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Microscopic calculation of α-decay half-lives with a deformed potential
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A new version of the generalized density-dependent cluster model is presented to describe an α particle
tunneling through a deformed potential barrier. The microscopic deformed potential is numerically constructed
in the double-folding model by the multipole expansion method. The decay width is computed using the coupled-
channel Schrödinger equation with outgoing wave boundary conditions. We perform a systematic calculation on
α-decay half-lives of even-even nuclei ranging from Z = 52 to Z = 104, including 65 well-deformed ones. The
calculated α-decay half-lives are found to be in good agreement with the experimental values. There also exists
good agreement with the available experimental branching ratios for well-deformed systems.
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Alpha decay was described in 1928 as a quantum me-
chanical tunneling effect [1,2]. The decay process can be
divided into two distinct parts: the formation of an α particle
at the nuclear surface, followed by its tunneling through
the α-daughter potential barrier. To compute the α-formation
amplitude various approaches have been developed, such as
the shell model including Bardeen-Cooper-Schriefer (BCS)
pairing [3], the hybrid model supplementing the shell-model
wave function with an α-cluster component [4], and even the
way of extracting the preformation factor from the experi-
mental half-lives [5]. Whatever the formation mechanism, the
decay proceeds by a quantum tunneling through the potential
barrier. If this barrier is assumed to be spherical, the theoretical
evaluation of the decay width is a simple task no matter whether
it concerns the Wentzel-Kramers-Brillouin (WKB) semiclassi-
cal approximation or the exact quantum mechanics description
[6–10]. Actually, various calculations with different potentials
are usually performed with this assumption of spherical
shapes, because in most cases the ground states of α emitters
are spherical or moderately deformed. All of them should
be considered as an effective theory for α decay [11–17].
Despite these theoretical achievements, the actual situation
of α decay is much more complicated than what we expect.
The observation of fine structure in α decay has often been
attributed to the tunneling of the α particle through a deformed
barrier [18,19]. A complete explanation of the α-decay process
should be able to describe the effect of core deformation.

Recently we have studied exotic α decays around the N =
126 shell gap within the spherical version of the generalized
density-dependent cluster model (GDDCM) [20]. In this case,
where the decaying nucleus is regarded as a core nucleus
plus an α cluster moving in a spherical potential, one only
needs to solve a single radial equation for the exact quantum
mechanics value of the decay width [21–24]. This work is
an extension of the model toward a deformed case, where
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the parent nucleus is described by an α particle moving in a
deformed potential. On the one hand, the deformed potential is
numerically constructed in the well-established double-folding
model by the multipole expansion method [25,26]. On the
other hand, of course the violation of spherical symmetry leads
to the coupled-channel effect between outgoing waves with
� = 0, 2. Note that � � 4 α transitions are strongly restrained
by the centrifugal barrier. Therefore, it is necessary to perform
a full coupled-channel calculation for deformed systems.

Consider a deformed system formed by an axial-symmetric
core nucleus with quadrupole and hexadecapole deformations
plus a spherical α cluster. The wave function of a single α

cluster in a quasibound state can be expanded into a sum of
partial waves with angular and radial components [19,27,28],

�(r,�d ) = 1

r

∑
α

uα(r)�α(�,�d ), (1)

where α ≡ (n�j ) completely denotes the channel quantum
number, the angular part is written as �α(�,�d ) = [Yα(�) ⊗
Yα(�d )]00. Inserting Eq. (1) into the Schrödinger equation and
projecting it onto the channel states, one obtains the usual
coupled-channel equations for radial components [19,27,28],{

− h̄2

2µ

[
d2

dr2
− �α(�α + 1)

r2

]
− QJd

}
uα(r)

+
∑
α′

Vα,α′ (r)uα′(r) = 0, (2)

where µ is the reduced mass of the system and QJd
is the

energy of the emitted α particle leaving the daughter nucleus
in the state Jd . The interaction matrix that contains all of
nuclear physics is given by

Vα,α′ (r) = (�α(�,�d )||V (r,�d )||�α′(�,�d )), (3)

where the parentheses denote integration over all coordinates,
save the radial variable r .

The interaction between the center of mass of the core and
the α cluster is obtained using the double-folding integral of the
realistic nucleon-nucleon (NN ) interaction with the density
distributions of the α particle and the core nucleus [25,26,29];
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that is,

V (r,�d ) = λ

∫
dr1dr2ρ1(r1)υ(s)ρ2(r2), (4)

where λ is the renormalized factor and υ(s = |r + r2 − r1) is
the effective NN interaction. The spherical density distribution
of the α particle ρ1(r1) is taken as a standard Gaussian form
[15]. The deformed density distribution of the core nucleus
ρ2(r2) has the form

ρ2(r2, θ ) = ρ0

1 + e[r−R(θ)]/a
, (5)

where the half-density radius R(θ ) is parametrized as R(θ ) =
R0[1 + β2Y20(θ ) + β4Y40(θ )].

In view of the deformed density distribution in the six-
dimensional integral, it is a difficult undertaking to derive
the microscopic α-nucleus potential. In this case, one usu-
ally simplifies the double-folding model by expanding the
density distribution of the deformed nuclei using a multipole
expansion [25]. The density distribution of the axial-symmetric
daughter nucleus is expanded as [25,26]

ρ2(r2, θ ) =
∑

�=even

ρ�
2(r2)Y�0(�d ). (6)

The sum is usually truncated at � = 4. Then the double folding
potential can be evaluated as the sum of different multipole
components [25,26],

V (r,�d ) =
∑

�=0,2,4...

V �(r)��(�,�d )

=
∑

�=0,2,4...

2

π

∫ ∞

0
dkk2j�(kr)ρ̃1(k)

× ρ̃�
2(k)ṽ(k)��(�,�d ), (7)

where ρ̃1(k) is the Fourier transformation of the density
distribution of the α particle, ρ̃�

2(k) is the intrinsic form
factor corresponding to the daughter nucleus, and ṽ(k) is the
Fourier transformation of the effective M3Y NN interaction
[30,31]. As the interaction is expressed in multipoles, the
manipulation of the interaction matrix presents no further
problem. The matrix elements can then be written in terms
of the Clebsch-Gordan coefficient as follows:

Vα,α′ (r) =
∑

�=0,2,4...

V �(r)

√
(2� + 1)(2α + 1)

4π (2α′ + 1)

× (〈α, 0, �, 0|α′, 0〉)2. (8)

At a large distance R the nuclear potential vanishes and
the Coulomb potential is spherically symmetric. At this point
the coupled-channel equations decouple. Therefore the wave
functions of Eq. (2) at R behave as in the spherical case
[23,24,32]:

un�j (r) = N�jG�(kJd
r), (9)

where N�j are normalization constants and G�(kJd
r) is the

irregular Coulomb wave function with kJd
= √

2µQJd
/h̄. We

know that the strict matching condition requires a complex
wave function, O�(kJd

r) = G�(kJd
r) + iF�(kJd

r). However,
considering that the α-decay width associated with the

imaginary part is usually extremely small, one could as well
use the real wave function G�(kJd

r) instead, as shown by
Refs. [23,24,32]. As usual, one can express the partial width
of the channel �j in terms of the normalization constant,

��j (R) = h̄2kJd

µ
|N�j |2 = h̄2kJd

µ

|un�j (R)|2
|G�(kJd

R)|2 . (10)

It is worth pointing out that Eq. (10) is valid only for distances
outside the range of the nuclear potential and independent
of R.

Because the decay energy cannot be predicted with suffi-
cient accuracy for a given potential, as before, we adjust the
renormalized factor λ to make all channels simultaneously
characterized by the experimental QJd

. This means that the
α-nucleus potential remains the same for all channels of a given
α emitter. Then, to account for the Pauli exclusion principle,
the quantum number n (i.e., the number of internal nodes) is
chosen by the Wildermuth condition [12–15,33],

G = 2n + � =
4∑

i=1

gi. (11)

In this expression, gi are the corresponding oscillator quantum
numbers of the nucleons composing the cluster, whose values
are restricted by the Pauli principle. In addition, the M3Y
NN interaction used in the double-folding model includes
a zero-range potential for the single-nucleon exchange. This
term guarantees the antisymmetrization of identical nucleons
in the α cluster and in the core nucleus [29–31].

The total width representing the tunneling through the
deformed barrier is a sum of partial channel widths,

�(R) =
∑
{�j}

��j (R), (12)

where ��j (R) corresponding to the decay into a core state Jd

is given by Eq. (10). Furthermore, it is convenient to perform
a straightforward calculation of branching ratios within this
framework. The branching ratio for α transitions to a core
state Jd is written as

bJd
% = ��j (R)/�(R) × 100%. (13)

In all of these derivations it is assumed that the deformation
of the daughter nucleus remains the same as in the decaying
nucleus.

In the spherical case, the radius and the diffuseness of
the density distribution of the core nucleus are taken as
R0 = 1.07 fm and a = 0.50 fm; this parametrization turns
out to work very well in the description of spherical α emitters
[20,24]. As a further extension toward deformed systems, we
assume that the α-nucleus potential should be the same for
the core nucleus in its ground or excited state so that it is
not necessary to introduce other new parameters, which would
reduce the predictive power of the calculation. Unfortunately,
it is found that the above parameter set has too small a radius
to give a quantitative description of the tunneling rate. This
is very similar to the situation of proton emission, where the
Becchetti-Greenlees Woods-Saxon parameter set is excellent
for spherical proton emitters but performs rather poorly for
deformed ones for the same reason [23,28]. With this in mind,
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FIG. 1. (Color online) Schematic plot of two-channel wave
functions in the α decay of the nucleus 242Cm. The solid line
(black) and the dash line (red), respectively, denote the 0+ → 0+

and 0+ → 2+ channel functions, with the same renormalized factor
λ = 0.711. Note that the y axis in panel (b) is magnified by 1014.

as in the case of proton emission, a new parameter set, which
has slightly larger radii, is taken for deformed α emitters as
follows: R0 = 1.15 fm and a = 0.50 fm.

As the last step toward calculating α-decay half-lives, we
need knowledge of the preformation factor Pα . It can be
evaluated, in principle, from the overlap between the actual
wave function of the parent nucleus and the decaying state
wave function describing one α cluster coupled to the residual
core nucleus. However, it is extremely difficult to obtain the
actual wave functions mentioned previously because of the
complexity of both the nuclear potential and the nuclear many-
body problem. It is expected that the preformation factor varies
smoothly in the open-shell region [34]. Based on this fact, we
take the same preformation factor, Pα = 0.39, for all 166 even-
even nuclei ranging from Z = 52 to Z = 104, which means
that a single parameter is used for the preformation factor in
this model. This is consistent with Buck et al.’s model [14] and
the value agrees well with both the microscopic calculation for
the nucleus 210Po [4] and the experimental results [34].

To gain a better insight into the coupled-channel effect,
in Fig. 1 we present the two-channel wave functions in
242Cm, separately corresponding to the 0+ → 0+ and 0+ →
2+ channels. As one would expect, in the interior region the
0+ → 0+ channel function is characterized by 11 nodes while
the 0+ → 2+ channel function is characterized by 10 nodes.
This coincides with the Wildermuth and Tang condition [33].
Moreover, the channel functions un�j (r) decrease rapidly
outside the nucleus typically by more than 10 orders of
magnitude, and in the outer region they have the oscillatory
behavior of the irregular Coulomb wave function, with an
amplitude decreasing with the distance [24].

As mentioned, the exact treatment of excitation spectrum
in the daughter nuclei allows a straightforward calculation
of branching ratios. Let us discuss the results of our cal-
culations. We perform the two-channel analysis for well-
deformed systems ranging from Z = 90 to Z = 100. The
calculation of branching ratios for α transitions into more
highly excited states is similar. Figure 2 shows the comparison
of the calculated branching ratios for 0+ → 0+ α transitions
with the experimental ones. Note that information on the
branching ratio for 0+ → 2+ transitions is included by the

FIG. 2. (Color online) Comparison of the calculated branching
ratios for 0+

g.s. → 0+
g.s. α transitions with the available experimental

data.

relationship b2+ = 100% − b0+ . Despite large uncertainties in
the measured values of branching ratios, one notices that there
is reasonable agreement in both the systematic behavior of the
various isotopic chains and the magnitude of branching ratios.
So the quantitative description of fine structure in α decay is
achieved in our two-channel analysis.

We have performed a systematic calculation of α-decay
half-lives within the new version of the GDDCM. The main
focus of our investigation is on even-even nuclei ranging from
Z = 52 to Z = 104, consisting of 65 well-deformed α emitters
and 101 spherical ones. The exact solution of the full coupled
equations (2) is indispensable for well-deformed systems, but
in the spherical case it is enough to deal with a single radial
equation instead of the full set (2). In our calculations, the only
input data are the mass number A and the charge number Z of
the parent nucleus, the deformation parameters β2 and β4 of
the corresponding daughter nucleus [35], and the experimental
QJd

value [36,37]. The calculated α-decay half-lives are found
to be in good agreement with the experimental values for all
166 even-even nuclei. Taking the longest-lived nucleus 148Sm
with a half-life of 2.21 × 1023 s [38] and the shortest-lived
nucleus 218Th with a half-life of 1.09 × 10−7 s [38], for
example, our theoretical results for them are, respectively,
4.21 × 1023 and 1.89 × 10−7 s, which are very close to their
experimental values.

For the sake of a clear insight into the agreement between
experiment and theory, we introduce an agreement factor (AF)
into the present analysis that is defined as

AF = 10| log10(T cal
1/2/T

exp
1/2 )|. (14)

For example, the agreement factor AF = 2–3 corresponds to
the absolute ratio of theoretical half-lives to experimental ones
between 1/3 and 1/2 or between 2 and 3. Figure 3 displays the
agreement factor as a function of proton number Z, showing
the comparison between calculations and experiments. As one
can see, there are 155 decays with AF = 1–3, 8 decays with
AF = 3–4, 2 decays with AF = 4–5, and only one decay with
AF = 5–6 among all 166 α decays. The largest AF = 5.13
is for the nucleus 210Po. This is consistent with the result of
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FIG. 3. The agreement factor calculated with the Eq. (14) as a
function of proton number Z.

the previous calculations [26]. Such a large deviation can only
be explained by the N = 126 closed-shell effect, leading to
a considerable decrease of the α-preformation factor. Indeed,
based on the previous study of exotic α decays around the
N = 126 shell, we expect that the Pα value in 210Po is 0.062,
significantly smaller than the present value 0.39 [20].

To compare the results of the exact formalism presented
here with other calculations, we briefly evaluate our overall
calculations. In Table I we list the average deviation 〈σ 〉 =∑N

i=1 | log10 T i
exp. − log10 T i

cal.|/N and the root-mean-square
(rms) deviation for even-even nuclei. The results obtained
using the generalized liquid-drop model (GLDM) [11] and
the density-dependent cluster model (DDCM) [26] are also
given for comparison. Note that the deviations 0.2, 0.3, and
0.4 of the logarithms correspond to the absolute deviations
of half-lives with factors of 1.6, 2.0, and 2.5, respectively.
Clearly, all of these models are very successful in calculating
α-decay half-lives.

TABLE I. Comparison of the average and rms deviations of the
GLDM, the DDCM, and our GDDCM for even-even α emitters. Some
new experimental data are taken from Ref. [39].

GLDM DDCM GDDCM

Number 131 157 166
〈σ 〉 – 0.209 0.191
rms 0.35 0.267 0.243

In conclusion, we have presented in this communication a
new version of the GDDCM to calculate the decay width. The
deformed potential is constructed in the double-folding model
by the multipole expansion method. The coupled-channel
Schrödinger equation with outgoing wave boundary conditions
is used to compute the decay width of well-deformed systems.
Exact calculations are performed for 65 well-deformed α

emitters and 101 spherical ones. The calculated α-decay
half-lives are in excellent agreement with the experimental
data, and the experimental branching ratios for well-deformed
systems are reproduced. In our approach, the α-preformation
factor is taken to be a constant for all the even-even nuclei. In
fact, the preformation probability should vary with different
parent nuclei, especially for the closed-shell region. In the
future, it would be interesting to combine our GDDCM with
microscopic calculations of α-preformation amplitudes to
achieve a fully microscopic description of the α-decay process.
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[23] S. Åberg, P. B. Semmes, and W. Nazarewicz, Phys. Rev. C 56,

1762 (1997).
[24] D. Ni and Z. Ren, Nucl. Phys. A825, 145 (2009).
[25] M. J. Rhoades-Brown et al., Z. Phys. A 310, 287 (1983).

051303-4



RAPID COMMUNICATIONS

MICROSCOPIC CALCULATION OF α-DECAY HALF- . . . PHYSICAL REVIEW C 80, 051303(R) (2009)

[26] C. Xu and Z. Ren, Phys. Rev. C 73, 041301(R) (2006); 74,
014304 (2006).

[27] S. Peltonen, D. S. Delion, and J. Suhonen, Phys. Rev. C 78,
034608 (2008).

[28] A. T. Kruppa, B. Barmore, W. Nazarewicz, and T. Vertse,
Phys. Rev. Lett. 84, 4549 (2000); B. Barmore, A. T. Kruppa,
W. Nazarewicz, and T. Vertse, Phys. Rev. C 62, 054315
(2000).

[29] A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and
A. Budzanowski, Nucl. Phys. A384, 65 (1982).

[30] G. Bertsch, J. Borysowicz, H. Mcmanus, and W. G. Love, Nucl.
Phys. A284, 399 (1977).

[31] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
[32] C. N. Davids and H. Esbensen, Phys. Rev. C 61, 054302 (2000).

[33] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus
(Academic Press, New York, 1997).
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[35] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[36] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337

(2003).
[37] R. B. Firestone, V. S. Shirley, C. M. Baglin, S. Y. Frank Chu,

and J. Zipkin, Table of Isotopes, 8th ed. (Wiley–Interscience,
New York, 1996).

[38] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys.
A729, 3 (2003).

[39] NNDC of the Brookhaven National Laboratory,
http://www.nndc.bnl.gov.

051303-5


