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A simple exact covariant model in which a scalar particle � is modeled as a bound state of two different
particles is used to elucidate relativistic aspects of electromagnetic form factors F (Q2). The model form
factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front
technique of integrating over the minus component of the virtual momentum gives the same result and is the
same as the one obtained originally by Gunion et al. [Phys. Rev. D 8, 287 (1973)] by using time-ordered
perturbation theory in the infinite-momentum frame. The meaning of the transverse density ρ(b) is explained
by providing a general derivation, using three spatial coordinates, of its relationship with the form factor.
This allows us to identify a mean-square transverse size 〈b2〉 = ∫

d2b b2ρ(b) = −4 dF

dQ2 (Q2 = 0). The quantity

〈b2〉 is a true measure of hadronic size because of its direct relationship with the transverse density. We
show that the rest-frame charge distribution is generally not observable by studying the explicit failure to
uphold current conservation. Neutral systems of two charged constituents are shown to obey the conventional
lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued
that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high
longitudinal momentum that reside at the center. The nonrelativistic limit is defined precisely, and the ratio
of the binding energy B to the mass M of the lightest constituent is shown to govern the influence of
relativistic effects. It is shown that the exact relativistic formula for F (Q2) is the same as the familiar one
of the three-dimensional Fourier transform of a square of a wave function for very small values of B/M,
but this only occurs for values of B/M less than about 0.001. For masses that mimic the quark-diquark
model of the nucleon we find that there are substantial relativistic corrections to the form factor for any
value of Q2. A schematic model of the lowest s states of nuclei is developed. Relativistic effects are found
to decrease the form factor for light nuclei but to increase the form factor for heavy nuclei. Furthermore,
these lowest s states are likely to be strongly influenced by relativistic effects that are of the order of
15%–20%.
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I. INTRODUCTION

The textbook interpretation of nucleon electromagnetic
form factors is that their three-dimensional Fourier transforms
are measurements of the charge and magnetization densities.
This interpretation is deeply buried in our thinking and
continues to guide intuition as it has since the days of the
Nobel-prize-winning work of Hofstadter [1]. Nevertheless, the
relativistic motion of the constituents of the system causes
the textbook interpretation to be incorrect.

The preceding statement leads to a number of questions,
the first being: Is the statement correct? If so, how relativistic
does the motion of the constituents have to be? Why is it
that the relativistic motion of the constituents and not that of
the entire system causes the nonrelativistic approach to fail?
It is probable that the answers to these questions are found
within the existing literature. However, obtaining general clear
answers has proven to be sufficiently difficult that posing
even the first question of this paragraph would not lead to
a unanimous answer by all professionals in the field.

This paper offers the strategy of using a simple model,
a generalization of the φ3 model used by Weinberg [2], to
illustrate advantages of using the infinite-momentum frame
that was used by Gunion et al. [3] to explore form factors and
hadronic interactions at high-momentum transfer. We take the

interaction Lagrangian density to be of the form g�φξ in
which all of the fields are bosons. The � particle of mass M

represents the bound state of the two different constituents,
φ and ξ , of masses m1 and m2, respectively. Thus the �

represents the hadron or nucleus with the φ and ξ representing
the quark or nucleonic constituents. Mass renormalization
effects are ignored. We can choose either or both of the
constituents to be charged and thus discuss charged and neutral
� particles.

The motivation to pose questions regarding the meaning of
electromagnetic form factors at this point in time arises from
recent experimental work, especially the discovery that the
ratio of the proton’s electric to magnetic Sachs form factors
GE/GM drops rapidly (see Ref. [4] for reviews) and from
our recent finding [5], based on measurements and the use of
the transverse density that the charge density at the neutron’s
center is negative. The nucleon transverse density ρ(b), the
two-dimensional Fourier transform of F1, is the infinite-
momentum frame charge density [6] located at a transverse
separation b from the center of transverse momentum [7–10].
This quantity has a direct relationship to the matrix element
of a density operator. The usual three-dimensional Fourier
transforms of GE and GM do not because the initial- and
final-state nucleons have different momentum and therefore
different wave functions. This difference occurs because the
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relativistic boost operator that transforms a nucleon at rest
into a moving one changes the wave function in a manner that
depends on the momentum of the nucleon. However, we expect
that there are nonrelativistic conditions for which the textbook
interpretation is correct. We aim to explore those conditions
by choosing appropriate values of the masses m1, m2, and M .

The form factor for the situation in which the � and
φ carry a single unit of charge, but the ξ is neutral, is
computed using an exact covariant calculation of the lowest
order triangle diagram in Sec. II. This is followed by another
derivation using the light-front technique of integrating over
the minus component of the virtual momentum in Sec. III
that obtains the same form factor. This is also the result
obtained originally by Gunion et al. [3] by using time-ordered
perturbation theory in the infinite-momentum frame (IMF).
Thus three different approaches yield the same exact result for
this model problem. Any approximation that does not yield
the same form factor is simply not correct. The asymptotic
limit of very high momentum transfer Q2 is also studied.
Section IV explains the transverse density of the model, its
central value, a general derivation of its relationship with
the form factor using three-dimensional spatial coordinates,
and the meaning of hadronic radii. Section V displays the
spatial wave function in terms of three spatial coordinates.
Section VI shows that the rest-frame charge distribution
is generally not observable. Section VII is concerned with
the question of whether neutral systems of two constituents
obey the conventional lore that the heavier one is generally
closer to the origin than the lighter one. The nonrelativistic
limit is defined and applied to a variety of examples in
Sec. VIII. The exact formula for the form factor morphs
into the familiar one of the three-dimensional Fourier trans-
form for sufficiently large values of the constituent mass
divided by the binding energy of the system. Examples
that are motivated by the pion, deuterium, the nucleon, and
heavy nuclei are provided. This work is summarized in
Sec. IX.

II. EXACT FORM FACTORS USING A SIMPLE MODEL

The model Lagrangian density is given by g�φ ξ, where
�, φ, and ξ represent three scalar fields of masses M, m1,
and m2, respectively, and g is a coupling constant. One can
take two or three of these fields to carry charge to make
up a system of definite charge (including the case when
thehadron � is neutral). The effects of mass renormalization
are not considered here because we aim to use a simple model
to provide easily calculable examples and illustrate specific
points. The condition m1 + m2 > M is used to ensure that the
hadron � is stable.

We start with the situation in which the � and φ each carry
a single positive charge and ξ is neutral. The form factor F (q2)
for a spacelike incident photon of four-momentum qµ (q2 < 0,

Q2 = −q2), incident on a target � of four-momentum P µ

interacting with the φ of mass m1, is given, to lowest order in
g, by the single Feynman diagram of Fig. 1. We take the model
electromagnetic current Jµ (in units of the proton charge) as

P P+q

q

k

P−k

k+q

1

2

FIG. 1. Feynman diagram for the form factor with the photon
coupling to the φ particle of mass m1. The initial and final hadrons
� carry momentum P and P + q. The ξ is a spectator.

given by

Jµ = φ
↔
∂µ φ (1)

and find

〈P + q|Jµ(0)|P 〉 ≡ F (Q2)(2P µ + qµ) (2)

= − ig2
∫

d4k

(2π )4

1(
k2 − m2

1 + iε
) (2kµ + qµ)

× 1[
(k + q)2 − m2

1 + iε
] 1[

(P − k)2 − m2
2 + iε

] . (3)

We proceed by combining the denominators using the
Feynman procedure and shifting the origin of the convergent
integral to find

F (Q2)(2P µ + qµ) = −i2g2
∫

d4κ

(2π )4

∫ 1

0
dx

×
∫ 1−x

0
dy

qµ(1 − 2y) + 2P µx

[κ2 − M2 + iε]3
, (4)

where M2 = Q2y(y + x − 1) + M2x(1 − x) − m2
1(1 − x) −

m2
2. Using

∫
d4κ

(2π )4

1

(κ2 − M2 + iε)3
= −i

π2

(2π )4

1

2

1

M2
(5)

we find

F (Q2)(2P µ + qµ) = − g2

16π2

∫ 1

0
dx

∫ 1−x

0
dy

× qµ(1 − 2y) + 2P µx

Q2y(y + x − 1) + M2x(1 − x) − m2
1(1 − x) − m2

2x
.

(6)

The integral over y can be done in closed form with
the result
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F (Q2)(2P µ + qµ) = 4
g2

16π2
(qµ + 2P µ)

∫ 1

0
dx

xtanh−1

[ √
Q2(1−x)√

4x m2
2+4(1−x)m2

1−4x(1−x)M2+(1−x)2Q2

]
√

Q2
√

4x m2
2 + 4(1 − x)m2

1 − 4x(1 − x)M2 + (1 − x)2Q2
. (7)

This expression shows that current conservation is satisfied
and that the form factor can be obtained from any component

of the current operator Jµ. The final result for the form
factor is

F (Q2) = g2

4π2

∫ 1

0
dx

xtanh−1

[ √
Q2(1−x)√

4x m2
2+4(1−x)m2

1−4x(1−x)M2+(1−x)2Q2

]
√

Q2
√

4x m2
2 + 4(1 − x)m2

1 − 4x(1 − x)M2 + (1 − x)2Q2
. (8)

This closed-form expression is the key result of this paper.
It can be modified to describe a variety of different physical
situations.

III. INFINITE-MOMENTUM FRAME/LIGHT-FRONT
REPRESENTATION

We derive the light-front representation by starting with
the form factor of Eq. (3) and integrating over k−. This

procedure is simplified by choosing q+ = 0, so that Q2 = q2

[6], and evaluating the plus component of the electromagnetic
current operator. In the present section the convention is
that A± = A0 ± A3 for the four-vector Aµ. Then Eq. (3)
becomes

2P +F (Q2) = −ig2
∫

d4k

(2π )4

[
2k+(

k2 − m2
1 + iε

) 1[
(k + q)2 − m2

1 + iε
] 1[

(P − k)2 − m2
2 + iε

]
]

(9)

= −ig2
∫

d4k

(2π )4

2k+

k+2(P +−k+)

1[
k−− (k2+m2

1)
k+ + iε

k+
] 1[

k−− (k+q)2+m2
1

k+ + iε
k+
] 1[

P −−k−− (P−k)2+m2
2

P +−k+ + iε
P +−k+

] . (10)

If we integrate over the upper half of the com-
plex k− plane we find a nonzero contribution only

for the case 0 < k+ < P +. Carrying out the integral
leads to

2P +F (Q2) = g2

(2π )3

∫
d2k

∫
dk+

k+(P + − k+)

1

P − − k2+m2
1

k+ − (P−k)2+m2
2

P +−k+

1

P − − (k+q)2+m2
1

k+ − (P−k)2+m2
2

P +−k+

. (11)

Next we change variables by defining

x ≡ k+

P + , (12)

so that

F (Q2) = g2

2(2π )3

∫
d2k

∫ 1

0

dx

x(1 − x)

1

P +P − − k2+m2
1

x
− (P−k)2+m2

2
1−x

1

P +P − − (k+q)2+m2
1

x
− (P−k)2+m2

2
1−x

. (13)
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Further. let us define the relative transverse momentum

κ ≡ (1 − x)k − x(P − k) = k − xP, (14)

so that the form factor can be re-expressed as

F (Q2) = g2

2(2π )3

∫
d2κ

∫ 1

0

dx

x(1 − x)

1

M2 − κ2+m2
1

x
− κ2+m2

2
1−x

× 1

M2 − [κ+(1−x)q]2+m2
1

x
− [κ+(1−x)q]2+m2

2
1−x

. (15)

This is the expression obtained in Ref. [3], by using time-
ordered perturbation theory in the infinite-momentum frame.
Integration over k− leads to the same result for this example.

It is useful to re-express the result Eq. (15) in terms of a
wave function ψ with

ψ(x, κ) ≡ g

[
M2 − κ2 + m2

1

x
− κ2 + m2

2

1 − x

]−1

. (16)

In that case

F (Q2) = 1

2(2π )3

∫
d2κ

×
∫ 1

0

dx

x(1 − x)
ψ∗[x, κ + (1 − x)q]ψ(x, κ),

(17)

as found in Ref. [3].
The integration over κ is convergent so we carry it out by

combining the propagators and shifting the origin. This gives

F (Q2) = g2π

2(2π )3

∫ 1

0
dx

∫ 1

0
dz

× x(1 − x)

(1 − x)m2
1 + xm2

2 − x(1 − x)M2 + (1 − x)2q2z(1 − z)
.

(18)

The integral over z can be done with the result that

F (Q2) = g2

4π2

∫ 1

0
dx

×
xtanh−1

[ √
Q2(1 − x)√

4x m2
2 + 4(1 − x)m2

1 − 4x(1− x)M2 + (1− x)2Q2

]
√

Q2
√

4x m2
2 + 4(1− x)m2

1 − 4x(1− x)M2 + (1− x)2Q2
.

(19)

This is the same as our previous exactly computed result,
Eq. (8). Thus evaluation in the infinite-momentum frame or the
equivalent (for this model) light-front technique of integration
over k− yields the exact result.

A. Asymptotic behavior of the form factor

The limit of very high Q2 is of considerable interest. One
wants to see how the quark counting rules emerge from an
exact calculation, even if the model is very simple. To this
end we note that the integral Eq. (19) can be evaluated exactly

in the limit that m1 = m2 = m with M = 0. Then measuring
Q ≡

√
Q2 in units of m (Q/m → Q) we find

F (Q2) = g2

4π2

[
log2

{
1
2 [Q(

√
Q2 + 4 + Q) + 2]

}+ 8

8Q2

−
√

Q2 + 4 log
{

1
2 [Q(

√
Q2 + 4 + Q) + 2]

}
2Q3

]

(20)

so that

lim
Q2→∞

F (Q2) ∼
1
2 log2

(
1
Q

)+ log
(

1
Q

)+ 1

Q2

+
log
(

1
Q

)− 1

Q4
+ · · · . (21)

Thus the leading asymptotic behavior is

lim
Q2→∞

F (Q2) ∼
1
2 log

2
Q2

Q2
. (22)

Thus the power-law falloff expected from the quark-counting
rules appears, but it is modified by the presence of the
logarithms. This behavior is not associated with taking M to
zero because in all cases we have m1 + m2 > M as required
for the particle to be stable. Thus the asymptotic behavior
(Q2 
 m2

1,m
2
2) associated with Eq. (22) is expected to be

universal for this model. Note, however, from Eq. (21), that
the approach to this asymptotic form is very slow.

IV. ELECTROMAGNETIC FORM FACTORS MEASURE
TRANSVERSE DENSITIES AND TRANSVERSE RADII

Equation (17) is noteworthy because the form factor is
expressed as a three-dimensional integration that involves
momentum-space wave functions evaluated at different initial
and final momenta. If the (1 − x) factor multiplying q were
replaced by a constant, Eq. (17) would be similar to the usual
expression for the form factor. We clarify this comparison
by expressing the wave function of Eq. (16) and Eq. (17) in
transverse position space, with B canonically conjugate to the
transverse momentum variable κ :

ψ(x, B) = 1√
x(1 − x)

∫
d2κ

(2π )2
eiκ ·Bψ(x, κ) (23)

=
√

x(1 − x)

2π

× gK0

(√
m2

1(1 − x) + m2
2x − M2x(1 − x) B

)
,

(24)

with the phase space factor 1/
√

x(1 − x) incorporated in
the wave function. Then the form factor Eq. (17) can be
re-expressed as

F (Q2) = 1

2(2π )3

∫ 1

0
dx

∫
d2B|ψ(x, B)|2e−iq·(1−x)B. (25)

We further simplify by replacing the relative transverse
position variable B by the transverse position variable of the
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charged parton b1 ≡ b. We have

B = b1 − b2, (26)

0 = b1(x) + b2(1 − x), (27)

B = b/(1 − x), (28)

where the middle equation sets the transverse center of P +
momentum to zero. We use Eq. (28) in Eq. (25) to find

F (Q2) = 1

2(2π )3

∫ 1

0

dx

(1 − x)2

∫
d2b

∣∣∣∣ψ
(
x,

b
1 − x

)∣∣∣∣
2

e−iq·b,

(29)

which can be rewritten as

F (Q2) = 1

(2π )2

∫
d2bρ(b)e−iq·b (30)

with the transverse density ρ(b) given by

ρ(b) = 1

4π

∫ 1

0

dx

(1 − x)2

∣∣∣∣ψ
(

x,
b

1 − x

)∣∣∣∣
2

= g2

2(2π )3

∫ 1

0
dx

x

(1 − x)

×K2
0

(√
m2

1(1−x) + m2
2x−M2x(1−x)

b

1−x

)
. (31)

The transverse density ρ(b) has been derived previously [8,9]
as the integral of the impact parameter generalized parton
distributions (GPD) ρ(x, b) over all values of x. The quantity
ρ(x, b) gives the probability that a quark of longitudinal
momentum fraction x resides at a transverse position b [8,9].
For the present model

ρ(x, b) = g2

2(2π )3

x

(1 − x)

×K2
0

(√
m2

1(1 − x) + m2
2x − M2x(1 − x)

b

1 − x

)
.

(32)

The transverse density is also the integral of the three-
dimensional infinite-momentum frame density ρ(x−, b) over
all values of the longitudinal position coordinate [11].

The transverse density is directly obtainable from experi-
ment via the inverse Fourier transform of Eq. (30) provided
the electromagnetic form factor is measured for sufficiently
large values of Q2. The momentum transfer is transverse in
direction so that information about the longitudinal position
or momentum is not available. There is no way to use only
measured values of F (Q2) to determine ρ(x, b).

A. Singular central density

Before proceeding it is worthwhile to point out that the
model central density is singular. This arises as a consequence
of the zero-range nature of the �φξ coupling. The transverse
density ρ(b) is an integral involving the singular function
K0(x), which varies as log 1

x
for x � 1. The question of the

singularity of the central transverse density ρ(b) is interesting
to the present author because of recent work [11] showing that,

for the pion, ρ(b) is likely to approach infinity as b approaches
zero. We may study the limit as b approaches 0 by using the
asymptotic limit of the form factor given by Eq. (22). The
density for b near zero is controlled by the form factor at large
values of Q2. We use the inverse of Eq. (29) to write

lim
b→0

ρ(b) ∼
∫ ε/b

Q0

dQ

Q
ln2(Q), (33)

where Q0 is a momentum transfer large enough so that Eq. (22)
is valid, and ε is a fixed positive number small enough so
that J0(ε) = 1 to any desired precision. Changing variables to
u = ln Q shows that

lim
b→0

ρ(b) ∼ ln3(b)/3, (34)

which is the central singular charge density arising from the
log2 Q2/Q2 behavior of the asymptotic form factor.

B. Transverse charge density from a more general perspective

For a spin-0 system, the form factor F (Q2), Eq. (2), may be
computed, in the Drell-Yan (DY) frame (q+ = 0,Q2 > 0 =
q2), by using

F (Q2) = 〈p′|J+(0)|p〉
2p+ . (35)

The spatial structure of a nucleon can be examined if one uses
Refs. [7–9]. The state with transverse center of mass R set
to 0 is formed by taking a linear superposition of states of
transverse momentum:

|p+, R = 0〉 ≡ N
∫

d2p
(2π )2

|p+, p〉, (36)

where |p+, p〉 are plane wave states and N is a normalization
factor satisfying |N |2 ∫ d2p⊥

(2π)2 = 1. The normalization of the
states is given by

〈p′+, p′|p+, p〉 = 2p+(2π )3δ(p′+ − p+)δ(2)(p′ − p). (37)

References [12,13] use wave packet treatments that avoid
states normalized to δ functions, but this leads to the same
results as using Eq. (36). Note, however, that the relevant
range of integration in Eq. (36) must be restricted to |p| � p+
to maintain the interpretation of a nucleon moving with
well-defined longitudinal momentum [12]. Thus we use a
frame with very large p+. It is in just such a frame that the
interpretation of a nucleon as a set of a large number of partons
is valid.

We evaluate the density operator in the infinite-momentum
frame in which the spatial coordinates are x− = (t − z)/

√
2, b

and time is x+ = (t + z)/
√

2 = 0. We therefore do not write
the x+ dependence in any function in the following. The
infinite-momentum-frame charge density operator (in units of
the proton charge) is given by

ρ̂∞(x−, b) ≡ J+(x−, b) = φ
↔
∂+ φ(x−, b), (38)
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and the density itself is given by

ρ∞(x−, b) = 〈p+, R = 0|ρ̂∞(x−, b)|p+, R = 0〉
〈p+, R = 0|p+, R = 0〉 . (39)

We use translational invariance in the form ρ̂∞(x−, b) =
eip̂+x−

e−ip·bρ̂∞(0)e+ip·be−ip̂+x−
along with Eq. (39), Eq. (36),

and Eq. (2) to determine that∫
dx−ρ∞(x−, b) = 1

(2π )2

∫
d2qF (Q2 = q2)e−iq·b = ρ(b).

(40)

Thus one recovers the two-dimensional Fourier transform of
Eq. (30).

C. Mean-square transverse radii and mean-square
effective radii

The two-dimensional Fourier transform of Eq. (30) may be
expanded as a power series in Q2 as

lim
Q2→0

F (Q2) = 1 − Q2

4
〈b2〉, (41)

where the mean-square transverse radius 〈b2〉 is given in terms
of the transverse density as

〈b2〉 =
∫

d2b b2ρ(b), (42)

and a direct relation with the transverse density is evident. In
contrast, the usual procedure is to write

lim
Q2→0

F (Q2) = 1 − Q2

6
R∗2

, (43)

where we denote the effective mean-square radius as R∗2 [14].
The quantity R∗2 has no direct relationship with a density
unless the system is nonrelativistic. Thus we maintain that 〈b2〉
is the basic quantity related to an underlying density. However,
once the effective mean-square radius R∗2 is determined, the
fundamental 〈b2〉 is known immediately because a comparison
of Eq. (41) and Eq. (43) reveals that

〈b2〉 = 2

3
R∗2

. (44)

V. WAVE FUNCTION AS A FUNCTION OF THREE
POSITION VARIABLES

The previous section shows that the form factor is simply
related to the three-dimensional coordinate-space density that
depends on (x−, b) in the infinite-momentum frame. Given the
simplicity of our model, we should be able to identify a wave
function and density.

The basic idea is that the position variable of a particle
x− is canonically conjugate to the plus component of the
momentum. The momentum of the charged constituent is
k+ = xP +, and its canonical longitudinal position variable
is x− with [x−, k+] = i = [x−, x]P + [15]. The canonical
longitudinal position variable for the other particle can be
taken as −x−. So we can convert the wave function ψ(x, B)

of Eq. (24) to one expressed entirely in coordinate space. We
find

ψ(x−, B) =
√

P +

2π

∫ 1

0
dxψ(x, B)eixP +x−

, (45)

which preserves the normalization condition that F (Q2 =
0) = 1. Note that B is a relative variable and that x− is the
variable for the position of the charged constituent. This wave
function displays no spherical symmetry—the longitudinal x−
and transverse position dependence B are not related. Another
point is that the wave function of Eq. (45) explicitly depends
on the momentum P +. As P + approaches infinity, the value of
x− must be very small to prevent x−P + from being very large
and causing the integral in Eq. (45) to vanish. This means that
the system can be thought of as having a pancake or disk shape.
For this reason, the position b = 0 really does correspond to
the center of the hadron. We shall show in the following that,
in the nonrelativistic limit, rotational symmetry emerges.

The wave function can be computed in closed form for the
special case M = 0,m1 = m2 = m. Using Eq. (24) in Eq. (45)
with the stated parameters leads to the result

ψ(x−, B) =
√

P +

2π
ei 1

2 P +x−
g K0(m B)

∫ 1

0
dx

√
x(1− x)

2π
eixP +x−

(46)

=
√

P +

2π
ei 1

2 P +x−
g K0(m B)

πJ1
(

P +x−
2

)
4P +x− . (47)

For this simple example, the x− and B dependence factor-
izes, showing the explicit violation of rotational symmetry.
Equation (47) shows also how the spatial extent contracts
with the increase in value P +. We note that it is not useful
to use the spatial wave function to compute the form factor
because of the appearance of the factor 1 − x in the exponential
of Eq. (25).

VI. THE REST-FRAME CHARGE DISTRIBUTION IS
GENERALLY NOT OBSERVABLE

The concept of a charge density that depends on three spatial
variables, but not on the time, is inherently nonrelativistic.
This is because the use of only three variables involves
replacing a four-dimensional quantity by one involving only
three dimensions. One procedure, discussed in Sec. II, is to
evaluate the Feynman diagram of Fig. 1 by integrating over
the k− component of the virtual momentum k. This leads to
a formalism in which the form factor depends on a Fourier
transform of the square of a wave function that depends both
on position B and momentum x variables.

One can try to recover the more familiar three-spatial-
dimension formalism by evaluating the Feynman diagram
of Fig. 1 using the time-ordered perturbation theory (TOPT)
formalism in the rest frame. One proceeds by integrating over
all times, with the exponential oscillating factors converted
into energy denominators. In the TOPT formalism any given
Feynman diagram is the sum of several TOPT diagrams. In the
present case, the sum of the two TOPT diagrams of Fig. 2 leads
to the Feynman diagram of Fig. 1. Only Fig. 2(a) corresponds
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FIG. 2. Two TOPT diagrams for the form factor with the photon
coupling to the particle of mass m1.

to measuring a density. The term of Fig. 2(b) corresponds to the
hadronic part of the incident photon wave function interacting
with the target.

One can examine the contribution of the term of Fig. 2(a),
F2a(Q2). It is given [3] by

〈P + q|Jµ(0)|P 〉 → (2P + q)µF2a(Q2)

= g2

(2π )3

∫
d3p

2E12E1
′2E2

×
(
p

µ

1 + p′µ
1

)
(EP − E1 − E2)(EP + q − E′

1 − E2)
,

(48)

an expression that leads to the correct result in the infinite-
momentum frame (P → ∞) [3]. This expression can be
interpreted as involving an initial- and a final-state wave
function if one interprets the energy denominators (multiplied
by phase space factors) as wave function expressed in
momentum space. The symbol → used here refers to the
approximation of keeping only a single TOPT diagram. For
simplicity we take the example m1 = m2 = m and also work
in the target rest frame (where P = 0) to isolate the rest-frame
charge distribution.

Then EP = √
P 2 + M2 = M, EP + q =

√
(P + q)2 +M2 =√

q2 + M2, E1 =
√

p2 + m2, and E′
1 =

√
(p + q)2 + m2.

The four-vector (pµ

1 + p′µ
1 ) = [E1 + E′

1, 2p + q]. There are
three integrals appearing on the right-hand-side of Eq. (48):

I1(q2) ≡
∫

d3p

2E12E1
′2E2

× (
√

p2 + m2 +
√

(p + q)2 + m2)

(EP − E1 − E2)(EP+q − E′
1 − E2)

, (49)

2 4 6 8 10

Q2

0.2

0.4

0.6

0.8

C
C

FIG. 3. (Color online) Nonconservation of current as measured
by the deviation of CC from 0 as a function of q2 = Q2 (in units
of M2). Solid curve is for m = 0.51, B/m = 0.04, the short-dashed
curve for m = 0.501, B/m = 0.004, and the long-dashed curve for
m = 0.6, B/m = 0.33 (with m in units of M).

q̂J2(q2) ≡
∫

d3p

2E12E1
′2E2

× 2p
(EP − E1 − E2)(EP+q − E′

1 − E2)
, (50)

q̂J3(q2) ≡
∫

d3p

2E12E1
′2E2

× q
(EP − E1 − E2)(EP+q − E′

1 − E2)
. (51)

Thus we arrive at the four-vector equality

(2P + q)µF2a(Q2) = g2

(2π )3
[I1, q̂(J2 + J3)]. (52)

Maintaining current conservation requires that the matrix
element of qµJµ vanishes. Taking the scalar product of
Eq. (52) with qµ leads to the requirement

0 = q0I1 − |q|(J2 + J3) ≡ CC I1(q2 = 0), (53)

where q0 =
√

q2 + M2 − M . The right-hand side of Eq. (53)
is defined as CC I1(0), so comparing CC to unity provides a
reasonable measure of the failure of this approximation to
uphold current conservation. We express all momenta and
mass in units of the target mass (=1), take as an examples
m = 0.501, 0.51, and 0.6, and plot the numerical results in
Fig. 3. Both CC and q2 = Q2 are measured in units of the
target mass M , taken as unity. Thus the natural scale of
any quantity is unity. We see that current conservation is
massively violated in the rest frame for systems in which
B/m = (2m − M)/m is not very small. In that case, the
expression that potentially depends on the square of the wave
function or density has no independent physical reality.

VII. NEUTRAL SYSTEMS

Previous work [5] showed that the central transverse density
of the neutron is negative. This contrasts with the long-held
view that there must be positive charge density at the center
to neutralize the effects of a negatively charged pionic cloud
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that occupies the exterior. This result requires interpretation
[16–18].

One relevant question is whether or not the intuition that a
neutral system consisting of a heavy charge positively charged
particle and a negatively charged lighter particle disobeys the
standard intuition that the averaged square charged radius is
negative, when the charge density is evaluated in the infinite-

momentum frame. We examine this question in our model by
taking the φ (of mass m1) to be positively charged and the ξ

(of mass m2 < m1) to be negatively charged.
The form factor of this model can be obtained from Eq. (8)

by including a second term obtained by interchanging m1 and
m2 and putting a minus sign in front. That operation gives the
result

F (Q2) = g2

4π2

∫ 1

0
dxx

⎧⎪⎪⎨
⎪⎪⎩

tanh−1

[ √
Q2(1−x)√

4x m2
2+4v(1−x)m2

1−4x(1−x)M2+(1−x)2Q2

]
√

Q2
√

4x m2
2 + 4(1 − x)m2

1 − 4x(1 − x)M2 + (1 − x)2Q2

−
tanh−1

[ √
Q2(1−x)√

4x m2
1+4(1−x)m2

2−4x(1−x)M2+(1−x)2Q2

]
√

Q2
√

4x m2
2 + 4(1 − x)m2

1 − 4x(1 − x)M2 + (1 − x)2Q2

⎫⎪⎪⎬
⎪⎪⎭ . (54)

The results of a numerical evaluation using m1 = M and
m2 = 0.14M are shown in Fig. 4. One observes the rise
of F (Q2) from zero, which is the effect expected from
nonrelativistic, rest-frame considerations. The effective square
radius, defined in Eq. (43), is indeed negative. This is the
same as expected from the intuition that the negatively

charged light particle resides on the outside edge of the
system.

One obtains the analytic result for the charge radius by
taking the limit of very low Q2 in the expression for the form
factor [Eq. (54)]. The expression is simplified if one uses the
(relevant for nucleon) [19] case of m1 = M . Then one finds

M2R∗2 = − g2

96π2

⎛
⎜⎜⎜⎜⎜⎜⎝

(
m2

2
M2 − 1

)⎧⎨
⎩−2 tan−1

⎡
⎣
√

m2
2

M2

(
4− m2

2
M2

)
m2

2

⎤
⎦√ m2

2
M2

(
m2

2
M2 − 5

)
− 2

√
4 − m2

2
M2

⎫⎬
⎭

m2
2

(
4 − m2

2
M2

)
3/2

− log

(
m2

2

M2

)
⎞
⎟⎟⎟⎟⎟⎟⎠

. (55)
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FIG. 4. (Color online) Form factor for a neutral system with
one heavy m2 = M and one light m1 = 0.14M negatively charged
constituent.

A very accurate approximation (to better than 1% for m2
2 �

0.14M2) is

M2R∗2 = − g2

4π2

⎧⎨
⎩ M2

48m2
2

+ 1

96

[
1 − 4 log

(
m2

2

M2

)]

+ 11

512
π

√
m2

2

M2
− 5π

192
√

m2
2

M2

− 7m2
2

288M2

⎫⎬
⎭ . (56)

The radius is dominated by a singular term proportional to
1/m2

2. Thus as expected the lighter constituent drifts to the edge
of the nucleon. The conventional expectation is borne out on
the light front. This is shown in more detail by plotting bρ(b),
as shown in Fig. 5. The positive charge density is concentrated
at the center and the negative charge density at the edge.
This finding does not contradict the explanations offered in
Refs. [16–18]. In Ref. [16] is was argued that negative charge
at high x corresponds to negative charge at small values of b.
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FIG. 5. (Color online) Transverse charge density for a neutral
system of a positively charged heavy object and a negatively charged
lighter object.

The Nπ model of Ref. [18] shows that one must include
the finite size of the nucleon to obtain a computed F1 that
looks like the measured function. Thus the pointlike nature
of the constituents used here is unsurprisingly not realistic.
Moreover, in that model negatively charged pions reside both
at the edge and at the center of the nucleon. The implication of
Ref. [16] is that the pions may have large values of longitudinal
momentum fraction. This expectation is borne out by the model
calculation [20]. Thus in pion cloud models of the nucleon,
pions that have a large longitudinal momentum tend to reside
near the center of the nucleon.

VIII. NONRELATIVISTIC LIMIT

The conventional lore is that the electromagnetic form
factor is the Fourier transform of the charge density. In
this section we see how this idea emerges by taking the
nonrelativistic limit.

Our starting point is the wave function given by Eq. (16)
and the form factor of Eq. (17). Recall that the quantity
x = k+/P +. We work in the rest frame and take the nonrela-
tivistic limit in which the energy k0 = m1 and k+ = m1 + κ3,
where κ3 is the third component of the relative longitudinal
momentum. Then [21,22]

x = m1 + κ3

M
, 1 − x = M − m1 − κ3

M
= m2 − B − κ3

M
,

(57)

where in conformation with nonrelativistic notation, we define
the positive binding energy B so that

M ≡ m1 + m2 − B. (58)

To obtain the nonrelativistic expression we express the
denominator appearing in Eq. (16) in terms of κ3. This
gives

M2 − κ2 + m2
1

x
− κ2 + m2

2

1 − x
(59)

= M2 − M

[
κ2 + m2

1

m1 + κ3
+ κ2 + m2

2

m2 − B − κ3

]
(60)

≈ M2 − M

{
κ2 + m2

1

m1

[
1 − κ3

m1
+
(

κ3

m1

)2
]

+ κ2 + m2
2

m2

[
1 + κ3 + B

m2
+
(

κ3 + B

m2

)2
]}

(61)

≈ M2 − 2M

[(
κ2 + κ2

3

) ( 1

m1
+ 1

m2

)
+ m1 + m2 + B

]
(62)

= 2M

(
−B − κ2

2µ

)
, (63)

where

κ2 ≡ κ2 + κ2
3 , �κ = κ + κ3ẑ, µ ≡ m1m2

m1 + m2
. (64)

In going from Eq. (59) to Eq. (63) we have ignored terms in
v/c = k/m of order three and higher. The result is that Eq. (63)
is recognizable as 2M times the inverse of the nonrelativistic
propagator.

The next step is to determine the coordinate form of the
nonrelativistic wave function ψNR(�r) (where �r is canonically
conjugate to �κ) and to show that the nonrelativistic form factor
is a three-dimensional Fourier transform of |ψNR(�r)|2. First use
the nonrelativistic approximation Eq. (63) in Eq. (16) to find

ψNR(�κ) = −2µg

κ2 + λ2
, λ2 ≡ 2µB. (65)

The coordinate-space wave function ψNR(�r) is given by

ψNR(�r) = 1

(2π )3/2

∫
d3κei�κ·�rψNR(�κ) = −µg

M

√
π

2

e−λr

r
.

(66)

Equation (66) is seen as the standard result obtained for
the bound state of a two-particle system interacting via an
attractive delta function potential.

The wave functions in Eq. (65) and Eq. (66) enable us
to examine the condition needed for the approximations of
Eq. (57) to be valid. For Eq. (57) to work we need κ2 � m2

1,2,
but from the wave functions κ2 ∼ λ2 so that we require

µB

m2
1,2

� 1 (67)

for the nonrelativistic approximation to be valid. More specif-
ically, let M be the lighter of m1 or m2, then we may write the
approximate condition as

B

M � 1. (68)

The nonrelativistic form factor FNR(Q2) is obtained by
using Eq. (65) in the expression for the form factor [Eq. (17)]
and taking the nonrelativistic limit defined by the expressions

dx → dκ3

(m1 + m2)
, (69)

x(1 − x) → m1m2

m1 + m2
, (70)

(1 − x)q → m2

m1 + m2
q. (71)
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The result is

FNR(Q2) = 1

2(2π )3µ

∫
d3r |ψNR(�r)|2 e

−iq·r m2
m1+m2 . (72)

This is the usual expectation that the form factor is a three-
dimensional Fourier transform of the wave function. We may
evaluate the integral immediately to find

FNR(Q2) =
tan−1 Qm2

2(m1+m2)λ
Qm2

2(m1+m2)λ

, (73)

where Q = |q| and the coupling constants and other constants
enter in such a manner as to make FNR(Q2 = 0) = 1.

In the remainder of this section we study the accuracy of
the nonrelativistic approximation by comparing the results of
using Eq. (73) with the model-exact results of using Eq. (8)
for several examples.

A. Bound state of two equal mass particles

With equal masses m1 = m2 = m the bound state can be
thought of as a toy meson or a deuteron. Using m1 = m2 = m

in Eq. (65) leads to the nonrelativistic wave function ψ
(2)
NR(κ)

with

ψ
(2)
NR(κ) = g

2M
(
κ2 + λ2

2

) , (74)

with

λ2
2 = mB. (75)

The coordinate-space wave function ψNR(r) is then

ψ
(2)
NR(r) =

√
π

2

g

2M

e−λ2r

r
. (76)

Thus the wave function is the usual bound-state wave function
one obtains with a delta function binding interaction. We obtain
the nonrelativistic version of the form factor by using m1 =
m2 = m, with λ → λ2, in Eq. (73) to find

F
(2)
NR(Q2) = tan−1 Q

4λ2

Q

4λ2

, (77)

where Q = |q| and the coupling constants and other constants
enter in such a manner as to make F

(2)
NR(Q2 = 0) = 1.

We study the nonrelativistic approximation numerically by
comparing the exact model results from Eq. (17) with those of
the nonrelativistic approximation of Eq. (77). See Fig. 6. The
figure shows two sets of results. In the upper panel the binding
energy B = 0.002M . This corresponds roughly to deuteron
kinematics, in which the binding energy is of the order of a
0.004 of the deuteron mass. We see that the nonrelativistic
approximation is not accurate for values of Q2/M2 greater
than about 1. If one increases the binding energy to 0.1M , one
sees that the nonrelativistic approximation is not accurate for
any value of Q2. If one approximates a nucleon by taking M =
1 GeV, then m = 0.55 GeV, which is much larger than a u or d

constituent quark mass. Thus the range of masses for which the
nonrelativistic approximation is valid is very narrow indeed.

We can gain some insight into the nature of the relativistic
corrections to the charge radius by studying the low-Q2 limit

2 4 6 8 10
Q2

M2

0.10

1.00
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0.70

F
Q

2

2 4 6 8 10
Q2

M2

1.00

0.50

0.30

0.70

F
Q

2
FIG. 6. (Color online) Exact vs nonrelativistic form factors for the

case m1 = m2 = m. The solid curve is the exact result; the dashed
curve is the nonrelativistic limit. The upper panel shows deuterium-
like kinematics in which B = 0.002M . The lower panel has
B = 0.1M .

of the form factor of Eq. (8). One finds

lim
Q2→0

F (Q2) = 1 − Q2R∗2

6
, (78)

where we use the notation R∗2 to denote an effective radius
squared that is not generally associated with the expectation
of the square of a radius operator weighted by a density. The
explicit evaluation gives

M2R∗2 =
(

1
γ 3 + 48γ

)
cot−1(2γ ) + 2

γ 2 − 24

16
[(

2γ + 1
2γ

)
cot−1(2γ ) − 1

] (79)

and

γ 2 ≡ m2

M2
− 1

4
= B

2M
+ B2

4M2
. (80)

The nonrelativistic limit corresponds to the limit of small
values of γ , which corresponds to a small value of B/M . So
we expand the previous result to order B/M to find

M2R∗2 ≈ (12288 − 2816π2 + 195π4)B

48Mπ4

+
√

B
M

(128
√

2 − 25
√

2π2)

4π3

+ 64 − 5π2

8π2
+

√
2√

B
M

π

+ M

4B
. (81)

The nonrelativistic value of the mean-square radius, R2
NR

(which is a true mean-square radius), is obtained by expanding
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FIG. 7. (Color online) Ratio of exact to
nonrelativistic effective square radii for the case
m1 = m2 = m as a function of the ratio of the
binding energy B to the hadronic mass M . This
is also the ratio of the true value of 〈b2〉 to its
nonrelativisitic version.

the form factor for small values of Q2:

R2
NR = 1

8mB
≈ 1

4MB
, (82)

which corresponds to the leading term of Eq. (81) in the limit
that B approaches 0. Comparing Eq. (81) with Eq. (82) shows
that the former contains a series of terms that represent the
boost corrections to the nonrelativistic result. Each correction
is positive and can be substantial. Figure 7 shows the ratio of
the exact value of the mean-square radius to the nonrelativistic
approximation as a function of B/M . We see that the
nonrelativistic approximation works well only for very small
values of B/M . Indeed, the ratio of the leading correction to
the nonrelativistic result is given by

R∗2 − R2
NR

R2
NR

≈ 4

π

√
2B

M
. (83)

For this ratio to be less than 10%, B/M must be less than
one part in a thousand! Thus, within the framework of our toy
model, the relativistic corrections can generally be expected
to be very substantial.

B. Quark-diquark model of the nucleon

Another interesting example is motivated by recent quark-
diquark models of the nucleon [23–25]. We take m1 =
m,m2 = 2m1 = 2m. Then from Eq. (58) we have M =
3m − B. In these models current quarks acquire a large
constituent mass because of the effects of dynamical chiral
symmetry breaking. Therefore we take m = 400 MeV and
M = 940 MeV, which corresponds via Eq. (58) to B =
260 MeV and B/M = 0.276. The nonrelativistic expression
for the form factor, Fq2q

NR (Q2), for this case is obtained by using
the appropriate reduced mass as

F
q2q

NR (Q2) = tan−1 Q

3λ12

Q

3λ12

, (84)

λ2
12 ≡ 4

3mB. (85)

Results comparing the exact form factor computed from
Eq. (8) with that of Eq. (84) are shown in Fig. 8. The
nonrelativistic version gives a poor approximation to the exact
form factor for all values of Q2. This can be understood by
considering the effective squared radius R∗2

q2q for this case.
We find

R∗2
q2q − R2

NR

R2
NR

≈ 6 − ln 2

π

√
B

M
. (86)

The right-hand side is evaluated as 0.887 for the present case,
so there is a substantial relativistic correction to the quantity
F

(2)
NR − 1 for any nonzero value of Q2. This means that one

cannot take a three-dimensional Fourier transform of the form
factor to get a charge density even if the constituent masses
are large.

C. Nuclear physics and m1 �= m2

We consider masses that correspond to electron scattering
from a charged nucleon of mass m (which is the free nucleon
mass minus the average binding energy per nucleon of 8 MeV)
bound in a nucleus of mass M = mA, with a spectator system
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2

FIG. 8. (Color online) Exact vs nonrelativistic form factors for
the case m2 = 2m1, m = 400 MeV, B = 260 MeV = 0.276M . The
solid curve is the exact result; the dashed curve is the nonrelativistic
limit.
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FIG. 9. (Color online) Exact (solid curve) and nonrelativistic
(dashed curve) form factors for A = 4 for Sm = 46 MeV.

of mass m2 = (A − 1)m + S, where S is the orbital separation
energy. We measure all momenta in terms of m = 932 MeV
and take the separation energy S = 0.05 or Sm about 46 MeV.
The results for A = 4 and A = 208 are shown in Figs. 9 and 10.
The startling finding is that the relativistic effects reduce the
form factor for light nuclei, but they increase it for heavy
nuclei. Furthermore, the relativistic effects are larger for heavy
nuclei than for light nuclei (for a fixed value of S).

We obtain some analytic understanding by expanding the
effective squared radius [defined in Eq. (78)] in powers of S.
We find

m2R∗2 = A−1

4AS

+
√

(A−1)A
{
4A− (A− 2) log

[
(A−1)2

]}
4
√

2A2π
√

S
+ · · · .

(87)

We see that the first term is indeed the nonrelativistic result
and that the second term changes sign for the value of A

that satisfies the equation 4A − 2(A − 2) ln(A − 1) = 0 or
A ≈ 12. This is displayed in Fig. 11. It is also seen that
relativistic effects lead to very significant changes to the
effective radii. Except for values of A near 12, the changes
are of the order of 10%–15%. I expect that the specific
values shown in Fig. 11 are highly model-dependent. Covariant
models other than the �φξ model used here probably have
effects of different sizes. However, the large effects shown
here cause one to wonder whether relativity really may cause
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FIG. 10. (Color online) Exact (solid curve) and nonrelativistic
(dashed curve) form factors for A = 208 for Sm = 46 MeV.
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FIG. 11. (Color online) Exact vs nonrelativistic effective radii,
R∗2/R∗

NR
2 − 1, as a function of A for Sm = 46 MeV. This is also the

ratio of 〈b2〉 to its nonrelativistic counterpart.

the true nuclear radii extracted from elastic electron scattering
to differ by 10%–20% from those appearing in tables. As
already noted, we can expect that the model employed here
is a reasonable representation of the lowest s state of heavy
nuclei for which the range of the binding interactions is
much less than the size of the system as a whole. For
such states, the results of Fig. 11 should be a reasonably
accurate guide, and so significant effects of relativity should be
expected.

IX. SUMMARY

A relativistic model of a scalar particle � as a bound state
of two scalar particles φ and ξ is used to elucidate relativistic
aspects of electromagnetic form factors. First, the form factor
for the situation in which the � and φ carry a single unit
of charge but the ξ is neutral is computed using an exact
covariant calculation of the lowest order triangle diagram.
This is followed by a another derivation using the light-front
technique of integrating over the minus component of the
virtual momentum in Sec. III that yields the same form factor.
This is also the result obtained originally by Gunion et al. [3]
by using time-ordered perturbation theory in the infinite-
momentum frame. Thus three different approaches yield the
same exact result for this model problem. The asymptotic limit
of asymptotically high momentum transfer Q2 is also studied
with the result that F (Q2) ∼ (1/2) ln2 Q2/Q2. Section IV
explains the meaning of the transverse density ρ(b) of the
model. Its central value varies singularly as ln3(b)/3. A
general derivation of the relationship of ρ(b) with the form
factor using three-dimensional spatial coordinates is presented.
This allows us to identify a mean-square transverse size
〈b2〉 = ∫

d2bb2ρ(b) that is given by b2 = −4 dF
dQ2 (Q2 = 0).

The quantity 〈b2〉 is a true measure of hadronic size because
of its direct relationship with the transverse density. Using this
model it is possible to display the spatial wave function in
terms of three spatial coordinates (Sec. V), but this is not very
useful. Section VI shows that the rest-frame charge distribution
is generally not observable by studying the explicit failure to
uphold current conservation. Section VII shows that neutral
systems of two constituents obey the conventional lore that
the heavier one is generally closer to the transverse origin than
the lighter one. It is also argued that the negative central charge
density of the neutron arises in pion-cloud models from pions
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residing at the center of the nucleon. The nonrelativistic limit
is defined and applied to a variety of examples in Sec. VIII.
By varying the masses one can study a continuum of examples
in which the constituents move at a wide range of average
velocities. The relevant quantity is the ratio of the binding
energy B to that of the mass M of the lightest constituent
(φ or ξ ). For small values of B/M the exact relativistic
formula is shown to be the same as the familiar one of the
three-dimensional Fourier transform of a square of a wave
function. If the φ and ξ have equal masses m we find that
B/(2m) must be less than 0.001 for the relativistic corrections
to mean-square radii to be be less than 10% [see Eq. (83)]. For
the case when mξ = 2mφ , which mimics the quark-diquark
model of the nucleon, we find that there are substantial
relativistic corrections to the form factor for any value of Q2.
This means that one cannot take a three-dimensional Fourier

transform of the form factor to get a charge density even if the
constituent masses are large. A schematic model of the lowest
s states of nuclei is developed by choosing mξ = (A − 1)mφ ,
where A is the nucleon number. Relativistic effects are found
to decrease the form factor for light nuclei but to increase the
form factor for heavy nuclei. Furthermore, these lowest s states
are likely to be strongly influenced by relativistic effects that
are of the order of 15%–20%.
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