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We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator
in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for
the current and charge densities are given in momentum and coordinate space.
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I. INTRODUCTION

Chiral effective field theory (EFT) provides a systematic
and model-independent framework to analyze low-energy
hadronic processes in harmony with the spontaneously broken
approximate chiral symmetry of QCD. This approach has been
successfully applied to the derivation of the nuclear forces and,
more recently, also hyperon-nucleon and hyperon-hyperon
interactions; see Refs. [1-3] for review articles. Exchange
vector and axial currents in nuclei have also been studied
in the framework of chiral EFT. In their pioneering work,
Park, Min, and Rho applied heavy-baryon chiral perturbation
theory to derive exchange axial [4] and vector [5] currents
at the one-loop level for small values of the photon mo-
mentum, focusing, in particular, on the axial-charge and
magnetic moment operators, respectively. These calculations
were carried out employing time-ordered perturbation theory
to extract noniterative contributions to the amplitude. The
resulting exchange vector currents were applied within a
hybrid approach to analyze magnetic moments and radiative
capture cross sections of thermal neutrons on light nuclei
[5-8] as well as some polarization observables in radiative
neutron capture on the proton [9]. For applications to various
electroweak few-nucleon reactions of astrophysical interest
see Refs. [10-14].

Deuteron electromagnetic properties [15-19], Compton
scattering on the deuteron [20,21] and, more recently, on
3He [22], as well as pion electro- and photoproduction and
the corresponding capture reactions [23-28] have also been
addressed in the framework of chiral EFT. However, to the best
of our knowledge, no applications have so far been performed
to electron and photon inelastic few-nucleon reactions with
the momentum transfer of the order M, where a lot of
experimental data are available; see Ref. [29] for a recent
review article on the theoretical achievements in this field
based on conventional framework. Recent progress in the
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accurate description of the two- [30,31] and more-nucleon
systems [32] within the chiral EFT (see also Ref. [3] and
references therein) gives a strong motivation to apply this
framework to the above-mentioned processes. This requires
the knowledge of the consistent electromagnetic exchange
current operator for nonvanishing values of the photon mo-
mentum. While the leading two-nucleon contributions to the
exchange current arise from one-pion exchange and are well
known, the corrections at the one-loop level have not yet been
completely worked out. An important step in this direction
was done recently by Pastore et al. [33,34], who considered
the electromagnetic two-body current density at the leading
one-loop order based on time-ordered perturbation theory. In
the present work, we calculate the leading two-pion-exchange
two-nucleon four-current operator in chiral EFT based on the
method of unitary transformation that we used to derive nuclear
forces in Refs. [35-39]. Our work provides an important check
of the results presented in Refs. [33,34] but also differs from
these works in several important respects. First, as already
pointed out, we use a completely different method to compute
the current operator. Second, we also give results for the
exchange charge density that, to the best of our knowledge,
have not yet been published before. Finally, we evaluate
analytically all loop integrals to obtain a representation in
momentum space in terms of the standard loop functions and
the three-point functions. The latter are reduced to a form
that can be easily treated numerically. We also succeeded
to analytically carry out the Fourier transformation for all
contributions leading to an extremely compact representation
of the current and charge densities in coordinate space. Notice
that contrary to Refs. [33,34], we do not treat the A(1232)
isobars as explicit degrees of freedom in this work.

Our manuscript is organized as follows. In Sec. II we pro-
vide a short summary of the method of unitary transformation,
explain the adopted power counting scheme, list all relevant
terms in the effective chiral Lagrangian, and present our results
for the exchange current and charge densities in momentum
space. The expressions in coordinate space are given in Sec. III.
The results of our work are summarized in Sec. IV. The
formal operator structure of the effective electromagnetic
current can be found in Appendix A, while Appendix B
contains the complete momentum-space representation of the
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current. Evaluation of the three-point functions entering this
representation is detailed in Appendix C. In Appendix D we
verify that the obtained expressions for the current fulfill the
continuity equation. Finally, Appendix E collects the formulas
needed to obtain the coordinate-space representation given in
Sec. III.

II. NUCLEAR CURRENTS USING THE METHOD OF
UNITARY TRANSFORMATION

We begin with a brief reminder about the method of unitary
transformation. Consider the time-independent Schrédinger
equation for interacting pions and nucleons in the absence of
electromagnetic sources

(Ho + HD|V¥) = E|W), 2.1

where | W) denotes an eigenstate of the Hamiltonian H with the
eigenvalue E. Let 1 () be projection operators onto the purely
nucleonic (the remaining) part of the Fock space satisfying
n?> =n,A* =X, nx = An =0, and A + n = 1. To describe the
dynamics of few- and many-nucleon systems below the pion
production threshold it is advantageous to project Eq. (2.1)
onto the n subspace of the full Fock space. The resulting
effective equation can then be solved using the standard
methods of few- or many-body physics. The decoupling of
the n and A subspaces can be achieved via an appropriately
chosen unitary transformation [40,41]

- _ Hn 0
HzU‘HU:(n 7 ); 2.2)

0 AHX
see Ref. [42] for an alternative approach. Following Okubo
[41], the unitary operator U can be parametrized as

T LA+ ATATY2 (1 4+ AADHTV2 |2 :

in terms of the operator A = AAn that has to satisfy the
decoupling equation

MH—[A, Hl— AHA)p =0 (2.4)

for the transformed Hamiltonian A to be of block-diagonal
form. The effective n-space potential V can be expressed in
terms of the operator A via:

V =n(H — Hp) = n[(1 + ATA)"V*(H + A'H + HA
+ATHAY(1 + ATA)™'2 — Hyn. (2.5)

The unitary transformation U and the effective potential
V can be calculated perturbatively based on the most general
effective chiral Lagrangian utilizing the chiral power counting.
In Ref. [39], a convenient formulation of the power counting
has been presented. The low-momentum dimension v of the
effective potential, V, V ~ O(Q/A)" with Q and A referring
to the soft and hard scales of the order of the pion and p-meson
masses, respectively, is given (modulo the normalization
constant —2) by the overall inverse mass dimension of the
coupling constants entering the expression for V:

v=-2+ Z Viki,

3
ki =di+oni+pi—4. (26)
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Here, V; is the number of vertices of type i while d;, n;
and p; refer to the number of derivatives or M, insertions,
nucleon field, and pion field operators, respectively. Further,
k; is simply the canonical field dimension of a vertex of type i
(up to the additional constant —4). Writing the effective chiral
Hamiltonian H as

o0
H = Z H®, 2.7)
k=1

the operator A can be calculated recursively,

o0
A=) A9,

1 a—1

a—1
A H(a) H(i)A(oz—i) _ A(Ot—i)H(i)
Ey — Ej i Z ;

A@ —
i=1

a—2 a—j—1

2P

i=1 j=I1

AD g gla—i=j) n. (2.8)

Here, E, (E,) refers to the free energy of nucleons (nucleons
and pions) in the state n (1). The expressions for the unitary
operator and the effective potential then follow immediately by
substituting Egs. (2.7) and (2.8) into Eq. (2.5). It is important
to emphasize that Eq. (2.3) does not provide the most general
parametrization of the unitary operator. Moreover, as found
in Ref. [39], the subleading contributions to the three-nucleon
force obtained using the parametrization in Eq. (2.3) cannot
be renormalized. To restore renormalizability at the level of
the Hamilton operator additional unitary transformation U’
in the n subspace of the Fock space had to be employed,
nU'nU' "y = nU''qU'n = 1, whose explicit form at lowest
nontrivial order is given in that work.

It is, in principle, straightforward to extend this formalism
to low-energy electromagnetic reactions such as, e.g., electron
scattering off light nuclei; see Refs. [43-45] for some early
applications of the method of unitary transformation to the
derivation of the exchange currents. Here and in what follows,
we restrict ourselves to the one-photon-exchange approx-
imation to the scattering amplitude. The effective nuclear
current operator 1J(x)n acting in the n space is then defined
according to

(W JH@IW) = (prlnU Ut T @) UnU )
= (@sInJe(OInli),

where n|¢; ;) =nU ’TnU T|‘~II,-, r) denote the transformed states
and we have omitted the components A|¢; r), which is
justified as long as one stays below the pion production
threshold. In the above expression, J*(x) denotes the hadronic
current density that enters the effective Lagrangian Ly,
describing the interaction of pions and nucleons with an
external electromagnetic field A* and is given by

aACrrNy . aﬁnNV
@A) 0A,

Note that contrary to the Hamilton operator, the unitarily trans-
formed current does, in general, not have the block-diagonal

(2.9)

JH(x) =9,

(2.10)
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form, i.e., nUTJ*(x)UX # 0. Again, it is important to realize
that the above definition of nJ(x)n does not fully incorporate
the freedom in the choice of unitary transformations. Thus,
one might expect that this formulation yields the effective
current operator that is not renormalizable by a redefinition
of the low-energy constants (LECs) entering the underlying
Lagrangian. Indeed, renormalizability of the effective current
operator implies highly nontrivial constraints in the case
of one-pion-exchange contributions at the one-loop level
because all 8 functions of the LECs /; from L, [46,47] and
d; from L,y [48,49] are fixed. We have verified that the
ultraviolet divergences entering the expressions for the one-
pion-exchange contributions using the formulation based on
the A*-independent unitary transformation as described above
can indeed not be completely removed by the redefinition of
the corresponding LECs. Thus, a more general parametrization
of the unitary transformation is required to restore renormaliz-
ability of the nuclear current. This can be achieved if one allows
for the unitary operator to depend explicitly on the external
electromagnetic field, U(A"). The operator U(A") then has
to be chosen in such a way that the transformed Hamiltonian
U "'(A“)anvy U (A") is block-diagonal (with respect to the 7
and A spaces) and coincides with the one given in Ref. [39]
when the external electromagnetic field is switched off. The
effective nuclear current operator nJl:(x)n in this more
general formulation receives additional contributions that are
not included in Eq. (2.9) and result from 4*-dependent pieces
of U(A") in the expression U‘L(.A")HﬂNy U(A*), whose form
is determined by renormalizability of the resulting nuclear
current operator. These additional terms in 1J/(x)n are found
to have no effect on the two-pion-exchange current and will
be discussed in detail in a separate publication [50] devoted to
the one-pion-exchange contributions. Finally, we emphasize
that the power counting employed in the present work
implies the following restrictions on the photon momentum &
in the two-nucleon rest frame

- M2
R~ OMy),  K~0 (7> <M. @1

where M, and m refer to the pion and nucleon masses,
respectively. In particular, the second constraint implies that
for processes with real photons (such as, e.g., bremsstrahlung
or radiative capture reactions) our results are applicable only
at very low photon three-momenta. For the kinematics with
k° ~ O(M,), one will have to systematically keep track of the
new soft momentum scale /M, m similar to the case of, e.g.,
pion production in nucleon-nucleon collisions; see Ref. [51]
for a recent review article. In the present work we, however,
restrict ourselves to the kinematical conditions specified in
Eq. (2.11).

For the calculation of the leading two-pion-exchange two-
nuclear current operator in the present work we only need
the leading pion and pion-nucleon terms in the effective
Lagrangian

F2 _ _
Lo = e [ UD"U" + MZ(U + U],
£ _ i (2.12)
N — (lv-D+gAS~u)N,
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where the superscript i in £® denotes the number of
derivatives and/or pion mass insertions. Here, F (g4) is the
pion decay constant (the nucleon axial-vector coupling), N
represents a nucleon field in the heavy-baryon formulation,
and S, = 1y50,,v" is the Pauli-Lubanski spin vector that
reduces to S* = (0, %3) forv, = (1,0, 0, 0). At the order we
are working and for the contributions to the current operator
considered in the present work, all LECs entering Eq. (2.13)
should be taken at their physical values. Further, the SU(2)
matrix U = u? collects the pion fields and various covariant
derivatives are defined according to

DU = 8,U —ir,U +iUl,,

u, = ifu'@®, —ir)u —u@, —il,)u'l,
D,N = [8, + T, —ivQ’]N  with

Ty= 2@, —iru+u@, —il,u'l.

(2.13)

To describe the coupling to an external electromagnetic field,
the left- and right-handed currents r, and /,, and the isoscalar
current v} have to be chosen as

ry=1,= gAuT% vl(f) = g.A,u (2.14)
where e denotes the elementary charge. Expanding the various
terms in the effective Lagrangian in powers of the pion field
and using the canonical formalism along the lines of Ref. [52],
we end up with the following interaction terms in the Hamilton
density

HY = Z%NT(&? . VAN,
HE = L NI7 x 712N, 2.15)
4F?
My = : (N'[T x ZIN) - (NT[T x 7IN),
32F%
and the electromagnetic current density is of the form
—1 e
s = SN+ )N,
=1 > 5
Jo =e[n x 13,
L (2.16)
Joo = —e[m x Vrl3,

- (O 5o o

= ¢ BANTG[7 x #N.
2F;

In the above expressions we adopt the notation of Ref. [39]. In

particular, the subscripts a and b in 1% and J/4“ refer to the
number of the nucleon and pion fields, respectively, while the
superscript x gives the dimension of the operator as defined in
Eq. (2.6). Further, the symbol - in Eq. (2.15) denotes a scalar
product in the spin and isospin spaces.

The formal operator structure of the leading two-pion-
exchange two-nucleon current at order O(eQ) is given in
Appendix A. For the sake of convenience, we distinguish
among seven classes of contributions according to the power
of the LEC g4 (i.e., proportional to g%, gi, and g4A) and
the type of the hadronic current Jy,, Jy; or Jj, as shown
in Fig. 1. Note that there are no contributions proportional
to g% and involving JJ, and J4|. We also emphasize that the
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Class 1: :::3" /::3"

Class 2: ,:?<:\ ,:?{:\

Class 3:

Class 4: ;F =

Class 5: ®= ®=

Class 6: 777777777 ]
””””” P

Class 7: ® ® ®< ®<

second diagram in the class 3 generates no contribution. It
results from the term in the Hamilton density that is absent
in the Lagrangian and arises through the application of the
canonical formalism. Finally, it should be understood that the
meaning of diagrams in the method of unitary transformation
is different from the one arising in the context of covariant
and/or time-ordered perturbation theory. The diagrams shown
in Fig. 1 serve merely to visualize the topology corresponding
to a given sequence of operators H and J appearing in the
formal expressions given in Appendix A.

It is a fairly straightforward albeit tedious exercise to
evaluate the contributions to the nuclear current corresponding
to the operators given in Appendix A. Below, we give expligit
results for the current and charge densities, J* = (p, J),
resulting from the individual classes using the notation

(p1' P2 1T |p1p2) = 8(p' + P2’ — p1 — P2 — k)

c7
X [Z J>’Z+(1<—>2):|,

X=cl

2.17)

where p; (p;’) denotes the incoming (outgoing) momentum of
nucleon i and & is the photon momentum. Further, (1 < 2)
refers to the contribution resulting from the interchange of the
nucleon labels. We find the following results for the current
density from the individual classes of the diagrams shown in
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FIG. 1. Diagrams showing contributions to
the leading two-pion-exchange currents. Solid
and dashed lines refer to nucleons and pions,
respectively. Solid dots are the lowest-order
vertices from the effective Lagrangian while the
crosses represent insertions of the electromag-
netic vertices as explained in the text. Diagrams
resulting from interchanging the nucleon lines
are not shown.

Fig. 1:
_ &
Je(q1, q2) = 16F4 [Q1[T1 x Bl +2[g) x 62177 ]
a3l 1
(27T)3 wro_(01 + w-)
- 64gAzF4 [@117 x &)
+2[G1 x 6217 | L(q1),
- L. ghi Bl 0+ oo + o
Jo(qr, q2) = Al 7 s —5— -
16F Q2n) wiwl(w;+ o)

x[4231 - 1G) x 311 — (2 — 4})
x(q1[T1 x I +2[g1 x 62]17)]
g S 23
7 a2 (g? +4Mz)[‘11“l X T2l
x (8M2 + 3q7) + 2[G1 x G217} (8M + 3¢7)

—4(ql +4M2)[q1 X al]rz]L(ql)

TG ) 2] / LA

C ) = e— T

39 @2 128FF ! % (27) w1 0y03
» ((wl —w)(w; — w3)

(w1 + w2)(w1 — w3)
(w1 + w3)(w2 +w3)

) x (ky + k3),

(w1 + w2)(w) +w3)
(w1 — w2)(w1 + w3)
(w1 + w2)(w2 + w3)
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Jea(G1,32) = Jes(G1.G2) =0,
Qi [ &Pl 1
e —
8F3

T = — L
5(q1, q2) On Y o1

% w1 + Wy + w3
(01 + )@ + w3)(w2 + w3)
x [[71 x 22k - k3 — 2536, - [k x ks]],
i [P 1 1
16F* | (27)} wjww;3 (w1w2w§
w3

(ky + k3)

Ja (g1, ¢2) = e

o}(@] — ) + w3)

+ @ )

w3 (@} — 03)(@) + w3)
x (k2 +%3)[[?1 x Tk - kaky - k3
+4735, - [ky X kalky - k3], (2.18)
while the contributions to the exchange charge density read
pc1(q1, 42) = p2(qr, G2) = pe3(qr, G2) =0,

2 3

it [ el

I
e
327 F

2 3
84 3 a’l 1 2 2

—e T 1“—
i | oy Tz W
£

e

32n F2
4 3

GGy = e Sa [ 4l 1

pes(qi, q2) = eSF;T‘ 2r) ot

X [412?’Z~ Gy x 6111 - [G1 x 6] + (12 _q12)2tl3]

ne s g)) = e
pea(q1, q2) @) ol

i [M, + (2M2 + q})Aqn)],

—_ —

0es(G1, G2) =

53 [Mr + (2M + q7) Alqn)].

2
8
—> e FAF;‘ |:((4M§ + 2q12)r13

+13[q1 - 61d1 - 52 — q{51 - 52]) Alq))

(11M7 +347)
e 2 I E
4M?2 + q;
g4 d?l 1
e2A | -
8FF ) n)} wlwlw?

X [(1'13 + 123)(121 . %2]21 . ]%

pe1(qr, §2) =

+E1 : [%2 X 5’1]]€1 . []-C)z x 03])

1T x DIk - kaky - [k x a1 (2.19)

where g; = p! — p; is the momentum transfer of nucleon i.
Clearly, 6; and T; refer to the spin and isospin Pauli matrices of
the nucleon i. Here and in what follows, we label the Cartesian
components of various vectors in isospin space by the super-
scripts rather than subscripts to avoid a possible confusion

with the nucleon labels. Further, w4 = Vv (Z + 511)2 + 4M§ and
w; = \/1212 + M? withk; =1, kr = i—é’l andl% = 7+§2.We

PHYSICAL REVIEW C 80, 045502 (2009)

also use here the short-hand notation with g; = |g;|. Finally,
it should be understood that the above expressions refer to
matrix elements with respect to momenta and operators in
spin_and isospin spaces, see Eq. (2.17). The expressions
for J.1.c2(G1, g2) and peg.es.c6(q1, G2) involve only two-point
functions so that the corresponding integrals can be evaluated
in terms of the loop functions L(g) and A(q) defined as

I
L(q)=—51n(s+q), with s = /g% +4M2,
2q s—q

) . (2.20)

1

A(g) = 2 arctan (2M7'r
Note that the loop integrals are ultraviolet divergent and thus
need to be renormalized by an appropriate redefinition of the
LECs accompanying the NN contact interactions. Here we
show only the nonpolynomial parts of the resulting expressions
that give rise to long-range contributions and are uniquely
defined once the regulator (i.e., cutoff) is removed. Short-
range contributions involving N N contact interactions will be
considered elsewhere. The symbol — in the above equations
signifies that the original ill-defined expression is evaluated
using dimensional regularization' and only nonpolynomial
in momenta and M2 contributions are shown explicitly. The
exchange current/charge density contributions fc3,c5,c7(1}1 . q2)
and p¢7(q1, g2) result from loop diagrams where a photon
couples to pions in flight. The corresponding loop integrals
depend explicitly on two external momenta g; and ¢, and can
be written in terms of the three-point functions. The complete
expressions in momentum space are given in Appendix B
in terms of a number of scalar integrals, which are easily
calculable numerically as detailed in Appendix C. We also
emphasize that we have explicitly verified in Appendix D
that the derived exchange currents fulfill the continuity
equation. Note further that all loop integrals can be carried
out analytically in configuration space as discussed in the next
section. The results for the current density presented here agree
with the ones of [34].2

III. TWO-PION-EXCHANGE CURRENT IN
CONFIGURATION SPACE

The obtained expressions in momentum space depend only
on the momentum transfers of the individual nucleons leading
to a local form of the current operator in configuration space
that is defined according to

3 3
d q1 d q2 elﬁl;lo

i‘?zﬁ’zo‘]li - =
@n ) 2n) e (41, q2).

J" (Fro, 20) =

3.1

where ¥jg = F| — 7o, 0 = 2 — Fo and 7, 7, and 7 denote the
positions of the nucleons 1 and 2 and the photon coupling,

Using, e.g., a cutoff regularization will lead to the same result after
taking the limit A — oo.

2For contributions involving the three-point function we could only
check the intermediate results for the integrands involving different
pion energies.
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respectively. Using the formulas collected in Appendix E
and expressions for the current operator in momentum space
in terms of three-dimensional loop integrals given in the
previous section, we obtain the following surprisingly compact
expressions for the current density

M)

W [%10[7?1 X ?2]3

Je1(F10, T20) = €

K2
+2[V10 x 32177 8(F mM,

10

- o g M > R
J2(r10, r20) = — m@vﬁ) — 8)[ViolT1 x oI’
R L Ko(2x
+2[Vig x ot} 5(3620)M
X10
giM’! K1(2x19)
+e 3o 3F4 SATT [V X ol 5()620)T,
M7

J3(Fro, F20) = —€ ——2—[T) X B} (Vi — V.
e3(F10, 20) 6512714F7‘T‘[1 21°(Vio — Vo)

K> (x10 + x20 + x12)
(x10x20X12)(X10 + X20 + X12)

2 247

gAMrr < <
e ——"— (Vi — V.
256”4F§( 10— Va0)
x [[T1 x B Viz - Vag — 21762 - [Vi2 x Vo]
y Ki(x10 + x20 + x12)
(x10x20X12)

T (Fro, Fo0) = € ﬂ(vlo Vo)
5127 4F4

x [[71 x T] 3Vi2 - VigViz - Vag
+4135, - [Vi x ViolVia - Vzo]
Xxlo + X20 + X12

Jes(Fro, T20) = —

Ko(x10 + x20 + x12), (3.2)
X10X20X12
and the charge density
Pe1(F10, F20) = pea(Fi0, T20) = pe3(Fro, F20) = 0,
2 7 —2x
- = 8aM; 5. - 2 e
F10s 120) = € ————T7 6(x20)(Viy — 2 ,
Pca(r105 720) 25672 F1 (¥20)(Viy — 2) )
2 7 —2x
-k 8aM; 5. - 2 e
Pes5(F10, 120) = —e mfz 8(320) (V5o — 2)x_120’
. M)
0e6(T10, 720) = — mfs(xzo)[fl (2V120 —4)
e~ 2x10
L 3 =
+ 1301 - V1002 - Vig — 7561 - 62 5
10
—2x
gAM 2 e 10
—e 22T _§(%y0)7; (3V5, — 11 ,
12872 F* ()i 3V — 1) X10
. - giM! > o o o
Pc1(F10, 20) = —e m[(fﬁ +173)(Vi2 - VigVia - Vag
T

+ Vi - [Vig X 611Vi2 - [Vag X 62])

+[T1 X B Via - VioViz - [Vag X 62]]
e_xlt) e—xzo e—xlz

x

(3.3)

X10  X20 X12

PHYSICAL REVIEW C 80, 045502 (2009)

In the above expressions, K,(x) denote the modified Bessel
functions of the second kind and we have introduced di-
mensionless variables X;g = M,710, X20 = My, and Xjo =
My 712 = My (Fy — F»). Further, x;; = |X;;| and all derivatives
with respect to X19, X20, and X1, are to be evaluated as if these
variables were independent of each other. We also emphasize
that the above expressions are valid for x;9 4+ x29 > 0. Finally,
it should be understood that the behavior of the current and
charge densities at short distances will be affected if one uses
a regularization with a finite value of the cutoff.

IV. SUMMARY AND OUTLOOK

In this article, we applied the method of unitary transfor-
mation to derive the leading two-pion-exchange two-nucleon
charge and current densities based on chiral effective field
theory. The resulting nuclear current is given both in momen-
tum and configuration space. The results in momentum space
involve the standard loop functions L(g) and A(g) and, for
certain classes of diagrams, also the three-point functions. In
the latter case we expressed all tensor integrals in terms of a
set of scalar integrals in different dimensions similar to the
method of Ref. [53]; see Appendix B. For the remaining scalar
integrals we derive in Appendix C a simple representation
using Feynman parameters that is well suited for numerical
calculations. In configuration space, we were able to evaluate
all loop integrals analytically leading to very compact expres-
sions in terms of the modified Bessel functions of the second
kind. We have also explicitly verified that the derived exchange
currents fulfill the continuity equation; see Appendix D.

In addition to the two-pion-exchange contributions, there
are also one-pion-exchange and short-range terms at order
O(eQ), see Refs. [33,34] for a recent work based on time-
ordered perturbation theory. As will be demonstrated in a
subsequent publication [50], renormalization of the one-pion-
exchange contributions at the one-loop level strongly restricts
the ambiguity in the definition of the current and provides
a highly nontrivial consistency check of the calculation. In
particular, one needs to ensure that al/l appearing ultraviolet
divergences are absorbed into redefinition of the LECs d; and
I; from £), and £L?), respectively, with already known f func-
tions, see, e.g., Refs. [46—49]. This work is in progress [50].

Finally, in the future, one also needs to test the convergence
of the chiral expansion for the one- and two-pion-exchange
currents by calculating the corrections at order O(e Q> ) Given
the large numerical values of the LECs ¢34 from [,ﬂ > one
might expect sizable corrections that, indeed, is well known
to be the case for the two-pion-exchange potential [54]. In
this context, it might be advantageous to include the A(1232)
isobar as an explicit degree of freedom in effective field theory
utilizing the small scale expansion [55]; see Refs. [S6-61] for
recent work along these lines in the purely strong few-nucleon
sector.
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APPENDIX A: FORMAL STRUCTURE OF THE LEADING
TWO-PION-EXCHANGE CURRENT OPERATOR

In this appendix we give the formal structure of the two-
pion-exchange current operator that results after applying the
unitary transformation. All vertices entering the expressions
below should be understood as second-quantized normally
ordered operators. Here and in what follows, we adopt the
notation of Ref. [39] with a few minor modifications.
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APPENDIX B: LEADING TWO-PION-EXCHANGE
CURRENT IN MOMENTUM SPACE

In this appendix we give the expressions for the two-pion-
exchange current operator in momentum space. Following
Ref. [62], the most general expression for the current and

PHYSICAL REVIEW C 80, 045502 (2009)

the charge density can be written as

5 24
T=3"%"fG.3)T:0;,

i§1 jgl (Bl)
=33 G, @103,

i=1 j=I

where fl.j = fl.j (g1, G») are scalar functions and the spin-
momentum operators O; and 0f are given by

% =q1 + 42
% =q1 — ¢,
05 = [§1 x 621+ [g2 % o1],
04 = [q1 x 62] — [g2 x G1],
Os = (g1 x 611+ [g2 % 021,
Os = [G1 x 61] — [G2 x G2],

07 = q1(q1 - [g2 x 2]) + ¢2(q1 - [G2 x 01]),
Os = q1(q1 - [g2 x 02]) — ¢2(q1 - [G2 x 1),
Oy = G2(G1 - (g2 x 321 + q1(G1 - (G2 % 61,
O = 42(q1 - [G2 x 62]) — G1(q1 - [§2 % G1]),
011 = (41 + §2)(G1 - 62),

- N N (B2)
012 = (g1 — q2)(01 - 02),
013 = 411 - 30)G)1 - 32) + §2(G> - 51)(G2 - 52),
O = 311 - 30)G)1 - 32) — (G2 - 51)(G2 - 52),
O15 = (@1 + §2)@> - 51 - 52),
016 = (@1 — )@ - 51 - 52),
017 = (G1 + )1 - 5)(@> - 52),
O1s = (G1 — 32)G1 - 5)(@> - 52),
O19 = 61(q1 - 32) + 62(G2 - 61),
020 = 61(q1 - 32) — 62(G2 - 1),
021 = 61(Ga - 32) + 62(G1 - 1),
02 = 61(Ga - 32) — 62(G1 - 61),
02 = §1(G2 - 5@ - 62) + §2(G1 - 31)(G1 - ),
02 = §1(G2 - 51)(@2 - 62) — §2(G1 - 31)(G1 - B2),
and
o =1,
05 =G [g> x 321+ Gi1 - (G2 x 711,
03 = q1 - (G2 x 321 — G1 - [q2 x 1),
S - o
Or=oven (B3)
05 = (q1 - 02)(q2 - 01),
08 = (q1 - 61)(q2 - 02),
07 = (G2 - 3Gz - 32) + (G1 - 51)(§1 - 52),
08 = (G2-61)(q2 - 32) — (G1 - 01)(q)1 - ).
As a basis for the isospin operators we choose
T, = 113 + 1'23,
T, = 'C13 - 123,
Ty = [7 x &P, (B4)
T, =7 T,
Ts=1.
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The nonvanishing long-range contributions to the scalar func-

tions f/ = 17 (g1, g») due to two-pion exchange calculated

l

using dimensional regularization are given by
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In addition, there are nonvanishing functions fzj given by

£
£l
In the

=f K= K=-f £=-f,
=f8 K= K= £'=f.

above equations, z = §; - §2, g; = |¢;| and the loop

(B6)

functions L(q) and A(g) are defined in Eq. (2.20). Further, the
functions I correspond to the three-point functions via

1<(§1|),UZ,U3> =1d;0, 1541, vi; —q2, v2;0,v3) with ¢; =(0, g;)
B7)
and

1
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Here, all propagators are understood to have an infinitesimal
positive imaginary part. Note that here and in what follows, we
will need only the functions 7 for four-momenta with vanishing
zeroth component. We further emphasize that all functions

I((f] J’FU'QU}) that enter the above equations except I((ld, T%)), I((z‘{f%)),

and I((ld ;‘(‘))) are finite in dimensional regularization in the limit

d — 4. For these functions, we define reduced functions by
subtracting the poles in four dimensions

d+2) @+ 1 i M?
Lea 10 = Li1o) — EL(:““) T 12873 In F )

. . 2
(d+4) (d+4) 4 1 M
Lea a0 = 1o0 t 755 L)+ 15367 In (M—;) , (B9)

48
M2
! (7) ’

+ % e —1— 1n(471)]} . (B10)

(d+4) _ d+4) i ‘
Lea (12,00 = L1200 48n2L(“) + 15367141

where

d—4 1
Lw == {

1672 |d —4

Here, p is the scale introduced in dimensional regulariza-
tion and yg = —TI''(1) >~ 0.577. Finally, for scalar functions
contributing to the charge density we obtain the following
expressions:

25 egiA(k) irrzegi
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_ egaMzai
647 F2(4M2 + q7) (4M2 + q3)
N egd (g3 — 1) Alq)(2M2 + q7)
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327 F4 -~(1e2
4
78 eg4Alq)
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2 18zFt 1P
4
eg 4 A(q1)
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T

APPENDIX C: EVALUATION OF THE THREE-POINT
FUNCTION

The momentum-space expressions given in the previous
appendix involve the three-point function defined in Eq. (B8).
Below we show how loop integrals of this kind can be evaluated
by introducing the corresponding Feynman parameters. In
particular, we consider the following integrals

oI = 1(d;0, vi; p2, v2; p3, v3;0, vg),
(CD
I, = 1(d;0, vi; p2, v2; p3, 13;0,0),
in the following kinematics:

v-qgi=v-q =0.
(C2)

qi = (07 éi)r 671 : 42 =2, U2 = 1,

Here, we consider the case withv; = 1,2,3,...and |g;| > 0.
Starting from this point, we denote by ¢; the length of the
corresponding three-momentum in units of the pion mass,
i.e., ¢i = |gi|/ M. Introducing the Feynman parameters and
carrying out the integration over the loop momentum, we
obtain the following result for the first integral in Eq. (C1):

aa 2" T3P+ +vs+ 3 — %)
L)' (w)'(v3)I(ve)

— 1) rtvatvstogg 1 t
x()—l/ dz/d(t— yi-l
amam Jo Y

I =u

1 ]UI+V2+U3+VZ4_;

X (] _ t)l)z—ly\)g—l [
MZD(y1 — y2)

)V1+V2+vz+";“§

1 1
X ( + , (C3)
yr—y Y—»n
where

_E . | E2 +4AD _E  |E?2+4AD
M=9D a2 T op D2

(C4)
and we have introduced
A=1+gi(1l—10)t > 0,
B =2q1q2 + 43,
C = —2q192z, (C5)
D= q22 > 0,
E=B+1C.
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It can be shown that the following inequalities hold true in the
integration region for the considered kinematics:

yvi>t>2y>=0>y. (C6)

Thus, the remaining two-dimensional integral in Eq. (C3) can
be easily calculated numerically for all desired values of v;.
Similarly, for the second integral in Eq. (C1) we obtain:

4—d F(VI + v+ vz — ‘5’) (= 1)vrtvatys
F(w)C (W) (v3) (47)@/2)

/ dt/ dy(t_y)vl 1(1 t)l)z 1 V3 1
V|+Vz+vz**
[M§ D(y — yz)}

1 1 v1+v2+v3—%
X ( + ) , (C7)
yo—y Y—»n

where, again, the inequalities given in Eq. (C6) hold true.

(d+4) (d+4)
For the reduced functions 1red (1 1.0y’ 1.4 (1.2.0° and /4 2.1.0)

we obtain the expressions:

L =p

. 1
(d+2) !
Led (1.0) = 64713/(; dt

t
X / dy{l
0
(d+4) i '
Led 21.0) = W/o dt
t
x/dy(t—l){l—ln
0
(d+4) i !
Led 12,00 = 2562 /0 dt

4 1
d 1 -1 ,
Xfo ”{ “[D(yl—yxy—yz)“

(C8)

(o=l
D(y1 — y)(y — y2)

1
[D(yl - — yz)“ ’

that do not depend on u.

APPENDIX D: CURRENT CONSERVATION AND THE
CONTINUITY EQUATION

Current conservation implies that the electromagnetic

current operator J (X) should fulfill the continuity equation

S ap .

V- JG) =~ =~ilH.pl =

ot

where p = p(¥) = J(¥) is the charge density and H, Hj,
and V refer to the two-nucleon Hamilton operator, kinetic
energy term, and the potential, respectively. The continuity
equation thus provides a powerful check for the calculation.
For the leading two-pion-exchange contributions to the current
operator the continuity equation takes the form

—i[Hy+ V, p], (D)

V- L () = elf x P W, — 7o)
x[8GF =) —8G —F)l, (DY)
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where the potential in the isospin limit is written in the form
V=V+1 - -5W, (D3)

?L denotes the position of the nucleon i and the superscripts of
J and W refer to the chiral order. Further, we made use of the
explicit form of the leading one-body charge density

p) = S[(1+ )G =7 + (1 +73)5G 7). (D4)

and the absence of the leading one-pion-exchange charge

density, Pinl) = 0. Equation (D2) can be transformed into

momentum space
i1 +2) - T (@G, Go) = el T x BP[Wa2(G1) — W2 (@)]-
(D5)

The left-hand side of the above equation can be expressed
in terms of the basis operators OiS defined in Appendix B.
Using the representation of the current operator in Eq. (B1),
the spin-momentum operators appearing on the left-hand side
of the above equation can be expressed in terms of the operators
07 as follows:

24 8
Y FGLa)k-0;=)"¢l*G,§)0], (D6

j=1 =1
where the scalar functions gij 5(51, g») read
g =k +(a - 6) f7,
Y
+3k2 ) = 5(af = a3) £,
=P+ £+ 5+ 54t —a) f]
+ 5210 = 5 (a - a3) 7
38— 21y (g2 — gd) £,
S = K2£15 4 (g2 — g2) £16 + 211,
¢ = K217 4 (% — g2) ¥ + 272,
= £+ 23R8+ 5(ed - a3) £

g’ = l(412 —a3)f7

37+ (0} - )
== A7 A = Y - )
3012+ 4 e - )2 )

and k = g1 + g». Substituting the expressions for fij for the

leading two-pion-exchange current operator from Eq. (B5),
js@m) .

one finds that the only nonvanishing function g; is given
by
15Q2n) iL(q1) 2(c 4 2
=e——— |4M=(5¢° —4g5 — 1
3 38472 F3 <584 —4ga — 1)
48g4 M?
+ g3(239% — 1002 — 1)+ —2A 7
q1(23g4 ga—1) 42+ 4M2
+a— (1< 2). (D)

where « denotes a polynomial in ¢; and g, whose form depends
on the choice of the subtraction scheme. Using the explicit
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form of Wz(?,
wo _ __La AM2(5¢4 — 42 — 1)
2w 384 2F4 b4 A A
48g4 M4
2 4 2 A ’
+q(23gA—lOgA—1)+4M%—+;2 +o, (D9)

where o’ again denotes a subtraction-scheme dependent
polynomial contribution, it is easy to see that Eq. (D5) is
indeed fulfilled.

APPENDIX E: COORDINATE-SPACE REPRESENTATION
OF VARIOUS LOOP INTEGRALS

In this appendix we collect the formulas needed to obtain
the expressions for various loop integrals in coordinate space.
The two-pion-exchange contributions to the current operator
resulting in the method of unitary transformation are given in
terms of three-dimensional loop integrals with the integrands
being rational functions of the pion energies w; = v ki2 + M2,
where k; = |k;| refers to the pion momentum. To end up with
simple expressions in coordinate space, it is convenient to
rewrite the integrands as continuous superpositions of the
propagators using the following expressions:

/ W g +,32w2-|-/32

601602(&)1 + 602)

a), +a)1w2+w2 _

wjw3(w) + w2) T2 BMJ% a)la)z(a)l +w)’

_/Oodﬂ|: i
7 Jo (wf + B2) (03 + B?)

+ ! S (E1)
(@} + 82) (w3 + B?)

In addition, we also need the following relations which involve
three different pion energies:

1 w) +wy + w3

w13 (w1 + w2)(w) + w3)(w2 + w3)
2 1

A e e et
1 [(601 — w)(w) — w3)
(w1 + @)1 + w3)
(w1 — wr)(@1 + wz)}
(01 + )@ + w3)

DIEZ

w1wrw3
(w1 + w2)(w) — w3)
(w1 + w3)(w2 + w3)

__ / dB 45
™ Jo (@F + B2) (@3 + B2) (03 + B?)

(@34 (e + ,32)} ’

D 1 1 w7
3 = -
W1 W3 wlwga)% a)% (w% — w%)(a)l + w3)

PHYSICAL REVIEW C 80, 045502 (2009)

wi
+ w%(a)% - w%)(a)g + a)3):|
d 1 w1 + wy + w3
IM?2 w1wyw3 (w1 + W)@ + w3) (@2 + @3)

1
__/ [w1+ﬂ)(w%+ﬁ2)(w§+ﬂ2)

+ 2
(@F + B2) (@3 + B2) (w3 + B)

+ ! 2} ) (E2)
(@F + B2) (03 + B2) (@3 + B?)

Using the above expressions, it is straightforward to carry out
the Fourier transformation F,

dq &g
()3 2m)?

of the integrals which appear in the calculation. For example,

d3e 1
]:< Qr)} wrw- (a)++a) ))
d3ql 1_’]';102
= [ o8 [ <2n>3eq %
1
d
X/ P (wi B + B2)

d3k d k Fio —iko T

* lor + /32)(4% + A7)

F(f(G1,4) = im0l £(G, ), (E3)

M;-Sr 00 eV 1+822x10
= LE5() f gt "
73 2x120
M6 K2
= 8 nm, (E4)

10

where w4 = v(7i§1)2+4M§ and the K; refer to the

modified Bessel functions. We made use of Eq (ED) in
the ﬁrst hne and carried out the substitutions £ + g1 — 2k1,

i — g1 — 2k2 in the second line. Notice further that the last
equality is valid for x;p > 0. In a similar way one obtains
dae 2 M3

F = — 2 §(%) (V3 —4

( 1) oo (@n + a))) 23 (¥20) (Vip — 4)
K1(2x10)
xlO

P 43¢ a)2+ +wio_ +o? _ M;: 55, )K0(2x10)
2r)3 wiwi(w+ +w.) ) 1673 X0
(E5)

Again, these expressions are only valid for x;p > 0. Clearly,
the above results may also be obtained by first carrying
out the momentum-space loop integrals. The resulting non-
polynomial expressions are given in terms of the loop functions
L and A, see Eq. (2.20), and can be easily Fourier-transformed
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using the following relations

d3q igr L(q)

. My Ko(2x)
(277 )3 2 ’

%
4

S X

3
/ (217;;3 T Lig) — (~H*N (V] — 4)'

MET K (2x)
X —_—
2

s

x2
|

d*k
@)’

g
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x M72r+2k e—2x
2 k

87 x
(E6)

dq iGT 2Nk k(o2
(2n)3e () A(g) = (1) (VX —4)

/

where k =0,1,2,....

Consider now the more complicated expressions in-
volving three different pion energies which appear in the
calculation:

Plod’ks 8(ky — ki + 1) 8(ks — ki — G2)(ka + /;3)D2>

3 3 3 R R R 2
= _i /Ood’g/ d’ki d°ky d’k3 e~ tkaT1o giks T2 Giki-Fio 48 _ ! (]}'2 _i_]%)
7 Jo (@)} @m)* @)} (@ + B2) (@3 + B7) (@3 + 82) (03 + B7) (@3 + 8°)
iM? - N 0 26*\/ 14+B%x10 eV 14+B%x20 eV 14+B%x12
= —1(Vip— Vzo)/ app
4 0 X10 X20 X12
M - - K
i ™ (F10— Vo) 2(x10 + X20 + X12) ’ (E7)
4r (10 X20 X12)(X10 + X20 + X12)
[
where in the first line we wused Eq. (E2). The argument of the Bessel function. Similarly, we
last relation is valid for positive values of the obtain:
|
d3k1 3 3 7 i 3 7 A = i1 im 7, J1 Jn k1 kp
F (27[)3d kzd k3 5(](2 —kl +C]1) 5(](3 —k1 - QQ)kl kl k2 . -k2 k3 N ~k3 D1
iy MG My tmtr P ; k, K1(x10 + x20 + x12)
= (=1) +”%V1‘2.~-V13Vf(‘)-~V{(")V§(‘)mV26’
32 (x10 X20 X12)
I T T T AT T A N A S
F (27‘[)3d‘k2d k3 5(k2 — kl +ql) 8(](3 — k1 — Q2)k1 . "kl kz .. 'k2 k3 ce 'k3 D3
MZ(iMy)" P i ] ; k, X10 + X20 + X12
SR G | i A SN v AP v V2SR /8 Vi PR vy il I LY € . E8
(=D 3074 12 12 Vio 10 Y20 T o(x10 + x20 + X12) (EB)
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