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Proposal for studying N∗ resonances with the p̄ p → p̄nπ+ reaction
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A theoretical study of the p̄p → p̄nπ+ reaction for antiproton beam energy from 1 to 4 GeV is made by
including contributions from various known N∗ and �∗ resonances. It is found that for the beam energy around
1.5 GeV, the contribution of the Roper resonance N∗

(1440) produced by the t-channel σ exchange dominates over
all other contributions. Since such a reaction can be studied in the forthcoming PANDA experiment at the GSI
Facility of Antiproton and Ion Research (FAIR), the reaction will be realistically the cleanest place for studying
the properties of the Roper resonance and the best place for looking for other “missing” N∗ resonances with large
coupling to Nσ .
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I. INTRODUCTION

The study of N∗ resonances can provide us with critical
insight into the nature of QCD in the confinement domain [1].
In the study of the N∗ resonances, there are two long-standing
central issues. First, many N∗ states predicted by quark models
have not been observed in experiments [2–5], i.e., the so-called
missing N∗ problem. Second, the properties of the lowest well-
established N∗ resonances, N∗

(1440) and N∗
(1535), are still not

well determined experimentally [6] and not well understood
theoretically [3].

As the lowest excited nucleon state, the Roper resonance
N∗

(1440) was first deduced by πN phase shift analysis; its
structure has been arousing people’s interests intensely all
the time; i.e., it is lighter than the first odd-parity nucleon
excitation, the N∗

(1535), and has a significant branching ratio
into two pions. Up to now, although the existence of the
Roper resonance is well established (four-star ranking in
the particle data book), its properties, such as mass, width,
and decay branching ratios, still suffer large experiment
uncertainties [6]. There are many models on this Roper
resonance. In classical quark models, the Roper resonance has
been associated with the first spin-parity JP = 1/2+ radial
excited state of the nucleon [5,7–9]. In the bag [10] and
Skyrme [11] models, it was interpreted as surface oscillation,
also called breathing mode. It has also been predicted as a
monopole excitation of the nucleon with the gluonic excitation
[12–14] or as dynamically generated from meson-nucleon
interactions [15,16]. But these predictions always reach either
a larger value for its mass or a much smaller one for its width
and also meet difficulties in explaining its electromagnetic
coupling [17].

Up to now, our knowledge on N∗ resonances has been
mainly coming from πN and γN experiments. Then those
unobserved missing N∗ resonances may be due to their weak
couplings to πN and γN . Even for the well-established
Roper resonance, its properties can be extracted only by
detailed partial-wave analysis. No corresponding peak has
been observed from the πN invariant mass spectrum because
of its nearby strong � peak. A difficulty in extracting the N∗
information from these experiments is the isospin decompo-

sition of 1/2 and 3/2 [18]. Recently, the J/ψ → N̄Nπ and
pp → pnπ+ reactions have been used to study N∗ resonances
with claimed observation of the Roper resonance peak [19,20]
due to their isospin filter effect [21,22]. However, because
of the presence of large interfering contributions from other
resonances, there is still considerable model dependence in
extracting its properties. Moreover, the data [20] from the
pp → pnπ+ reaction are based on a preliminary analysis of
the limited phase space, suffering a strong model dependence,
and may have changed quite a bit in the course of the analysis,
as suggested in a more recent paper by the same collaboration
[23].

In this work, we propose to study the Roper and other N∗

resonances with the p̄p → p̄nπ+ reaction, where thanks to the
absence of the �++ state, the contribution of the � excitation is
much smaller than that in the pp → pnπ+ reaction. It is found
that for the beam energy around 1.5 GeV, the contribution of the
Roper resonance N∗

(1440) produced by the t-channel σ exchange
dominates over all other contributions because of its known
large coupling to Nσ [6,24]. This will provide the cleanest
place for studying the properties of the Roper resonance and
the best place for looking for other missing N∗ resonances
with large coupling to Nσ .

Such a reaction can be studied by the scheduled experiments
on the Proton Antiproton Detector Array (PANDA) at the
GSI Facility for Antiproton and Ion Research (FAIR) with
the antiproton beam of kinetic energy ranging from 1 to
15 GeV [25]. The detector with an almost 4π detection
coverage for both charged particles and photons can detect
π+ and p̄ in the final state. The neutron can be reconstructed
from a missing mass spectrum against the π+ and p̄. Hence
we suggest the PANDA Collaboration pay good attention to
the study of N∗ resonances, considering its unique advantages
found in this work.

In the next section, we present the formalism and ingre-
dients for the calculation of the p̄p → p̄nπ+ reaction by
including various intermediate N∗ and �∗ resonances. Then
in the Sec. III, we give the numerical results of the calculation,
compare this reaction to the pp → pnπ+ reaction, and discuss
the results.
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FIG. 1. Feynman diagrams of the p̄p → p̄nπ+reaction.

II. FORMALISM AND INGREDIENTS

We study the p̄p → p̄nπ+ reaction within an effective
Lagrangian approach. All the basic Feynman diagrams in-
volved in our calculation for this reaction are depicted in
Fig. 1. The formalism and ingredients are very similar to
those used in the study of the pp → pnπ+ reaction [22],
where only N∗

(1440), N∗
(1520), N∗

(1680), and �(1232) resonances are
found to play significant roles for the beam energy around
Tp = 1 ∼ 3 GeV. With the experience on the pp → pnπ+
reaction, we investigate here the contribution from these
resonances to the present p̄p → p̄nπ+reaction for the beam
energy Tp̄ = 1 ∼ 4 GeV.

First, we give the effective Lagrangian densities for describ-
ing the meson-NN vertices:

LπNN = gπNN ūNγ5 �τ · �ψπuN + h.c., (1)

LσNN = gσNN ūNψσuN + h.c., (2)

LρNN = gρNN ūN

(
γµ + κ

2mN

σµν∂
ν

)
�τ · �ψρuN + h.c. (3)

Here �τ is the usual isospin-1/2 Pauli matrix operator, and the
coupling constants are all listed in Table I. At each vertex, we
need a relevant off-shell form factor for the exchanged meson.
In this paper, we use the same form factors as assumed in the

TABLE I. Coupling constants and cutoff parameters used for the
meson-NN vertices [21,22].

M n g2
MNN/4π �M (GeV)

π 1 14.4 1.3
σ 1 5.69 2.0
ρ 2 0.9 (κ = 6.1) 1.85

previous literature [21,22,26–30]:

FNN
M

(
k2
M

) =
(

�2
M − m2

M

�2
M − k2

M

)n

. (4)

Here M represents π , σ , or ρ mesons. The �M parameters
as used in Refs. [21,22] for the pp → pnπ+ reaction are also
listed in Table I. Note that for NN elastic scattering, the square
of the four-momentum vector kM is equal to its corresponding
three-momentum squared with a minus sign; hence, in some
literature, such as in the Bonn model [30], an equivalent
formula of the form factor with the three-momentum is used.

Second, we consider the interaction vertices involving N∗
and �∗ resonances. In Ref. [31], a Lorentz covariant orbital-
spin scheme for N∗NM couplings is described in detail and
can be easily extended to describe all the couplings appearing
in the Feynman diagrams in Fig. 1. By using that scheme, the
relevant important effective couplings [21,22] are

LπN�(1232) = gπN�(1232) ūN∂µψπ τ̃u�(1232)µ + h.c., (5)

LσNN∗
(1440)

= gσNN∗
(1440)

ūNψσuN∗
(1440)

+ h.c., (6)

LπNN∗
(1440)

= gπNN∗
(1440)

ūNγ5γµ�τ · ∂µ �ψπuN∗
(1440)

+ h.c., (7)

LπNN∗
(1520)

= gπNN∗
(1520)

ūNγ5γµpµ
πpν

π �τ · �ψπuN∗
(1520)ν

+ h.c., (8)

LρNN∗
(1520)

= gρNN∗
(1520)

ūN �τ · �ψµ
ρ uN∗

(1520)µ
+ h.c., (9)

LπNN∗
(1680)

= gπNN∗
(1680)

ūNγ5γµpµ
πpν

πpλ
π �τ · �ψπuN∗

(1680)νλ + h.c.

(10)

Here τ̃ is the 1
2 ↔ 3

2 isospin transition operator. For the
t-channel exchanged meson attached to every N∗ and �

resonance, we also need the off-shell form factor

FNR
M

(
k2
M

) =
((

�R
M

)2 − m2
M(

�R
M

)2 − k2
M

)n

. (11)
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TABLE II. Resonances and parameters used in the calculation. Widths and
branching ratios are from PDG [6]; cutoff parameters are from Refs. [21,22,26,27].

R n R (GeV) Decay mode Branching ratios g2/4π �R
M (GeV)

�(1232) 2 0.118 Nπ 1.0 19.54 0.6
N∗

(1440) 1 0.3 Nπ 0.65 1.53 1.3
Nσ 0.075 3.20 1.1

N∗
(1520) 1 0.115 Nπ 0.6 5.19 0.8

Nρ 0.09 3.96 0.8
N∗

(1680) 1 0.13 Nπ 0.675 16.59 0.8

where R is N∗ or �. For the s-channel baryon resonances in
Figs. 1(a) and 1(b) or u-channel baryon resonances in Fig. 1(c),
we use the off-shell form factor [32–34]

FR(q2) = �4

�4 + (
q2 − m2

R

)2 , (12)

with � = 0.8 GeV.
Although only the resonances and the meson exchanges

listed in Table II are included in our present calculation, the
results will not change much if all other N∗ and �∗ resonances
with spin-parity 1/2±, 3/2±, and 5/2± listed in the PDG [6] or
other meson exchanges are also included, according to results
from Ref. [22] for the pp → pnπ+ reaction.

The coupling constants of resonances can be obtained
from their experimentally observed partial decay widths. For
example, the gN∗

(1440)Nπ0 can be obtained by the formula

N∗
(1440)→Nπ =

g2
N∗

(1440)Nπ0p
c.m.
N

4π

[
m2

π (EN − mN )

mN∗
(1440)

+ 2
(
pc.m.

N

)2

]
,

(13)

with

pc.m.
N =

√√√√[
m2

N∗
(1440)

− (mN + mπ )2
][

m2
N∗

(1440)
− (mN − mπ )2

]
4m2

N∗
(1440)

,

(14)

EN =
√(

pc.m.
N

)2 + m2
N. (15)

In Table II, we list all the coupling constants and �R
M

parameters used in the calculation.
Third, we give the propagators of relevant particles. For the

π , σ , and ρ mesons, their propagators are simple:

Gπ(q) = 1

q2 − m2
π

, (16)

Gσ (q) = 1

q2 − m2
σ

, (17)

Gρ(q) = −g̃µν

q2 − m2
ρ

. (18)

For the N∗ and � resonances, they are spin-1/2, spin-3/2,
and spin-5/2 resonances. In addition, we must consider their
antiparticles. The general formulas for the propagator of a

half-integral spin particle is [35,36]

G
n+ 1

2 (±)
R(q) = P

n+ 1
2 (±)

µ1µ2...µnν1ν2...νn

q2 − m2
R + imRR

, (19)

P
n+ 1

2 (±)
µ1µ2...µnν1ν2...νn

= n + 1

2n + 3
( �p ± m)γ αγ βP n+1

αµ1µ2...µnβν1ν2...νn
, (20)

P n
µ1µ2...µnν1ν2...νn

=
(

1

n!

)2 ∑
P(µ)P(ν)

[ n∏
i=1

Pµiνi
+ a1Pµ1µ2Pν1ν2

n∏
i=3

Pµiνi
+ · · ·

+ arPµ1µ2Pν1ν2Pµ3µ4Pν3ν4 · · ·Pµ2r−1µ2r
Pν2r−1ν2r

n∏
i=2r+1

Pµiνi

+ · · ·

+
{

an/2Pµ1µ2Pν1ν2 · · · Pµn−1µn
Pνn−1νn

(for even n∗)

a(n−1)/2Pµ1µ2Pν1ν2 · · · Pµn−2µn−1Pνn−2νn−1 (for odd n)

]
,

(21)

ar(n)

=
(

−1

2

)r
n!

r!(n − 2r)!(2n − 1)(2n − 3) · · · (2n − 2r + 1)
.

(22)

From these formulas, the propagators of the relevant half-
integral spin particles can be obtained explicitly as follows:

G
1
2 (±)
R(q) = ( �p ± m)

q2 − m2
R + imRR

, (23)

G
3
2 (±)
R(q) = ( �p ± m)

q2 − m2
R + imRR

(
−gµν + 1

3
γµγν

+ 2

3

qµqν

q2
± 1

3mR

(γµqν − γνqµ)

)
, (24)

G
5
2 (±)
R(q) = ( �p ± m)

q2 − m2
R + imRR

×
[

1

2
(g̃µ1ν1 g̃µ2ν2 + g̃µ1ν2 g̃µ2ν1 ) − 1

5
g̃µ1µ2 g̃ν1ν2

− 1

10
(γ̃µ1 γ̃ν1 g̃µ2ν2 + γ̃µ1 γ̃ν2 g̃µ2ν1 + γ̃µ2 γ̃ν1 g̃µ1ν2

+ γ̃µ2 γ̃ν2 g̃µ1ν1 )

]
, (25)
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γ̃ν = γν − qν �q
q2

, g̃µν = gµν − qµqν

q2
. (26)

Here ± means particle and antiparticle, respectively. We list
the values for the widths (R) and branching ratios of the
included N∗ and � resonances in Table II.

With all relevant effective Lagrangians, coupling constants,
and propagators fixed, the amplitudes for various diagrams
can be written straightforwardly by following the Feynman
rules. And the total amplitude is just their simple sum. Here
we give explicitly the individual amplitudes corresponding to
N∗+

(1440)π
0, N∗0

(1440)π
0, and N̄∗0

(1440)π
+ for the Feynman diagrams

(a), (c), and (b) in Fig. 1, as an example,

MN∗
(1440)π

0 = MN∗+
(1440)π

0 + MN∗0
(1440)π

0

=
√

2

3

(
ūpnsn

γ5�pπ+G
( 1

2 )+
N∗

(1440)
FN∗

(1440)
(q2)�kπ0uppsp

+ ūpnsn
�kπ0G

( 1
2 )+

N∗
(1440)

FN∗
(1440)

(q2)�pπ+uppsp

)
× g2

πNN∗
(1440)

1

k2
π0 − m2

π0

FNN∗
π

(
k2
π0

)
FNN

π

× (
k2
π0

)
gNNπ v̄pp̄1 sp̄1

γ5vpp̄2 sp̄2
, (27)

MN̄∗
(1440)π

+ = 2
√

2

3
g2

πNN∗
(1440)

v̄pp̄1 sp̄1
γ5 �pπ+G

( 1
2 )−

N̄∗
(1440)

FN∗
(1440)

(q2)

× �kπ+vpp̄2 sp̄2

1

k2
π+ − m2

π+

×FNN∗
π

(
k2
π+

)
FNN

π

(
k2
π+

)
gNNπ ūpnsn

γ5uppsp
,

(28)

where upnsn
, vpp̄2 sp̄2

, uppsp
, and vpp̄1 sp̄1

denote the spin wave
functions of the outgoing neutron, antiproton in the final state
and initial proton and antiproton, respectively. pπ+ , kπ+ , and
kπ0 are the four-momenta of the outgoing and the exchanged
pion mesons. q is the four-momenta of the N∗. pp and pp̄1

represent the four-momenta of the initial proton and antiproton.
pn and pp̄2 represent the four-momenta of the final neutron and
antiproton. And factor

√
2/3 and 2

√
2/3 are from isospin C-G

coefficients.
So the total amplitude of the p̄p → p̄nπ+ reaction can be

obtained as

Mp̄p→p̄nπ+ = Mpπ0 + Mn̄π+ + MN∗
(1440)π

0 + MN̄∗
(1440)π

+

+MN∗
(1440)σ

+ MN∗
(1520)π

0 + MN̄∗
(1520)π

+

+MN∗
(1520)ρ

0 + MN̄∗
(1520)ρ

+ + MN∗
(1680)π

0

+MN̄∗
(1680)π

+ + M�(1232)π0 + M�̄0
(1232)π

+ . (29)

Then the calculation of the cross section σp̄p→p̄nπ+ is straight-
forward:

σp̄p→p̄nπ+ = 1

4

m2
p

(2π )5
√

(pp · pp̄1 )2 − m2
p

×
∑
si

∑
sf

|Mp̄p→p̄nπ+|2dφ, (30)

dφ = mpd3pp̄2

Ep̄2

d3pπ

2Eπ

mnd
3pn

En

δ4(pp + pp̄1 −pn−pπ −pp̄2 ).

(31)

III. NUMERICAL RESULTS AND DISCUSSION

With the formalism and ingredients given in the former
section, we compute the total cross section versus the kinetic
energy of the antiproton beam Tp̄ for the p̄p → p̄nπ+
reaction for Tp̄ = 1 ∼ 4 GeV by using the code FOWL from
the CERN program library, which is a program for Monte
Carlo multiparticle phase-space integration weighted by the
amplitude squared. The results are shown in Fig. 2. The
total cross section for the p̄p → p̄nπ+ reaction reaches a
maximum of about 10 mb at Tp̄ around 2.2 GeV. Compared
with the p̄p total cross section of about 90 mb and p̄p

elastic scattering cross section of about 30 mb around such
energy [6], this is a rather large share of the p̄p total
cross section.

For the energies from 1 to 2.8 GeV, the largest contribution
comes from the Roper N∗

(1440) excitation. It reaches maximum
around 1.55 GeV, where it dominates over all other contri-
butions. It is mainly produced by the t-channel σ exchange
as shown in Fig. 2(d). This will provide a very clean place
for studying properties of the Roper resonance, such as its
mass, width, and coupling to Nσ . The t-channel σ exchange
is not only important for N∗

(1440) production, but also for
the nucleon pole contribution, as shown in Fig. 2(b). This
suggests that the p̄p reactions may provide a good place for
looking for those missing N∗ resonances with large coupling
to Nσ .

For the energy above 2.8 GeV, the contribution from N∗
(1680)

takes over to be the largest one, produced mainly by t-channel
pion exchange. For each N∗ production with t-channel pion
exchange, the contribution from N̄∗ is almost four times that
from N∗ because of the relevant C-G coefficients for the
Feynman diagrams in Figs. 1(a) and 1(b), except for N(938)

where the contribution of the Feynman diagram in Fig. 1(c)
is comparable to those from Figs. 1(a) and 1(b). On the other
hand, the t-channel σ exchange cannot produce N̄∗ to reach
the p̄nπ+ final state. Therefore, the N∗ mainly produced by
t-channel pion exchange will show up most clearly in the p̄π+
invariant mass spectrum, while those N∗ mainly produced by
t-channel σ exchange will show up clearly only in the nπ+
invariant mass spectrum.

Here the contribution from � excitation is small in contrast
to the case of the pp → pnπ+ reaction, where the � excitation
gives the largest contribution [21,22]. This is because the �++
excitation in the pp → pnπ+ reaction is much more favored
by the isospin CG coefficients than the �+ and �̄0 excitations
in the p̄p → p̄nπ+ reaction.

In Figs. 3 and 4, we show the prediction of Dalitz plots and
invariant mass spectra of p̄π+ and nπ+ for the p̄p → p̄nπ+
reaction compared with the corresponding ones for the pp →
pnπ+ reaction [22] at Tp̄ = 1.55 GeV (Fig. 3) and 2.88 GeV
(Fig. 4).

At Tp̄ = 1.55 GeV, for the p̄p → p̄nπ+ reaction, both
the Dalitz plot and nπ+ invariant mass spectrum show clear
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FIG. 2. Prediction of the cross
section vs beam energy Tp̄ for the
p̄p → p̄nπ+ reaction. (a) Total cross
section and contributions from each
resonance included. (b)–(f) N(938),
�(1232), N∗

(1440), N∗
(1520), and N∗

(1680),
respectively, showing contributions
from various Feynman diagrams for
each resonance and their subtotal cross
section.

dominance of the N∗
(1440) resonance over other contributions.

So this provides us with an excellent place to study the
properties of the Roper resonance. In the p̄π+ invariant
mass spectrum, three peaks correspond to the �̄0, N̄∗0

(1440),
and N̄∗0

(1520), respectively. In comparison, in the corresponding
pπ+ invariant mass spectrum for the pp → pnπ+ reaction,
as shown in Fig. 3(d), one can only see the clearly dominating
�++ peak, which shadows all other resonances. So the
p̄p → p̄nπ+ reaction here provides also a chance to study
some properties of N∗(1520).

At Tp̄ = 2.88 GeV, in the p̄π+ invariant mass spectrum,
a clear N̄∗0

(1680) peak and small N̄∗0
(1520), N̄∗0

(1440), and �̄0 peaks
are visible. They are produced by the t-channel pion exchange
and should have their N∗+ partners making corresponding
contributions to the nπ+ invariant mass spectrum with a

reduction factor of 4. However, because of the large N∗
(1440)

production from the t-channel σ exchange, the N∗
(1440) peak

dominates the nπ+ invariant mass spectrum with a small
N∗

(1680) peak in addition. Compared with the pp → pnπ+

reaction at the same energy, the nπ+ invariant mass spectra
are similar, whereas the p̄π+ spectrum is very different from
the pπ+ spectrum where the �++ peak overwhelmingly
dominates because of its much more favorable isospin factor.
For the p̄p → p̄nπ+ reaction, the N̄∗ peaks in the p̄π+
spectrum put an additional constraint on N∗ production
from the t-channel pion exchange. This is an advantage for
extracting Nσ coupling of N∗ produced in this reaction.

In our calculation, we have not included the p̄p initial
state interaction (ISI) and p̄n final state interaction (FSI)
factors. For the energies considered here, Tp̄ > 1 GeV, which
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FIG. 3. Prediction of Dalitz plots
and invariant mass spectra (solid
curves) of p̄π+ and nπ+ for the
p̄p → p̄nπ+ reaction (left column)
compared with the corresponding
ones for the pp → pnπ+ reaction
(right column) [22] at Tp̄ = 1.55 GeV.
The dotted lines are results with
some parameters replaced by those
in Table III. The dashed curves are
phase-space distributions.

is well above the p̄p threshold, the role of ISI is basically to
reduce the cross section by an overall factor with little energy
dependence [37,38], and ISI can be equivalently absorbed into
the adjustment of form factor parameters. This is why the
�Nπ form factor that we used is rather softer than those
that include explicitly an additional ISI reduction factor. Note
that the p̄p elastic scattering cross sections for the beam
energy Tp̄ in the range of 1 ∼ 4 GeV are larger than the

corresponding pp elastic scattering cross sections [6]. Then
the ISI for p̄p reaction seems not to give a stronger reduction
than the corresponding pp reaction in this energy range.
Assuming the same parameters as for the pp reaction should
have given a reasonable estimation of cross sections for the
corresponding p̄p reaction. For such energies, only a small
portion of p̄n in the final state will be in the relative S wave,
and their FSI should not play a very important role. Usually,
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FIG. 4. Same as Fig. 3, but at
Tp̄ = 2.88 GeV.

the FSI plays significant role only for near-threshold meson
production.

All the above results are based on the parameters in Tables I
and II taken from Refs. [21,22], which reproduce well the
data of the pp → pnπ+ reaction [20]. For the pp → pnπ+
reaction with beam energies in the range of 1 ∼ 4 GeV, the
two largest contributions are found to be from the � excitation
with the t-channel π exchange and the N∗(1440) excitation

from the t-channel σ exchange [21,22]. The parameters for
these two biggest contributions were adjusted to reproduce
the data of Ref. [20], which demand significant production of
the N∗(1440). But since the data of Ref. [20] are preliminary
and may not be very reliable [23], the constraint from the
data on the parameters may also be unreliable. To provide an
assessment of the uncertainties involved and their implications,
we should check the results with parameters without constraint
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FIG. 5. Contribution of (a) � and
(b) N∗(1440) to the p̄p → p̄nπ+ total
cross sections with two sets of pa-
rameters: the same parameters as in
Ref. [22] (solid curves) and some pa-
rameters replaced by those in Table III
(dashed curves).

from the data of Ref. [20]. Some typical values for these
parameters are listed in Table III. For the �Nπ vertex
form factor, the cutoff parameter 1.2 GeV with n = 1 as
in the Bonn model is a commonly used value [29,30,39].
However, with such a hard �Nπ form factor, an ISI reduction
factor about 0.19 is needed to reproduce the pp → pnπ+
total cross section. Without such an ISI factor, then a much
softer �Nπ form factor with cutoff parameter of about
0.65 GeV is needed to reproduce the data [40]. According
to Ref. [40], any attempt to include the ρ-meson exchange
worsens the agreement with experiments of pp → n�++.
Hence for the � production, the ρ-meson exchange has
been ignored in Refs. [21,22] and here. Assuming the same
parameters of the Bonn model with the ISI reduction factor
of 0.19 for the p̄p → p̄nπ+ reaction, then the calculated
contribution of � production to the total cross section is shown
by the dashed curve in Fig. 5(a) and is about 50% larger than
the result using the parameters of Ref. [22]. For the N∗

(1440)Nσ

coupling, the parameters in Table III are from Refs. [24,41]
which reproduced well the data on pα → pαππ and pp →
NNππ reactions without including the ISI reduction factor.
Assuming these parameters for the p̄p → p̄nπ+ reaction, then
the calculated contribution of N∗

(1440) production to the total
cross section is shown by the dashed curve in Fig. 5(b) and
is about 30% smaller than the result using the parameters of
Ref. [22]. Note that the N∗

(1440)Nσ coupling in Table III is
much smaller than the value in Table II, which is determined
from the PDG value for the N∗

(1440) → Nσ decay width. So
one regards the N∗

(1440)Nσ coupling in Table III as effectively
including some ISI reduction factor.

Results with these parameters without adjustment to fit
data from Ref. [20] are plotted for various mass spectra of
the p̄p → p̄nπ+ reaction at Tp̄ = 1.55 and 2.88 GeV, as

TABLE III. Parameters without adjustment to fit data from
Ref. [20].

R n g2/4π �R
M (GeV) Source

�(1232)Nπ 1 19.54 1.2 [29,30]
N∗

(1440)Nσ 1 1.33 1.7 [24,41]
NNσ 1 5.69 1.7 [29,30,41]

shown by the dashed curves in Figs. 3 and 4 as a compar-
ison to those results (solid curves) with the parameters of
Ref. [22]. Although quantitatively there are about 30% ∼ 50%
uncertainty about the relative production rates of � and
N∗

(1440) resonances, qualitatively the main conclusion of the
study is rather firm, i.e., the N∗(1440) should be clearly seen
in the p̄p → p̄nπ+ reaction and dominates the reaction at
Tp̄ = 1.55 GeV.

With a clear advantage for studying N∗ of the large Nσ

coupling by the p̄p → p̄nπ+ reaction, finally let us discuss
the experimental accessibility of this reaction. We know that
the p̄p reaction will be studied by the PANDA (anti-Proton
ANnihilation at DArmstadt) Collaboration at FAIR with the p̄

beam energy in the range of 1.5 to 15 GeV and luminosity
of about 1031 cm−2 s−1 [25]. For our proposed N∗ study
with the p̄p → p̄nπ+ reaction, the best beam energy range
is 1.5–4 GeV, with a cross section around 8 mb, which
corresponds to an event production rate of 8 × 105 per second
at PANDA/FAIR. The PANDA is supposed to be a 4π solid
angle detector with good particle identification for charged
particles and photons. For the p̄p → p̄nπ+ reaction, if π+
and p̄ are identified, then the neutron can be easily recon-
structed from the missing mass spectrum against π+ and p̄.
So this reaction should be easy accessible at PANDA/FAIR.

In summary, we find that the p̄p → p̄nπ+ reaction pro-
vides an excellent place for studying properties of the Roper
N∗(1440) resonance and any other N∗ resonances (including
some missing ones) with large couplings to Nσ ; and the
reaction is easily accessible by the forthcoming experiments
at the PANDA/FAIR. With a large amount of data on the final
states including baryon and antibaryon, the PANDA/FAIR
could play an important role in the study of N∗ and hyperon
excited states.
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