
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 80, 051902(R) (2009)

Size fluctuations of the initial source and event-by-event transverse momentum
fluctuations in relativistic heavy-ion collisions

Wojciech Broniowski,1,2,* Mikolaj Chojnacki,1,† and Łukasz Obara2,‡
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We show that the event-by-event fluctuations of the transverse size of the initial source, which follow directly
from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions, cause, after hydrodynamic
evolution, fluctuations of the transverse flow velocity at hadronic freeze-out. This, in turn, leads to event-by-event
fluctuations of the average transverse momentum, 〈pT 〉. Simulations with GLISSANDO for the Glauber phase,
followed by a realistic hydrodynamic evolution and statistical hadronization carried out with THERMINATOR, lead
to agreement with the Relativistic Heavy Ion Collider (RHIC) data. In particular, the magnitude of the effect,
its centrality dependence, and the weak dependence on the incident energy are properly reproduced. Our results
show that the bulk of the observed event-by-event 〈pT 〉 fluctuations may be explained by the fluctuations of the
size of the initial source.
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We propose a new mechanism for generating the transverse-
momentum fluctuations in relativistic heavy-ion collisions,
based on the fluctuations of the initial size of the formed
system and its subsequent hydrodynamic evolution. It is well
established that a successful description of the physics of
relativistic heavy-ion collisions is achieved with the help of
relativistic hydrodynamics [1–12], effective at proper times
ranging typically from about a fraction of a fm/c to a few
fm/c, where statistical hadronization takes over. Numerous
observables can be reproduced that way, such as the momen-
tum spectra, elliptic flow, or the Hanbury Brown–Twiss (HBT)
correlation radii [11,12], measuring the system’s space-time
extension. The initial condition for hydrodynamics is usually
obtained from the Glauber approach, leading to the wounded-
nucleon picture [13] (a wounded nucleon is a nucleon that
has collided inelastically at least once) or its variants [14,15].
When the initial condition is obtained via Glauber Monte
Carlo simulations, its shape fluctuates, simply reflecting the
randomness in positions of the nucleons in the colliding nuclei.

In this Rapid Communication we show that the event-by-
event fluctuations of the initial size are substantial, even when
we consider the class of events with a strictly fixed number of
the wounded nucleons, Nw. The fluctuations are then carried
over by hydrodynamics to the fluctuations of the transverse
flow velocity at the hadronic freeze-out, which in turn generate
the event-by-event fluctuations of the average transverse
momentum, pT , of the produced hadrons. The mechanism
is very simple: a more squeezed initial condition leads to
faster expansion, larger flow, and, consequently, higher 〈pT 〉,
whereas, on the contrary, a more stretched initial condition
leads to slower expansion, lower flow, and lower 〈pT 〉. The
event-by-event pT fluctuations have been the subject of intense
theoretical and experimental studies [16–30] because they may
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reveal important details of the dynamics of the system. Effects
of inhomogeneities for various observables have been studied
in Ref. [31]. The event-by-event fluctuations of the initial shape
have been studied in detail for their elliptic component, where
they lead to enhanced elliptic flow [32–41]. Our present study
is similar in spirit, but it focuses on the size fluctuations.

Consider the average transverse size, defined in each event
as (we use the wounded nucleon model for the simplicity of
notation)

〈r〉 =
Nw∑
i=1

√
x2

i + y2
i , (1)

where xi and yi are coordinates of a wounded nucleon in
the transverse plane. Examples of the spatial distributions of
wounded nucleons are shown in Fig. 1, where collisions of
two 197Au nuclei are viewed along the beam. We note that the
two cases displayed in Fig. 1, although having equal numbers
of wounded nucleons, have indeed a rather different shape
and size. The original positions of nucleons in each nucleus
are randomly generated from an appropriate Woods-Saxon
distribution, with an additional constraint that the centers of
nucleons in each nucleus cannot be closer than the expulsion
radius d = 0.4 fm, which simulates the short-range repulsion.
Nucleons from the two nuclei get wounded or undergo a
binary collision when their centers pass closer to each other
than the distance d = √

σNN/π , where σNN is the inelastic
nucleon-nucleon cross section. For the highest Super Proton
Synchrotron (SPS), RHIC, and Large Hadron Collider (LHC)
energies, the value is equal to 32, 42, and 63 mb, respectively.

We introduce the notation 〈〈.〉〉 to indicate averaging over
the events. To focus on the relative size of the effect we use
the scaled standard deviation, defined for a fixed value of Nw

as σ (〈r〉)/〈〈r〉〉. The results of our Monte Carlo simulations
performed with GLISSANDO are shown in Fig. 2. We present
the standard wounded nucleon model [13] (the three lower
overlapping curves) and the mixed model [14,15] (three upper
curves), where the Glauber source distribution is formed from
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FIG. 1. (Color online) Two sample collisions, both with an equal
number of wounded nucleons, Nw = 198, displayed as circles. The
left and right cases have 〈r〉 = 2.95 fm and 2.83 fm, respectively.

the fractions (1 − α)/2 of the wounded nucleons and α of the
binary collisions. The mixing parameter α is assumed to be
equal to 0.12, 0.145, and 0.2 for the highest SPS, RHIC, and
LHC energies, respectively. From the fact that the three curves
for the wounded nucleon model overlap, we conclude that the
effect is completely insensitive to the value of σNN within
the considered range. The observed moderate dependence on
the energy for the mixed model originates entirely from the
different values of the α parameter. For the binary collisions the
size fluctuations are stronger than for the wounded nucleons,
hence a larger value of α yield larger fluctuations. We note
that the scaled variance of 〈r〉 is about 2.5%–3.5% for
central collisions, and grows toward the peripheral collisions
approximately as 1/

√
Nw. Very similar results are obtained

for other variants of Glauber models, in particular models
with an overlaid distribution of particles produced by each
wounded nucleon [15]. We have also checked that using a
Gaussian wounding profile σNN (b) [42] for the NN collisions,
rather than the sharp wounding distance criterion applied here,
leads to very similar curves. Furthermore, the use of the
nucleon distributions including realistically the central NN

correlations, as given in Ref. [43], leads to practically no
difference. In other words, the behavior displayed in Fig. 2 is
robust, basically reflecting the statistical nature of the Glauber
approach.

The next step, crucial in converting the size fluctuation into
momentum fluctuations, is hydrodynamics. We use the perfect
boost-invariant hydrodynamics described in detail in Ref. [11],
which leads to a successful simultaneous description of the
soft RHIC observables at midrapidity, such as the pT spectra,
elliptic flow, and the HBT radii, including the azimuthally
sensitive (azHBT) femtoscopy [44]. The essential ingredients
of this approach are the Gaussian transverse initial condition,
early start of the evolution (τ0 = 0.25 fm/c), and the state-of-

〈〈
〈

〈〈
〈

FIG. 2. (Color online) Event-by-event scaled standard deviation
of the size parameter 〈r〉, evaluated at fixed values of the number of
wounded nucleons, Nw . The three lower overlapping curves are for
the wounded nucleon model at the NN cross section corresponding
to the highest SPS (32 mb), RHIC (42 mb), and LHC (63 mb)
energies. The three upper curves are for the mixed model at the
subsequent energies. The dependence on the energy for the mixed
model originates entirely from different values of the α mixing
parameter (see the text for details).

the art equation of state [11], incorporating a smooth crossover
and interpolating between the lattice QCD results at high tem-
peratures and the resonance gas at low temperatures. The initial
transverse energy-density profile is assumed to have the simple
form ε(x, y) = ε0 exp[−x2/(2a2) − y2/(2b2)], where x and y

denote the transverse coordinates. The width parameters a

and b depend on centrality. To obtain realistic values we run
GLISSANDO [15] simulations, which include the eccentricity
fluctuations. Then we match a and b to reproduce the values
〈x2〉 and 〈y2〉 from the GLISSANDO Monte Carlo profiles. Thus,
by construction, the spatial root mean square (rms) radii of the
initial condition and its eccentricity are the same as from the
Glauber calculation. The values of the used width parameters
are given in Table I. The central value of the initial temperature
is adjusted in such a way that the multiplicity of produced
particles is reproduced.

The average transverse momentum is also reproduced
by our model, as can be seen from Fig. 3, where we
compare the model predictions (solid line) to the STAR data
[45], extrapolated to the full pT coverage. The dashed line
corresponds to the model calculation with the STAR range
0.2 GeV < pT < 2 GeV used in Ref. [28].

Next, we analyze the hydrodynamic evolution with fluctu-
ating initial conditions. Rather than doing an event-by-event
calculation, which is tedious, it suffices (see the following)

TABLE I. Shape parameters a and b, as well as the central temperature Ti , for various centrality classes
for the highest RHIC energy of

√
sNN = 200 GeV.

c [%] 0–5 5–10 10–20 20–30 30–40 40–50 50–60 60–70

a [fm] 2.70 2.54 2.38 2.00 1.77 1.58 1.40 1.22
b [fm] 2.93 2.85 2.74 2.59 2.45 2.31 2.16 2.02
Ti [MeV] 500 491 476 455 429 398 354 279
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FIG. 3. (Color online) Dependence of the average transverse
momentum 〈〈pT 〉〉 on the number of wounded nucleons. The solid
(dashed) line corresponds to the model calculation in the full pT range
(in the range of the STAR coverage 0.2 GeV < pT < 2 GeV). The
experimental points (obtained by extrapolating the pT distributions
to the full range) are taken from Ref. [45].

to see how much the predictions change when the a and b

parameters are scaled by the values read off from Fig. 2. For
instance, for c = 20%–30%, which corresponds to Nw � 165,
we note from Fig. 2 that the scaled standard deviation of the
size fluctuations is 4.4% (for the wounded nucleon model).
Thus, we rescale a and b up and down by 4.4% and run
the simulations. In addition, we also adjust the value of the
central temperature Ti in such a way that the energy contained
in the profile is preserved. This is natural because the total
energy deposited in the transverse plane should be (up to
possible additional fluctuations) the same for a given number of
elementary collisions. Hence, a squeezed system has a higher
central temperature than a stretched system. Thus, in some
sense, we also include the temperature fluctuations discussed
in Ref. [46]. Additional event-by-event energy fluctuations
(in the considered pseudorapidity window |η| < 1) could be
added on top of the analyzed effect, which would act as another
source of momentum fluctuations not included in this work.

Hydrodynamics is run until the local temperature drops to
Tf = 145 MeV [11], where freeze-out occurs. The freeze-out
hypersurfaces in the space of the transverse radius r and time
t at z = 0, as well as the transverse velocities for the 5%
squeezed and stretched cases for c = 20%–30% are shown in
Fig. 4. We note the following features: The maximum expan-
sion velocities, indicated by dots with labels, are about 10%
larger for the squeezed case compared to the stretched case. In
addition, the squeezed case is somewhat more compact, i.e.,
the radius r and the time t at freeze-out are slightly smaller.

The final stage of our calculation, turning the transverse-
velocity fluctuations into the transverse-momentum fluctua-
tions, is the simulation of the statistical hadronization at freeze-
out with THERMINATOR [47], which includes all resonances and
decay channels from SHARE [48]. According to the Cooper-
Frye formalism, the particles (stable and unstable, which
subsequently decay) are formed at the freeze-out hypersurface
according to appropriate statistical distributions. For the
squeezed case they are more “pushed” with the larger flow
velocity than for the stretched case, thus they acquire a higher
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FIG. 4. (Color online) In-plane (solid) and out-of-plane (dashed)
freeze-out hypersurfaces in the transverse coordinate-time plane for
c = 20%–30%, with the indicated values of the maximum transverse
flow velocity in units of c. Shown are the results for the 5% squeezed
(top) and stretched (bottom) initial conditions.

average transverse momentum, 〈〈pT 〉〉. The experimental cuts
of the STAR detector are used, with 0.2 GeV < pT < 2 GeV.

To compare to the data, we analyze the STAR correlation
measure [28], σ 2

dyn ≡ 〈�pi�pj 〉. It can be shown to be equal
to

σ 2
dyn = σ 2(〈pT 〉) − 1

Nev

Nev∑
k=1

σ 2
k (pT )

Nk

, (2)

where k labels the event, σ 2
k (pT ) is the variance of pT in a

given event, and Nk denotes the multiplicity of the event. By
construction, the second term cancels the uncorrelated (purely
statistical) fluctuations in the first term, leaving in σdyn the
dynamical correlations only. Our simulations do not include
the statistical event-by-event fluctuations of 〈pT 〉, which would
follow from the random nature of the statistical hadronization
involving a finite number of particles. The procedure described
below allows one to avoid the tedious event-by-event studies in
the extraction of σdyn when it originates from the fluctuations
of the initial condition.

The full statistical distribution f (〈pT 〉) in a given centrality
class is a folding of the statistical distribution of 〈pT 〉 at a fixed
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initial size, centered around a certain p̄T , with the distribution
of p̄T centered around 〈〈pT 〉〉. The value of p̄T , corresponding
to a fixed initial size, fluctuates because of the fluctuations of
the initial size. In the central regions both are close to Gaussian
distributions, hence, we have a very good approximation

f (〈pT 〉) ∼
∫

d2p̄T exp

(
− (〈pT 〉 − p̄T )2

2σ 2
stat

)

× exp

(
− (p̄T − 〈〈pT 〉〉)2

2σ 2
dyn

)
. (3)

Carrying out the p̄T integration yields the distribution of 〈pT 〉
centered around 〈〈pT 〉〉 with the width parameter satisfying
σ 2 = σ 2

stat + σ 2
dyn. With the above factorized form we may

obtain the second term directly from the distribution of the
initial size parameter 〈r〉. Its distribution is also approximately
Gaussian,

f (〈r〉) ∼ exp

(
− (〈r〉 − 〈〈r〉〉)2

2σ 2(〈r〉)
)

. (4)

Because of the deterministic nature of hydrodynamics, p̄T is a
(complicated) function of 〈r〉. Nevertheless, in the vicinity of
the central values we have from the Taylor expansion

p̄T − 〈〈pT 〉〉 = dp̄T

d〈r〉
∣∣∣∣
〈r〉=〈〈r〉〉

(〈r〉 − 〈〈r〉〉) + · · · . (5)

Substituting Eq. (5) into Eq. (4) and comparing to Eq. (3) we
obtain the key result

σdyn = σ (〈r〉) dp̄T

d〈r〉
∣∣∣∣
〈r〉=〈〈r〉〉

, (6)

or for the scaled standard deviation

σdyn

〈〈pT 〉〉 = σ (〈r〉)
〈〈r〉〉

〈〈r〉〉
〈〈pT 〉〉

dp̄T

d〈r〉
∣∣∣∣
〈r〉=〈〈r〉〉

. (7)

This result bears a similarity to the formula derived by
Ollitrault [49], where σdyn/〈〈pT 〉〉 ∼ σ (〈s〉)/〈〈s〉〉, with s

denoting the entropy density. The derivative in Eq. (7) can
be computed numerically without difficulty by running two
simulations at each centrality. We do it by comparing the
average momenta obtained for the squeezed and stretched
cases, as described above. Then

σdyn

〈〈pT 〉〉 = 〈〈pT 〉〉− − 〈〈pT 〉〉+
〈〈pT 〉〉− + 〈〈pT 〉〉+ , (8)

where − and + indicate the squeezed and stretched cases.
Our final result is shown in Fig. 5, where we compare the

theoretical points to the experimental data from the STAR
Collaboration [28]. We note a strikingly good agreement
between our calculation and the experiment, in particular
for the standard wounded nucleon model. The mixed model,
which is more realistic than the wounded-nucleon model,
overshoots the data by about 20%, producing even more
fluctuations than needed. This may suggest that the coefficient
dp̄T /d〈r〉|〈r〉=〈〈r〉〉 in Eq. (6) is somewhat too large. The value
of this coefficient incorporates all the dynamics (the initial
condition, hydrodynamics, statistical hadronization). Modify-
ing these ingredients, not to mention the inclusion of viscosity
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FIG. 5. (Color online) Comparison of the theoretical predictions
for the scaled dynamical fluctuations, σdyn/〈〈pT 〉〉 (for

√
sNN =

200 GeV), to the experimental data from the STAR Collaboration
[28]. The lower (upper) crosses indicate our results for the wounded
nucleon model (mixed model). The experimental data range between√

sNN = 20 GeV (triangles), 130 GeV (squares), 62 GeV (diamonds),
and 200 GeV (dots).

effects, etc., may modify the value. Nevertheless, we note a
proper magnitude of the effect and the correct dependence on
centrality, with an approximate scaling σdyn(〈pT 〉)/〈〈pT 〉〉 ∼
1/

√
Nw. In addition, because the results of Fig. 2 very weakly

depend on σNN , to the extent that the hydrodynamic “pushing”
is similar at various energies, our results should weakly depend
on the incident energy, which is a desired experimental feature.
We remark that the described mechanism works independently
of the charge of particles. To describe the charge dependence of
fluctuations (e.g., as observed in Ref. [25]) other mechanisms
are necessary.

In conclusion, one can straightforwardly reproduce the
bulk of the dynamical event-by-event transverse momentum
fluctuations, as measured at RHIC, with the mechanism based
on fluctuations of the initial size, which are then carried
over by hydrodynamics to the fluctuations of the transverse
flow velocity, and consequently to the transverse momentum
of the produced particles. The hydrodynamic pushing is
crucial in this scheme. With a realistic hydrodynamics, which
has been earlier used to uniformly describe the soft RHIC
data, our analysis indicates that there may be little room
for other, truly dynamical, sources of fluctuations, such as
(mini)jets [27,50] or the formation of clusters at freeze-out
[51,52]. Certainly, there are yet other sources of the pT

correlations in addition to the aforementioned ones, such
as the global momentum conservation, resonance decays,
correlations from the elementary NN collisions in the corona;
however, these should be considered as the “background”
mechanism of the size fluctuations described in this Rapid
Communication.
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