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Equation of state of low-density neutron matter, and the 1 S0 pairing gap
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We report results of the equation of state of neutron matter in the low-density regime, where the Fermi wave
vector ranges from 0.4 � kF � 1.0 fm−1. Neutron matter in this regime is superfluid because of the strong and
attractive interaction in the 1S0 channel. The properties of this superfluid matter are calculated starting from a
realistic Hamiltonian that contains modern two- and three-body interactions. The ground state energy and the
1S0 superfluid energy gap are calculated using the auxiliary field diffusion Monte Carlo method. We study the
structure of the ground state by looking at pair distribution functions as well as the Cooper-pair wave function
used in the calculations.
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I. INTRODUCTION

Pure neutron matter is the natural first approximation to the
baryonic matter that composes the bulk of neutron stars. At
very low densities below the neutron drip line (i.e., where the
Fermi wave vector is roughly, kF <∼ 0.2 fm−1), neutron star
matter is conjectured to be nuclei surrounded by a relativistic
gas of electrons [1]. At higher densities, the matter becomes
liquid and very neutron rich. Here we study matter at the Fermi
wave vector 0.4 � kF � 1.0 fm−1, where it is reasonable to
approximate it as pure neutron matter, and we also extend
some of our results into the lower density regime in order to
compare them with other calculations.

At these densities, the interaction is dominated by the
1S0 channel with a large and negative scattering length, a �
−18.5 fm. The product of the effective range and the Fermi
wave vector is of order unity, so while the form of interaction
cannot be neglected, it becomes less important. Analysis of the
phase shifts of the neutron-neutron 1S0 interaction indicates
that neutrons should pair and form a superfluid. Therefore
the superfluid phase must be included when investigating the
equation of state in this regime.

Many methods have been used to approximately calculate
the equation of state. One class of methods uses Skyrme or
relativistic mean-field methods that use effective interactions
that have been fit to the properties of nuclei. However, even
those calculations that describe neutron-rich nuclei reasonably
well give rather different equations of state for pure neutron
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matter [2]. We instead use a nonrelativistic Hamiltonian with
two- and three-body interactions. All modern accurate two-
body interactions fit the Nijmegen data [3] within experimental
errors and should give essentially the same equation of state at
low density. At longer range, these interactions are dominated
by the one-pion exchange and have strong spin-isospin
dependence, which must be included for accurate predictions.
Three- and higher-body interactions are less well known, but
in this density regime they are small.

Our calculations extend the work we first reported in
Ref. [4]. The ground state of neutron matter is computed
using the auxiliary field diffusion Monte Carlo [5] (AFDMC)
algorithm; it is an extension of the diffusion Monte Carlo
method [6], and the Green’s function Monte Carlo method
[7]. These Monte Carlo algorithms are very well suited to
projecting a trial wave function onto the ground state in order
to study the ground state properties of a system. The Green’s
function Monte Carlo method has been used to study the
properties of light nuclei with very high accuracy [8]. The
advantage of the auxiliary field diffusion Monte Carlo method
over the Green’s function Monte Carlo method is that it can
be extended to larger nuclear systems; in fact, it has been
used to calculate properties of heavy nuclei [9], neutron-rich
isotopes [10,11], and neutron [12,13] and nuclear matter [14]
by simulating systems with upward of 100 nucleons.

The equation of state of neutron matter in the low-density
regime has been the subject of many previous calculations
[4,15–24]. While in this regime, different Hamiltonians and
different methods give similar behaviors for the energy as
a function of the density, there are appreciable differences
in other important properties. In particular, the value of the
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1S0 superfluid energy gap is at present not well clarified
and strongly depends on the Hamiltonian and the solution
method [4]. In this paper, we focus on both the energy and
the energy gap by considering a fully realistic Hamiltonian,
and solve for the ground state using the AFDMC technique.
As a starting point for the calculation, we considered two
forms for the trial wave function. The first is a filled Fermi
sea having the properties of a normal Fermi liquid, which we
will call the normal phase. The second has neutrons paired
in the 1S0 channel with a Bardeen-Cooper-Schrieffer (BCS)
superfluid structure [25]. At a fixed density, we find that the
superfluid phase of the system is only marginally favored over
the normal phase. However, to calculate the superfluid energy
gap, the BCS structure must be used.

II. HAMILTONIAN

We study the ground state of neutron matter beginning with
the nonrelativistic nuclear Hamiltonian

H = − h̄2

2m

N∑
i=1

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk, (1)

where m is the mass of the neutron, and vij and Vijk are two-
and three-body potentials. Such a form for the Hamiltonian
(with the kinetic energy modified to take into account the
mass difference of the neutron and proton) has been shown
to describe properties of light nuclei in good agreement with
experimental data (see Ref. [8] and references therein). All
the degrees of freedom responsible for the interaction between
nucleons (such as the π , ρ, �, etc.) are integrated out and
included in vij and Vijk .

At present, several realistic two-nucleon interactions fit
the scattering data with very high precision. We use the
two-nucleon potentials belonging to the Argonne family [26].
Such interactions are written as

vij =
M∑

p=1

vp(rij )O(p)(i, j ), (2)

where O(p)(i, j ) are spin-isospin-dependent operators. The
number of operators M characterizes the interaction; the
most accurate for the Argonne family is the Argonne AV18
with M = 18 [26]. Here we consider a simpler form derived
from AV18, namely, the AV8′ [27] with a smaller number
of operators. For many systems, the difference between this
simpler form and the full AV18 potential can be computed
perturbatively [13,28], as has been done in all Green’s function
Monte Carlo calculations to date. Most of the contribution
of the two-nucleon interaction is due to one-pion exchange
between nucleons, but the effect of other meson exchanges as
well as some phenomenological terms are also included.

The eight O(p)(i, j ) operators in AV8′ are given by the
four central components 1, τ i · τ j , σ i · σ j , (σ i · σ j )(τ i · τ j ),
the tensor Sij , the tensor-τ component Sijτ i · τ j [where
Sij = 3(σ i · r̂ij )(σ j · r̂ij ) − σ i · σ j ], the spin-orbit Lij · Sij ,
and the spin-orbit-τ (Lij · Sij )(τ i · τ j ) [where Lij and Sij

are the relative angular momentum and the total spin of the
pair ij ]. All the parameters describing the radial functions of
each operator in AV18 are fit to nucleon-nucleon scattering

data below 350 MeV in the Nijmegen database [3]. The AV8′
interaction is obtained by starting from AV18 and making
an isoscalar projection. It is refit in order to keep the most
important features of AV18 in the scattering data and the
properties of the deuteron [27].

The three-nucleon interaction is essential to overcome the
underbinding of nuclei with more than two nucleons. While the
two-nucleon interaction is fit to scattering data and correctly
gives the deuteron binding energy, it is not sufficient for
describing the ground state of light nuclei with three or more
nucleons. The Urbana-IX (UIX) potential corrects this and was
fit to obtain the correct triton energy using Green’s function
Monte Carlo and to correctly reproduce the expected saturation
energy of nuclear matter within the Fermi hypernetted-chain
approximation [29]. It contains a Fujita-Miyazawa term [30]
that describes the exchange of two pions between three
nucleons, with the creation of an intermediate excited � state.
Again, a phenomenological part is added to sum all the other
neglected terms. The generic form of UIX is

Vijk = V2π + VR. (3)

The Fujita-Miyazawa term [30] is spin-isospin dependent:

V2π = A2π

∑
cyc

[
{Xij ,Xjk}{τ i · τ j , τ j · τ k}

+ 1

4
[Xij ,Xjk][τ i · τ j , τ j · τ k]

]
, (4)

where the Xij operators describe the one-pion exchange (see
Ref. [31] for details). The phenomenological part of UIX is

V R
ijk = U0

∑
cyc

T 2(mπrij )T 2(mπrjk). (5)

The factors A2π and U0 are kept as fitting parameters. Other
forms of three-nucleon interaction, called the Illinois forces
[31], which include three-nucleon Feynman diagrams with
two-� intermediate states, are available. Unfortunately they
provide unrealistic overbinding of neutron systems when the
density increases [12,32], and they do not seem to describe
realistically the higher density (i.e., ρ � ρ0 = 0.16 fm−3)
nucleonic systems. However, in the low-density regime consid-
ered in this paper, the contribution of the three-body interaction
is very small compared to the total energy of the system, so
the small errors in the UIX interaction should have negligible
contributions to the equation of state and energy gap.

III. AFDMC METHOD AND THE PFAFFIAN WAVE
FUNCTION

Uniform neutron matter is simulated by solving the ground
state of a fixed number N of neutrons in a periodic box, whose
volume is fixed by the density of the system. The ground
state of the system is calculated by means of the AFDMC
algorithm [5]. Diffusion Monte Carlo projects out the lowest
energy state from a trial wave function ψT by a propagation in
imaginary time:

ψ(τ ) = e−(H−ET )τψT , (6)

where ET is a normalization factor. In the τ → ∞ limit, the
only component of ψT that survives is the lowest energy one
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not orthogonal to ψT :

φ0 = lim
τ→∞ ψ(τ ). (7)

The evolution in imaginary time is performed by solving the
integral equation

ψ(R, τ ) =
∫
dR′G(R,R′, τ )ψT (R′), (8)

where G(R,R′, τ ) is the Green’s function of the Hamiltonian
that contains a diffusion term, coming from the kinetic operator
in H , and a branching term from the potential. The exact
form of G(R,R′, τ ) is unknown, but it can be accurately
approximated in the limit of �τ → 0. The above integral
equation is then solved iteratively, with a small time step,
for a sufficiently large number of steps. A detailed description
of the algorithm as well as the importance sampling technique
used to reduce the variance can be found in Refs. [33,34].

The presence of spin operators in the Hamiltonian requires
a summation of all possible good spin states in the wave
function [35]. This summation grows exponentially with the
number of neutrons; for example, for a system of 14 neutrons,
the computation of 〈ψ(R)|ψ(R)〉 is a sum of squares of
214 spin amplitudes. The explicit summation of spin states
is performed in Green’s function Monte Carlo, but not in
AFDMC, calculations where the spin states are sampled using
Monte Carlo techniques [5]. This sampling is performed
by reducing the quadratic dependence of spin operators in
the exponential to a linear form by means of the Hubbard-
Stratonovich transformation. The effect of an exponential of a
linear combination of spin operators consists of a rotation of
the spinor for each neutron during the propagation. To have an
efficient algorithm, the trial function must be chosen so that it
can be efficiently evaluated when each neutron is in a specific
position and spinor state.

Since both positions and spins can be sampled, the AFDMC
method can be used to solve for the ground state of much larger
systems (over 100 neutrons) than the Green’s function Monte
Carlo with full spin summations.

More detailed explanations of the AFDMC method and
how to include the full two- and three-nucleon interactions in
the propagator can be found in Refs. [12,13,32,36], where the
fixed-phase approximation used to control the fermion sign
problem is also discussed.

The AFDMC method projects out the lowest energy state
with the same symmetry as the trial wave function from which
the projection is started. The general form of the trial wave
function is

ψT (R, S) =
⎡
⎣∏

i<j

fJ (rij )

⎤
⎦�(R, S), (9)

where R ≡ (r1, . . . , rN ) represents the spatial coordinates and
S ≡ (s1, . . . , sN ) the spin states of the neutrons. The spin
assignments si consist of giving the two spinor components for
each neutron, namely, the two complex numbers ai , bi where

|si〉 = ai |↑〉 + bi |↓〉, (10)

and the {|↑〉, |↓〉} is the spin-up and spin-down basis. The
function fJ entering in the so-called Jastrow part of the trial

wave function has only the role of reducing the overlap of
neutrons and thereby reducing the energy variance. Since it
does not change the phase of the wave function, it does not
influence the computed energy value in projection methods.
The function fJ is computed as described in Ref. [13].

The antisymmetric part � of the trial wave function is
usually given by the ground state of noninteracting fermions
(Fermi gas), which is written as a Slater determinant of single-
particle functions. For example, homogeneous systems are
usually simulated by considering plane waves as orbitals. In
this case,

�n(R, S) = A [φ1(r1, s1) . . . φN (rN, sN )] , (11)

where A is the antisymmetrizer [see Eq. (A3)],

φα(r i , si) = eikα ·r i 〈si |χs,ms,α〉, (12)

and α is the set of quantum numbers of single-particle orbitals
that are plane waves fitting the box. The correct symmetry of
the ground state is given using the closed shells occurring when
the total number of fermions in a particular spin configuration
is 1, 7, 19, 27, 33, . . ..

However, in superfluid neutron matter, there is a strong
coupling between neutrons, and a wave function having a BCS
structure must be used.

BCS pairing correlations can substantially change the nodal
structure of a trial wave function [37,38]. This change, which
gives the off-diagonal long-range order of the superfluid phase,
will greatly alter the fixed-phase (or constrained path) energy.
To correctly describe the superfluid ground state with these
quantum Monte Carlo methods, we need to use a trial wave
function with explicit pairing. For central potentials and singlet
pairing, the BCS trial function can be written as a determinant
[37,39]. However, for problems with a tensor force, or for spin
triplet pairing, a general pairing state must be used.

A fully paired state of N neutrons can be written, as shown
in Appendix A, as

A[φ12φ34 . . . φN−1,N ]. (13)

Similarly, we can construct a general state with n paired and o

unpaired orbitals for a total of N = 2n + o particles as

A[φ12φ34 . . . φ2n−1,2n . . . ψ1(2n + 1) . . . ψo(N )], (14)

which is the Pfaffian of the (N + o) × (N + o) skew-
symmetric matrix [39]
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 φ12 φ13 . . . φ1N ψ1(1) . . . ψo(1)

−φ12 0 φ23 . . . φ2N ψ1(2) . . . ψo(2)

...
...

. . .
...

...
...

...
...

−φ1N −φ2N −φ3N . . . 0 ψ1(N ) . . . ψo(N )

−ψ1(1) −ψ1(2) −ψ1(3) . . . −ψ1(N ) 0 . . . 0

...
...

...
...

...
...

. . .
...

−ψo(1) −ψo(2) −ψo(3) . . . −ψo(N ) 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)

where the lower o × o section is all zeros.
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The Pfaffian is the antisymmetric product

PfA = A[a12a34a56 . . . aN−1,N ]. (16)

The result is normalized such that every equivalent term occurs
only once, and aij = −aji .

Just as the determinant of a dense matrix can be calculated
efficiently in order N3 operations, similar elimination methods
can compute the Pfaffian. The basic Pfaffian calculational
methods we use here and have used for all previous superfluid
neutron matter studies [4,40] are described in some detail
in Sec. II of Ref. [41], and those results are summarized in
Appendix B along with some additional techniques needed for
these nuclear calculations.

The nuclear Hamiltonian has spin-dependent terms that can
flip the spin. For the simpler case of a purely central potential,
the Hamiltonian will not change the particles’ spin. Therefore
in this simpler case, we can solve for the ground state in one
sector where each particle has a specified spin, and we only
need to antisymmetrize over the particles with the same spin.
In that case, �BCS reduces to a determinant. Since in our
AFDMC method, the Hamiltonian can change the particles’
spin, and the particles can then take on any spinor value, we
need to be able to evaluate the trial wave function for arbitrary
spinor values for each particle. Therefore the Pfaffian that
gives the full antisymmetric form must be used. As shown in
Appendix A, the pairing orbitals φ we used have the form

φ(r ij , si , sj ) =
∑

α

vkα

ukα

eikα ·r ij χ (si, sj )

=
∑

α

cαeikα ·r ij χ (si, sj ), (17)

where the sum over α indicates the k-space shells of the cube
with k values

knxnynz
= 2π

L
(nx x̂ + ny ŷ + nz ẑ) (18)

for integer nx , ny , and nz. The function χ is the spin-singlet
wave function for two neutrons

χ (si, sj ) = 1√
2

(〈sisj |↑↓〉 − 〈sisj |↓↑〉). (19)

With the spin states given as spinors as in Eq. (10), this
becomes

χ (si, sj ) = a∗
i b

∗
j − b∗

i a
∗
j√

2
. (20)

Note that if the pairing coefficients cα are zero for all
|kα| > kF , the Pfaffian of Eq. (15) is exactly the Slater
determinant of spin-up and -down neutrons filling the Fermi
sea, and the Pfaffian form goes over to the normal liquid state.
The parameters cα are chosen variationally by performing a
correlated basis function calculation [40,42]. However, various
other wave functions were considered to ascertain the effect
of a particular choice on the results.

TABLE I. AFDMC energies per particle for 66 neutrons interact-
ing with the AV8′ + UIX interaction in a periodic box as a function
of the Fermi wave vector and corresponding density ρ. The values
En correspond to the simulation of neutron matter using the Fermi
gas ground state in the trial wave function, while EBCS are the results
obtained using �BCS. All the energies are expressed in MeV.

kF (fm−1) ρ (fm−3) En/N EBCS/N

0.4 0.00216 1.289(2) 1.239(2)
0.6 0.00730 2.606(4) 2.579(2)
0.8 0.01729 4.277(7) 4.305(3)
1.0 0.03377 6.197(2) 6.231(3)

IV. RESULTS

A. Equation of state

We computed the energy of neutron matter by simulating
neutrons in a periodic box at densities corresponding to kF =
0.4, 0.6, 0.8, and 1.0 fm−1 using in the trial wave function both
�n and �BCS. We found that the absolute energy is slightly
different depending on the choice of the trial function �. The
results obtained using the two different trial wave functions
are reported in Table I. As can be seen, the BCS state is
favored at kF = 0.4 and 0.6 fm−1, while the normal state trial
function gives the lowest energy at kF = 0.8 and 1.0 fm−1. The
maximum difference between the results for the two different
trial wave functions is about 4% of the total energy at kF =
0.4 fm−1, probably because at such a low density the pairing
between neutrons in the 1S0 channel is very important, and
�BCS includes such correlations in the wave function in a
more effective way. In the other cases, the energies obtained
with �BCS and �n are within 1%.

Since the coefficients entering in �BCS were chosen by
a correlated basis function (CBF) calculation that adds a
two-body correlation factor to the usual BCS state [40,42],
to determine if this method is adequate for finding a good BCS
form, we repeated some of the calculations using different
coefficients. In particular, we tried using as a pairing function
the solution from the uncorrelated BCS equation, as well as a
pairing function with the same form as that of Refs. [22,43].
This calculation has carefully optimized coefficients, but the
interaction is the 1S0 channel of AV18 acting only between
unlike spins. In both cases, we find the energy is slightly
higher than that found when using the correlated basis function
coefficients.

The equation of state of low-density neutron matter com-
puted using �BCS is displayed in Fig. 1 and compared with the
diffusion Monte Carlo results of Gezerlis and Carlson [22],
the variational cluster summation calculation of Friedman
and Pandharipande [15] and the results of Epelbaum, Krebs,
Lee, and Meissner [21]. The differences between the various
calculations are due to the different approximations and inter-
actions used. The AFDMC method uses a realistic Hamiltonian
containing a modern two-body and the corresponding three-
body force. The variational cluster summation calculation was
performed using the older Urbana v14 two-nucleon interaction
[44] modified to include a density-dependent term that models
the effect of a three-body force. As mentioned above, the
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FIG. 1. (Color online) Equation of state of neutron matter as
a function of the Fermi wave vector kF . The energy has been
divided by the energy of the noninteracting Fermi gas, EFG =
3
5

h̄2k2
F

2m
N . The AFDMC result is obtained using the full Hamiltonian

AV8′ + UIX (green circles), and compared with the results of Gezerlis
and Carlson (red squares) who considered a simpler Hamiltonian
[22]. The blue triangles correspond to the calculation of Friedman
and Pandharipande using the Urbana v14 two-nucleon interaction
modified to include some three-body effects [15]. The black diamonds
show the results of Epelbaum, Krebs, Lee and Meißner [21]. In the
inset box, the AFDMC energy in MeV is shown as a function of the
density ρ in fm−3 along with a curve to guide the eye.

calculation of Gezerlis and Carlson uses only the 1S0 channel
interaction of AV18 between unlike spins. This choice is
motivated by the fact that this channel is dominant in neutron
matter in this regime. However, the effect of other channels as
well as using the 1S0 interaction partly in the triplet channel,
since all unlike spin pairs interact, could play an important
role in the many-body correlations of the system. Finally,
Epelbaum and collaborators computed the equation of state
within the chiral effective field theory by simulating neutrons
on the lattice up to the next-to-next-to-next-to leading order
(N3LO) [21].

Each of these calculations used different methods to solve
for the ground state. Both the AFDMC and the diffusion
Monte Carlo method used by Gezerlis and Carlson are
projection methods that, apart from the constraint used to
control the fermion sign problem, are exact. However, the
constraint plays an important role in finding the correct ground
state, and different trial functions give different constraints
and therefore different results. For these two Monte Carlo
methods, trial functions have the same kind of BCS form.
However, Gezerlis and Carlson use a different approach for
the choice of the coefficients entering in the pairing orbitals of
Eq. (17). Their cα parameters are chosen by varying them to
minimize the fixed-node energy [22,37,38]. Unfortunately, this
same technique is not currently applicable to AFDMC because
the variance of the calculation is too high to be able to choose
the coefficients in a reasonable amount of computational
time. The cα used in our AFDMC calculations are chosen
instead by using a correlated BCS wave function solved

within the CBF/BCS theory [40,42] as discussed above.
The variational cluster summation calculation may suffer
from important uncontrolled approximations coming from the
cluster expansion, as we recently pointed out in our paper
comparing the equation of state of neutron matter at higher
densities [13]. In addition, the variational cluster summation
calculation does not include any pairing correlations in the
variational wave function. The equation of state can be
computed using N3LO as described in Refs. [19–21], and the
results are available for a small number of neutrons (N = 12).
They predict an equation of state that is globally lower than
the other results. This model, while very promising because it
attacks the problem from a more fundamental point of view,
will need to be extended to larger systems.

B. Superfluid gap

In a full many-body calculation, the superfluid gap can be
evaluated by using the difference

�(N ) = E(N ) − 1
2 [E(N + 1) + E(N − 1)] , (21)

where the number of neutrons N is taken to be odd. The
AFDMC algorithm can be used to simulate very large systems
with up to a hundred nucleons [12–14,32]. Unfortunately,
because the gap has to be evaluated as the difference
between total energies of different systems, the statistical
error related to � is proportional to the number of neutrons,
and we have not been able to develop an efficient method
of correlated sampling. As a consequence, in principle, the
number of neutrons is arbitrary, but if N is too large, the
statistical error affecting the gap becomes larger than the gap
itself. The maximum number of neutrons used in this work
is 68.

Particular care was taken to check that the AFDMC had
converged. The simulations were repeated with different time
steps. Neither the energy nor the gap is dependent on the time
step used; the extrapolation to the zero limit is within our error
bars.

The gap is strongly dependent on the number of neutrons
for small N . For both kF = 0.4 and 0.6 fm−1, the � computed
with N = 12, . . . , 18 is noticeably larger than that computed
with N = 62, . . . , 68. We find that at kF = 0.4 fm−1, the
gap is �(14) = 1.79(6) and �(66) = 1.5(2) MeV; while at
kF = 0.6 fm−1, �(14) = 2.59(6) and �(66) = 2.1(2) MeV.
This behavior is well described by the analysis of Gezerlis
and Carlson, who solved the BCS equation in the simulation
cell and then reproduced this effect by using diffusion
Monte Carlo [22]. In their paper, they calculate with up to
90 particles without observing a substantial change in the
gap compared to that given by simulating the system with
about 66 particles, giving us confidence that our gaps have
converged.

We report in Fig. 2 the superfluid gap computed with
AFDMC using N = 62, . . . , 68, compared with other calcula-
tions. It is clear that the different methods used to compute the
pairing gap give different results. The mean-field BCS result
is essentially unchanged when other realistic two-nucleon
interactions are used [42,51], and it reaches a maximum of
about 3 MeV. This is because all the two-body interactions
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FIG. 2. (Color online) 1S0 pairing gap of neutron matter as a
function of the Fermi wave vector kF computed with different
methods. In the figure we display works of Wambach et al. [45], Chen
et al. [46], Schulze et al. [47], Schwenk et al. [48], Cao et al. [49],
Gezerlis and Carlson [22], and Margueron et al. [50]. All the results
are compared with a BCS calculation (dashed line).

are fit by reproducing the S- and P -wave components from
experimental data. However, a realistic study of the pairing
gap must include the corrections due to the polarization effects
given by the medium. The various results can be essentially
divided into two different groups according to the different
way used to include this effect: (1) the many-body calculation
using effective interactions based on Brueckner theory or
Hartree-Fock calculations or (2) the microscopic calculations
(Monte Carlo methods or CBF theory) where the whole
Hamiltonian describing the system is solved. The many-body
effective-interaction calculations of Wambach et al. [45], Chen
et al. [46], Schulze et al. [47] and Schwenk et al. [48] predict
a large reduction compared to the BCS gap, with a maximum
gap of about 1 MeV. The microscopic calculations based
on CBF theory or using quantum Monte Carlo techniques
show a reduction of the gap compared to the BCS result
particularly at high densities, where the maximum is about
2.1 MeV using AFDMC and 2.4 MeV with correlated basis
functions. The other available quantum Monte Carlo result
by Gezerlis and Carlson was performed for smaller densities,
because it neglects several contributions from other channels
of the interaction [22]. The recent results provided by other
many-body techniques using Bruckner Hartree-Fock and new
effective interactions by Cao et al. [49] and Margueron et al.
[50] predict a superfluid gap closer to the AFDMC result.
Their maximum value of � is about 1.7 MeV. In addition, the
different methods predict different densities at which the gap
reaches the maximum value.

C. Pair distribution functions and pairing orbitals

Besides computing energies, the structure of 1S0 pairing
can be investigated by a qualitative study of pair distribution
functions. If the pair energy is low enough that only the 1S0

or the 1S0 and 3P1 channels are important, the interaction can
be written as vc(rij ) + vσ (rij )σ i · σ j . Even though we keep
the full interaction, it is interesting to look at the two-body
distributions that have this form. The corresponding pair
distribution functions are defined by

gc(r) = 1

2πr2ρN

∑
i<j

〈ψ |δ(rij − r)|ψ〉
〈ψ |ψ〉 , (22)

and

gσ (r) = 1

2πr2ρN

∑
i<j

〈ψ |δ(rij − r)σ i · σ j |ψ〉
〈ψ |ψ〉 , (23)

where ρ is the density. ρgc(r)d3r is the probability of finding
a neutron in an infinitesimal volume d3r at a distance r from
another neutron, while ρgσ (r)d3r is −3 times the probability
of finding a neutron such that the two are in a singlet state
plus the probability of finding a neutron such that the two
are in a triplet state. In the limit of large r , gc(r) → 1, while
gσ (r) → 0.

Since σ i · σ j is 1 in triplet and −3 in singlet channels, we
can write singlet and triplet pair distribution functions, gS(r),
where S = 0 for the singlet and S = 1 for the triplet,

g0(r) = 1
4 [gc(r) − gσ (r)], (24)

and

g1(r) = 1
4 [3gc(r) + gσ (r)]. (25)

Because AFDMC, like diffusion Monte Carlo, most easily
calculates mixed estimates

〈O〉M = 〈ψ |O|ψT 〉
〈ψ |ψT 〉 , (26)

we extrapolate these from the variational values

〈O〉V = 〈ψT |O|ψT 〉
〈ψT |ψT 〉 (27)

as 〈O〉 � 2〈O〉M − 〈O〉V .
The pair distribution functions computed with AFDMC

are shown in Fig. 3. Closed symbols refer to gc(r) at
various densities, while open symbols represent gσ (r). The
calculations were performed at different Fermi wave vectors,
as indicated in the legend of the figure. As can be seen, the
strong interaction in the 1S0 channel is evident in both the gc(r)
and gσ (r), which exhibit peaks at the same distance. The peak
value of gσ (r) is about −3 times that of gc(r), and the peaks
increase as the density is lowered.

The strong 1S0 correlation is more evident using the
singlet and triplet channel distribution functions, which we
show in Fig. 4. Closed symbols represent the singlet state
of the pair, while open ones the triplet state at various
Fermi wave vectors as indicated in the legend. The singlet
channel becomes very strong and dominant when the density
decreases.
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FIG. 3. (Color online) Pair distribution functions gc(r) and
gσ (r) for neutron matter as defined in the text. The curves with
closed symbols are the gc(r), those with open ones indicate gσ (r),
corresponding to different Fermi wave vectors. See the text for details.

We can compare these pair distribution functions with those
of a noninteracting Fermi gas,

gFG
0 (r) = 1

4 [1 + l2(r)], (28)

and

gFG
1 (r) = 3

4 [1 − l2(r)], (29)

where l(r) is the Slater function defined as

l(r) = 3
sin(kF r) − kF r cos(kF r)

(kF r)3
. (30)
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FIG. 4. (Color online) Pair distribution functions g0(r) and g1(r)
as defined in the text. Closed symbols represent the pair distribution
function projected into the singlet spin channel, while open ones the
triplet spin channel. See the text for details.
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FIG. 5. (Color online) Pair distribution functions g0(r) and g1(r),
as defined in the text, at kF = 1.0 fm−1 and kF = 0.4 fm−1. See the
text for details.

We report in Fig. 5, g0(r) and g1(r) and the corresponding
gFG

0 (r) and gFG
1 (r) of the Fermi gas at Fermi wave vectors

kF = 1.0 and kF = 0.4 fm−1. The triplet pair distribution
function does not differ very much from the noninteracting
case; it does have a small deviation at large distances for
kF = 1.0 fm−1. This means that quantum correlations, in this
channel and in this density regime, are not too important.
They become relatively more important at higher densities.
The singlet pair distribution function, instead, is completely
different from that of the noninteracting Fermi gas. However,
at kF = 1.0 fm−1, the peak of g0(r) is not so very far from
the maximum value of gFG

0 (r) at the origin; while at kF =
0.4 fm−1, the strong peak of the singlet is far from the nonin-
teracting case. In Fig. 5, the singlet pair distribution function
is also compared with the corresponding variational correlated
basis function calculations using either the Fermi hyper-netted
chain (FHNC) approach [52] for the normal phase or CBF/BCS
[42] for the superfluid phase. It is evident that the strong peak of
the singlet is due to the presence of the strong correlations in the
system.
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FIG. 6. (Color online) Spatial functions used in the pairing
orbitals at kF = 0.6 fm−1. The solid (blue) line is the function
obtained using the correlated basis function (CBF) coefficients, while
the dashed (red) line is the simulation cell Slater function.

We plot in Fig. 6 the spatial part of the pairing function used
in �BCS at kF = 0.6 fm−1, along the three spatial directions
100, 110, and 111 obtained by using the CBF coefficients.
These are compared with the simulation cell Slater functions
�cell = 2

N

∑
k,k<kF

eik·r . The functions corresponding to each

direction end at L/2, L/
√

2, and
√

3/4L, where L is the side
of the simulation cell.

V. CONCLUSION

We have reported a detailed computation of the equation
of state of neutron matter in the low-density regime where the
system is superfluid and neutrons pair in the 1S0 channel.
The superfluid gap was also computed. The presence of
spin-dependent interactions means that the wave function must
be written as a Pfaffian of two-neutron pairing orbitals, and
the definition and the computation of the Pfaffian was also
discussed.

The use of a realistic nuclear Hamiltonian without using any
effective interaction combined with the use of a very accurate
projection technique makes these results a benchmark for other
methods. Because of the constraint used to control the fermion
sign problem, the results could in principle depend on the im-
portance function. We carefully verified the effect of the wave
function without observing a particular bias due to the fixed-
phase constraint used in the calculations.

We compared the computed equation of state with other
results, and we observed important deviations that could be
due both to the model Hamiltonian and to the methods used
to solve for the ground state. We found that the 1S0 pairing
gap is only somewhat lower than that predicted by the simple
BCS theory for densities corresponding to kF < 0.5 fm−1, but
the polarization effects due to the bulk are very important at
higher densities, where a large suppression of the maximum
value of the gap with respect to the BCS prediction was found.
In particular, the maximum value of the gap is a bit larger with

respect to other recent calculations and much larger than other
calculations based on effective interactions.

ACKNOWLEDGMENTS

We thank A. Gezerlis, J. Carlson, J. Margueron, and
C. Pethick for useful discussions. Calculations were partially
performed on the BEN cluster at ECT
 in Trento, under a grant
for supercomputing projects, partially on the HPC facility
“WIGLAF” of the Department of Physics, University of
Trento, and partially on the HPC facility of SISSA/Democritos
in Trieste. This work was supported in part by the NSF Grant
PHY-0757703.

APPENDIX A: BCS WAVE FUNCTION PROJECTED
TO FIXED N

The original BCS wave function was not an eigenstate of
a particle number, i.e., it explicitly broke gauge symmetry.
For spin-singlet paired fermions with the pairs having total
momentum zero, the BCS form can be written as

|BCS〉 ∝
∏

k

[uk + vka
+
k↑a+

−k↓]|0〉, (A1)

where the a+
ks is the fermion creation operator for a particle

in the k wave vector and spin projection s state, with
anticommutation relations

{aks , a
+
k′s ′ } = δk,k′δs,s ′ . (A2)

The uk and vk here are functions only of the magnitude,
k = |k|, and this spatial symmetry along with the fermion
antisymmetry guarantees only singlet pairs.

For our Monte Carlo calculations, it is simpler to use the
projection of this state onto a fixed number of particles, N , in a
periodic simulation cell of side L. We write the antisymmetric
position- and spin-projected states as

A|r1, s1, r2, s2, ...rN, sN 〉
= 1

N !

∑
permutations P

(−1)P |P (r1, s1, r2, s2, ...rN, sN )〉

= 1√
N !

ψ+
s1

(r1)ψ+
s2

(r2)...ψ+
sN

(rN )|0〉, (A3)

where P represents the permutation of the particle labels, and
(−1)P is 1 (−1) for even (odd) permutations. The position and
momentum creation operators are related by

a+
ks = 1

L3/2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

∫ L/2

−L/2
dzeik·rψ+

s (r). (A4)

The standard BCS state is usually normalized by choosing
|uk|2 + |vk|2 = 1. Since we will be projecting out the part
with N particles, even if we start with a normalized state, the
projected part will no longer be normalized. There is then no
advantage to taking a normalized state, and instead we divide
by each of the uk . If one or more are zero, it simply means that
we should drop the 1 term for that k value since it is always
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filled. We therefore take

|BCS〉 =
∏

k

[
1 + vk

uk

a+
k↑a+

−k↓

]
|0〉. (A5)

The particle-projected BCS wave function is then

�BCS(R, S) = 〈R, S|BCS〉
= 1√

N !
〈0|ψsN

(rN )ψsN−1 (rN−1)...ψs1 (r1)

×
∏

k

[
1 + vk

uk

a+
k↑a+

−k↓

]
|0〉. (A6)

This is readily evaluated using Wick’s theorem [53] to
change from the given order to the normal order. Contracting
ψs(r) and a+

ks gives

ψs(r)a+
ks ′ = L−3/2eik·rδss ′ . (A7)

From Eq. (A6), we see that either both a+
k↑ and a+

−k↓ in a
pair or neither must be contracted with ψs(r) operators to
give a nonzero result. One particular contraction occurs when
ψs1 (r1) and ψs2 (r2) contract with such a pair in k1, ψs3 (r3)
and ψs4 (r4) contract with another pair in k2, etc. This gives
a term

vk1

uk1

eik1·(r1−r2)〈s1s2|↑↓〉 vk2

uk2

eik2·(r3−r4)〈s3s4|↑↓〉 · · ·
(A8)vkN/2

ukN/2

eikN/2·(rN−1−rN )〈sN−1sN |↑↓〉,

where we drop an unimportant overall normalization factor.
Choosing different k terms to contract with corresponds to
summing over all values of the k1, k2, etc., with the constraint
that no two of the kn values should be equal (anticommutating
two pairs of operators does not change the sign). Choosing
other contractions completely antisymmetrizes this form, and
we can then include all terms in the k sums since these cancel
when antisymmetrized. The result is

�BCS = A [φ(r1, s1, r2, s2) . . . φ(rN−1, sN−1, rN, sN )] , (A9)

where for spin-singlet zero-momentum pairs,

φ(r1, s1, r2, s2) =
∑

k

vk

uk

eik·(r1−r2) [〈s1s2|↑↓〉〉] . (A10)

Since the many-body antisymmetrizer will interchange the
particles in φ, we usually explicitly antisymmetrize φ. We
then get, up to an unimportant normalization,

φ(r1, s1, r2, s2)

=
∑

k

vk

uk

eik·(r1−r2) [〈s1s2| ↑↓〉 − 〈s1s2| ↓↑〉] , (A11)

which explicitly demonstrates the singlet pairing. For a very
large simulation cell, the spatial function would be spherically
symmetric and therefore an S state. For the typical sizes of
our simulation cells, the function has the symmetry of the
cube as seen in Fig. 6. Other possible fully paired states have
different φ(r1, s1, r2, s2), but still have the general form of
Eq. (A9).

Often we want to investigate systems that are not fully
paired. Obviously, if we have an odd number of particles, at

least one must be unpaired. We include unpaired particles in
specific states by multiplying the |BCS〉 state by a product
of creation operators (or linear combinations of creation
operators) for those states. The only change to the particle
number projection described above is that these creation
operators must be contracted with one of the ψs(r) or the
result will be zero. For n pairs and o occupied single-particle
states, we have

�BCS = A[φ12φ34...φ2n−1,2nψ1(2n + 1)...ψo(N )], (A12)

which is Eq. (14).

APPENDIX B: PFAFFIAN CALCULATIONS

Here we give some details on how to calculate the Pfaffian.
Proofs of the statements are given in Ref. [41]. The Pfaffian of
a skew-symmetric matrix has the following three properties:

(i) Multiplying a row and the corresponding column by a
constant is equivalent to multiplying the Pfaffian by a
constant.

(ii) Interchanging two different rows and the corresponding
columns changes the sign of the Pfaffian.

(iii) A multiple of a row and corresponding column added to
another row and corresponding column does not change
the value of the Pfaffian.

In addition, the matrix must have an even rank for the Pfaf-
fian to be nonzero. Using these properties, it is straightforward
to use, for example, Gauss elimination to reduce the skew-
symmetric matrix to a block diagonal form with 2 × 2 blocks,
whose Pfaffian is just the product of the nonzero elements in the
first superdiagonal. A Fortran fragment showing the algorithm
without pivoting for a complex matrix a of even rank n, is

p = (1.0, 0.0)

do i = 1, n, 2

do j = i + 2, n

fac = −a(i, j)/a(i, i + 1)

a(i+ 1 : n, j) = a(i+ 1 : n, j) + fac ∗ a(i + 1 : n, i + 1)

a(j, i+ 1 : n) = a(j, i+ 1 : n) + fac ∗ a(i+ 1, i+ 1 : n)

enddo

p = p ∗ a(i, i + 1)

enddo

As in standard Gauss elimination, we search the current row
for a large pivot element, and pivot using property b to bring
this onto the superdiagonal so that we do not divide by small
numbers a(i,i + 1).

At the same time, we calculate the inverse of the matrix.
When one particle changes position or spin (or for calcula-

tion of one-body properties such as the gradient, kinetic energy,
or expectation of a spin operator), the skew-symmetric matrix
A has one row and the corresponding column changed. Writing
the matrix B to be equal to A except for the row k with new
elements Bkj and the corresponding column elements, Cayley
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showed [54] that

Pf[B] = Pf[A]
∑

j

BkjA
−1
jk . (B1)

For efficient algorithms with spin-dependent potentials, we
want to be able to change two particles. A straightforward
implementation would first change one row of the matrix
as above and calculate the new Pfaffian, and update the
inverse. Then change the corresponding column to obtain
the skew-symmetric matrix and its inverse (its determinant
is the square of the Pfaffian obtained before). This will require
O(N2) operations. For each of the N second particles, we will
require O(N ) operations to calculate the new Pfaffian if the
first column is different for each pair. Unfortunately the result
is O(N4) to calculate pairwise potentials.

However, for our case, the operation needed on a column or
row is independent of the other column or row (except for the
common element). We can therefore imagine doing a single

update for particle 1 and using this for all the terms where the
pair contains particle 1. The common element does not require
an update and can be done separately.

It is most efficient to write this as a set of matrix multiplies.
We define the new column j of the matrix to be Cij ,
corresponding to a spin or derivative operator on particle j .
Defining

Pij =
∑

k

A−1
ik Ckj ,

Gij =
∑
mk

CT
imA−1

mkCkj =
∑
m

CmiPmj = −Gji, (B2)

we find that the ratio of the new to old Pfaffians with the two
rows and columns denoted by i and j changed is

Pf(new)

Pf(old)
= A−1

ji

[
Anew

ij + Gij

] + PiiPjj − PijPji, (B3)

where Anew is the A matrix with new rows and columns.
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