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Renormalization of the off-shell chiral two-pion exchange N N interactions
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The renormalization, finiteness, and off-shellness of short distance inverse-power singular interactions are
discussed. We show analytically that the renormalizability of the off-shell scattering amplitude relies completely
on the corresponding on-shell amplitude without proliferation of new counterterms. We illustrate the result by
complementary calculations both in coordinate as well as in momentum space in the simplest 1S0 channel for
chiral np interactions including two pion exchange.
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A traditional source of theoretical uncertainty in the study
of nuclear physics and nuclear reactions has been the relevance
and significance of off-shellness in the NN force (for a
review up to the mid-1970s see, e.g., [1] and references
therein). As it is well known, any off-shell ambiguity should
cancel in the final results and off-shellness itself cannot be
measured as a matter of principle. This does not necessarily
mean, however, that off-shellness can generally be completely
disposed of and most few- and many-body calculations do
involve off-shell quantities as intermediate stages. This feature
relies on the fundamental fact that quantum mechanics is
naturally formulated in terms of wave functions while they
are not directly measurable quantities except at asymptotically
large distances. A parallel statement for quantum field theory
applies for the fields themselves as well as the associated Green
functions.

Potential approaches to the NN interaction need the half
off-shell extrapolated potential and the half off-shell T -matrix
is used to determine the on-shell S-matrix. Moreover, a knowl-
edge of the off-shell T -matrix is needed, e.g., for nucleon-
nucleon bremsstrahlung, the three nucleon problem as well
as nuclear matter calculations and thus a phenomenological
determination of the off-shell T -matrix has been the subject of
intense research in the past [1]. A relevant issue in this regard
is that the definition of off-shellness is largely conventional.
Actually, the quantum mechanical trading between two-body
off-shellness and three- and many-body forces was shown in
Ref. [2], and further discussed for potential models [3] and
within Lagrangian field theory [4]. Moreover, unitarity for
the three-body problem rests on off-shell unitarity for the
two-body problem, imposing constraints on the acceptable
off-shellness [5,6].

Within the effective field theory (EFT) approach to nuclear
physics based on chiral symmetry [7,8] (for comprehensive
reviews see, e.g., Refs. [9–11]), the ambiguities related to
off-shellness can be rephrased in the freedom to undertake field
dependent transformations and using the equations of motion.
Actually, in purely contact EFT’s, where the interaction is
represented by a polynomial in momenta and/or energy,
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off-shellness can be completely ignored from the start by using
local field redefinitions [4,12]. This fact does not generally
hold for finite range interactions stemming from particle
exchange if the exchanged momentum becomes comparable to
the exchanged particle mass and where nonlocal and singular
field redefinitions would be needed. Similarly to phenomeno-
logical potentials, chiral potentials are not free from these
ambiguities since by construction they are extracted from
the (on-shell) S-matrix with a given perturbative definition
and it is possible in particular to choose either energy [8]
or momentum [13] dependent forms by using the on-shell
condition (see also Ref. [14]). Further ambiguities and their
equivalence have been discussed in Ref. [15]. Quite generally
chiral potentials are based on an expansion in inverse powers
of fπ (the pion weak decay constant) and MN (the nucleon
mass) and are necessarily singular at short distances by purely
dimensional reasons:

V (r) → 1

Mm
N f n

π rn+m+1
. (1)

The problem on how these singularities should be handled
from a renormalization point of view has been addressed in a
series of works for the on-shell case where the finiteness can be
established a priori [16,17]. In the subtractive renormalization
method conducted in momentum space [18–20] numerical
results seems to suggest that off-shell amplitudes are finite,
a fact proven recently [21]. Still, an analytic complementary
proof would be timely since there exist examples where a
direct calculation of a Green functions in effective field theory
does not necessarily guarantee off-shell finiteness from on
shell renormalization conditions (see, e.g., Ref. [22]) and
suitable field redefinitions may be requested to ensure off-shell
renormalizability.

The hard core problem was the first singular potential
which was treated by van Leeuwen and Reiner in the early
1960s [23]. It was shown that a finite and smooth result
for the off-shell scattering amplitude could be achieved if
the hard core boundary condition was also fulfilled by the
off-shell wave functions. Let us note that for a nonsingular
potential the standard way of going off-shell is to keep the
same regular boundary condition as in the on-shell case. In
the present paper we exploit this idea of a common boundary
condition both for the on-shell and off-shell states to show
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that finiteness rests on pure on-shell properties. Moreover,
we check the off-shell equivalence between the boundary
condition renormalization in coordinate and the counterterm
renormalization in momentum space thus extending similar
findings for the on-shell case [24,25].

In the c.m. frame, where the np kinetic energy is given
by E = p2/M , with M = 2µnp = 2MnMp/(Mp + Mn), the
scattering process is described by using the Lippmann-
Schwinger equation

T (E) = V + V G0T (E), (2)

with V the potential operator and G0 = (E − H0)−1 the
resolvent of the free Hamiltonian and T (E) the T -matrix for
energy E. The outgoing boundary condition corresponds to
E → E + i0+. Using the normalization 〈�x|�k〉 = ei�k·�x/(2π )3/2

one has

〈�k′|T (E)|�k〉 = 〈�k′|V |�k〉 +
∫ �

d3q
〈�k′|V |�q〉〈�q|T (E)|�k〉

E − (q2/2µ)
.

(3)

Here � means a generic regulator and represents the scale
below which all physical effects are taken into account
explicitly. Here we assume that |�k〉 and |�k′〉 are plane-wave
states with energies, Ek = k2/(2µ), Ek′ = k′2/(2µ) different
from Ep = p2/(2µ).

In coordinate space this corresponds to solve the inhomo-
geneous Schrödinger equation,

− 1

M
∇2�(�x) + V (�x)�(�x) = Ep�(�x)

+ (Ek − Ep)ei�k′ ·�x, (4)

with the outgoing boundary condition

�(�x) →
[
ei�k·�x + fp(�k′, �k)

eipr

r

]
χ

s,ms

t,mt
, (5)

with f (k̂′, k̂) the quantum mechanical off-shell scattering
matrix amplitude and χ

s,ms

t,mt
a 4 × 4 spin-isospin state.

Our points are best illustrated in the simplest 1S0 channel
the extension to other channels being straightforward but
cumbersome. In the 1S0 channel the scattering process is
governed by the Lippmann-Schwinger equation

Tp(k′, k) = V (k′, k) +
∫ �

0
dqq2M

V (k′, q)Tp(q, k)

p2 − q2 + i0+ , (6)

where Tp(k′, k) and V (k′, k) are the scattering amplitude and
the potential matrix elements, respectively, between off-shell
momentum states k and k′ in that channel. From the on-shell
scattering amplitude the phase shift, δ0(p), can be readily
obtained

Tp(p, p) = − 2

πMp
eiδ0(p) sin δ0(p). (7)

The LS equation (6) is solved by standard matrix inversion
techniques. The momentum space renormalization was ad-
dressed in Ref. [24] where we refer for further details.

In coordinate space and for a local potential V (r) the on-
shell problem can be determined without explicit reference to

off-shell momentum information, although the wave function
is obtained in the nonobservable interacting region. To simplify
the discussion we consider the half-off-shell problem (the full
off-shell case can be extended along similar lines), which
in the 1S0 channel follows from projecting Eqs. (4) and (5)
onto partial waves and setting k′ = k. One has to solve the
Schrödinger equation (primes denote derivative with respect
to the radial coordinate r) and asymptotic condition

− u′′
p(r, k) + U (r)up(r, k) = p2up(r, k)

+ (k2 − p2) sin(kr), (8)

up(r, k) → sin(kr) − kK(p, k) cos(pr). (9)

Here U (r) = 2µnpV (r) is the reduced potential [in fact, the
Fourier transformation of V (q)] and up(r, k) the reduced wave
function for an s-wave state with energy p2/M and momentum
k. In the on-shell case one has

up(r) ≡ up(r, p), K(p, p) = − tan δ0(p)

p
. (10)

Anticipating the singular character of chiral potentials [see,
e.g., Eq. (1)] these equations are solved for r > rc where rc is
the short distance cutoff which will eventually be removed,
rc → 0, and the reduced wave function up(r, k) is subject
to a suitable boundary condition at r = rc. What should this
boundary condition be? For the finite energy case, p �= 0,
it was argued [26] that completeness of the on-shell wave
functions up(r) requires a common domain for the Hilbert
space, requiring

u′
p(rc)

up(rc)
= u′

0(rc)

u0(rc)
, (11)

where the zero energy on-shell problem fulfills

− u′′
0(r) + U (r)u0(r) = 0, r � rc, (12)

u0(r) → 1 − r

α0
. (13)

The extended off-shell requirement of a common domain of
wave functions in the physical Hilbert space

u′
p(rc, k)

up(rc, k)
= u′

0(rc)

u0(rc)
, (14)

and correspond to the requirement of completeness of the on-
shell wave functions up(r). Mathematically this corresponds
to a one-parameter self-adjoint extension of the Hamiltonian
for this partial wave.

We analyze first the simplest case with no potential which
in momentum space corresponds to a contact interaction [24].
Since there is no potential the solutions for r > rc coincide
with the asymptotic ones, see Eqs. (9) and (13). Using the
relation between the on-shell and off-shell wave functions at
r = rc, Eq. (14), we get

K(p, k) = 1

k

k(α0 − rc) cos(krc) + sin(krc)

cos(prc) + (rc − α0)p sin(prc)
. (15)

Note that if rc → 0 the off-shellness disappears, i.e., we
have K(p, k) → K(p, p). The momentum space analysis in
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Ref. [24] yields the same conclusion. This result suggests that
by removing the cutoff we may get rid of the unwanted off-shell
ambiguities.

We turn now to the case of a potential with finite range.
Recently, the finiteness and equivalence of the momentum and
coordinate formulations of the renormalization problem for
on-shell scattering [24] and the deuteron bound state [25] has
been established. Here we extend those results to the off-shell
case. To this end we follow the insight of previous works
[16,17] and use the superposition principle of boundary
conditions. The half off-shell wave function up(r, k) can be
written as

up(r, k) = vp(r, k) − kK(p, k)wp(r, k), (16)

where vp(r, k) and wp(r, k) are two auxiliary wave functions
fulfilling

−v′′
p(r, k) + U (r)vp(r, k) = p2vp(r, k) + (k2 − p2) sin(kr),

(17)
vp(r, k) → sin(kr),

and

− w′′
p(r, k) + U (r)wp(r, k) = p2wp(r, k) ,

(18)
wp(r, k) → cos(pr),

respectively. Our aim is to show that for a singular potential
the function K(p, k) used in Eq. (9) is finite when the short
distance cutoff is removed, rc → 0. We analyze here the case
of a power like attractive potential, corresponding to the 1S0

channel considered in the present paper and represented as
2µpnV (r)R2 → −(R/r)n where R is a short distance Van der
Waals scale and n = 5, 6, 7 corresponds to NLO, N2LO, and
N3LO, respectively (see Eq. (1) and Ref. [26] for explicit
expressions for R). At short distances a WKB approximation
applies [27,28] and one can show that for r 	 R one has two
independent regular solutions

C(r) =
( r

R

)n/4
cos

[
2

n − 2

(
R

r

)n/2−1
]

, (19)

S(r) =
( r

R

)n/4
sin

[
2

n − 2

(
R

r

)n/2−1
]

, (20)

fulfilling the Wronskian normalization C ′(r)S(r) −
C(r)S ′(r) = 1/R. Note that these asymptotic solutions
are both energy and momentum independent. In terms of
these short distance solutions we must necessarily have at
short distances

vp(r, k) → A(p, k) C(r) + B(p, k)S(r), (21)

wp(r, k) → C(p, k) C(r) + D(p, k)S(r), (22)

v0(r) → a C(r) + b S(r), (23)

w0(r) → c C(r) + d S(r), (24)

where A(p, k), B(p, k), C(p, k), and D(p, k) are suitable
energy and momentum dependent normalization constants,
and a = A(0, 0), b = B(0, 0), c = C(0, 0), and d = D(0, 0)
the corresponding constants for the on-shell zero energy
problem. From the above equations and the short distance

boundary condition, Eq. (14), it is straightforward to obtain in
the limit rc → 0 the result

kK(p, k) = α0A(p, k) + B(p, k)

α0C(p, k) + D(p, k)
(25)

with

A(p, k) = bA(p, k) − aB(p, k), (26)

B(p, k) = cB(p, k) − dA(p, k), (27)

C(p, k) = bC(p, k) − aD(p, k), (28)

D(p, k) = cD(p, k) − dC(p, k), (29)

which shows explicitly the finiteness of the result. Actually,
using the subdominant short distance corrections to the wave
functions we can show that the finite cut-off effect scales as
O(rn/2−1

c ) corresponding for n = 5, 6, 7 to a fast convergence.
The previous off-shell relation is a straightforward general-
ization of the on-shell result found in Ref. [26]. Similarly
to that case, the off-shell functions A(p, k), B(p, k), C(p, k),
and D(p, k) depend by construction on the potential only.
The remarkable feature is the explicit bilinear dependence on
the scattering length, α0. The generalization of the previous
result to higher partial waves and coupled channels is quite
straightforward but cumbersome.

We turn now to the numerical results. For details on
potentials and parameter choices we refer to Ref. [24]. In
Fig. 1 we show the results for the renormalized half-off shell
K-matrix for a fixed value of the laboratory (lab) energy as a
function of the c.m. momentum. We do so for NLO, N2LO,
and N3LO, where the potential diverges as 1/r5, 1/r6, and
1/r7, respectively. We have checked the consistency between
coordinate and momentum space NLO and N2LO results
provided the same renormalization conditions are imposed.
This confirms the adequacy of requesting the common bound-
ary condition for both on-shell and off-shell states, Eq. (14).
Besides the sharp cut-off method, we have also tried a gaussian
cutoff, with similar results for off-shell momenta well below
the cut-off range. Despite the strong short distance singularities
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FIG. 1. Renormalized half off-shell K-matrix as a function of the
c.m. momentum (in MeV) for Tlab = 50 MeV. The on-shell point
corresponds to p = 153.2 MeV.
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our renormalized K-matrix does not exhibit any pathological
behavior and looks as smooth as other phenomenological and
nonsingular potentials.

We summarize our points. We have shown that the renor-
malizability and finiteness of the off-shell scattering amplitude
for power such as short distance singular potentials rests solely
on purely on-shell information. The outgoing amplitudes are
well behaved and soft despite the underlying short distance
singularity being renormalized. This complies to the desirable
expectation that after renormalization all short distance sen-
sitivity has largely disappeared, possibly including off-shell
ambiguities. Obviously, we cannot compare our results directly
to any experimental quantity as off-shellness cannot be pinned
down by definition. The impossibility of measuring off-shell

effects directly has been emphasized in Ref. [29] mainly
due to the freedom in defining the physical interpolating
field (see also [30]). While renormalized chiral interactions
might be phenomenologically tested by undertaking three-
body, pp-bremsstrahlung, or nuclear matter calculations, it
is natural to expect many difficulties. Our results suggest a
viable and simpler alternative where the underlying two body
singularities are tamed first through off-shell renormalization
and the specific additional complications of the problem
when more than two bodies are present can be tackled
afterwards.

One of us (E.R.A.) thanks Kanzo Nakayama for useful
communications and L. L. Salcedo for discussions.

[1] M. K. Srivastava and D. W. L. Sprung, Adv. Nucl. Phys. 8, 121
(1975).
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