(−i)(τ JM − (−1)Mτ J−M )]

=
J∑

M=1

(
Re(TJM)τRe

JM + Im(TJM)τ Im
JM

)
, (A27)

where

τRe
JM = τ JM + (−1)Mτ J−M = τ JM + τ

†
JM, (A28)

and

τ Im
JM = −i(τ JM − (−1)Mτ J−M ) = −i(τ JM − τ

†
JM). (A29)

The orthogonality relations for the τ JM can be used to show
that

Tr
[
τRe

JM
†
ρD

] = 2Re(TJM), (A30)

and

Tr
[
τ Im

JM
†
ρD

] = 2Im(TJM). (A31)
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