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Structure of the X(1835) baryonium
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The measurement by the BES Collaboration of J/ψ → γpp̄ decays indicates an enhancement at the pp̄

threshold. In another experiment, BES finds a peak in the invariant mass of π mesons produced in the possibly
related decay J/ψ → γπ+π−η′. Using a semiphenomenological potential model that describes all the NN̄

scattering data, we show that the explanation of both effects may be given by a broad quasibound state in the
spin and isospin singlet S wave. The structure of the observed peak is due to an interference of this quasibound
state with a background amplitude and depends on the annihilation mechanism.
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I. INTRODUCTION

The search for exotic states in the NN̄ systems has been
pursued for a few decades, but significant results have only
been obtained recently. An indication of such states below
the NN̄ threshold may be given by the scattering lengths
for a given spin and isospin state. However, in scattering
experiments, it is difficult to assess a clear separation of
quantum states. Measurements of the X-ray transitions in the
antiproton hydrogen atom can select some partial waves if
the fine structure of atomic levels is resolved. Such resolution
has been achieved for the 1S states [1] and partly for the 2P

states [2]. One can also use formation experiment methods to
reach specific states. In this way, an enhancement close to the
pp̄ threshold has been observed by the BES Collaboration [3]
in the radiative decay

J/ψ → γpp̄. (1)

On the other hand, a clear threshold suppression is seen in the
decay channel J/ψ → π0pp̄. To understand better the nature
of these pp̄ states, one has to look directly into the subthreshold
energy region. This may be achieved in the antiproton-deuteron
or the antiproton-helium reactions at zero or low energies. Such
atomic experiments have been performed, although the fine
structure resolution has not been reached so far [4,5]. Another
way to look below the threshold is by the detection of NN̄

decay products. Recently the reaction

J/ψ → γπ+π−η′ (2)

was studied by the BES Collaboration [6]. This reaction
is attributed [6] to an intermediate pp̄ configuration in
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the JPC(pp̄) = 0−+ state which corresponds to spin singlet
S-wave state. A peak in the invariant meson mass is observed
and interpreted as a new baryon state, named X(1835).
The interpretation of the peak as a new X(1835) has been
questioned by the Jülich group [7]. The latter view is supported
by our calculations, but we suggest the origin of the BES
finding to differ from the possibilities presented in Ref. [7].
It is argued here that the peak is due to an interference of a
quasibound, isospin 0, NN̄ state with a background amplitude.
The same quasibound state was found in Ref. [8] to be
responsible for the threshold enhancement in reaction (1).

The purpose of the present work is to discuss the physics
of NN̄ states produced in these J/ψ decays and relate it to
atomic experiments. In reaction (1), only three pp̄ final states
are possible, as a consequence of the JPC conservation. These
differ by the internal angular momenta and spins. Close to
the pp̄ threshold, a distinctly different behavior of scattering
amplitudes is expected in different states. A further selection
of states is possible, but one has to rely on the analyses of the
elastic and inelastic NN̄ scattering experiments. This has been
studied in Ref. [8] within the Paris potential model [9–12],
which is also used in the present work.

The final pp̄ states allowed by P and C conservation
in the γpp̄ channel are specified in Table I. These are
denoted as 2S+1LJ or 2I+1,2S+1LJ , where S, L, and J are
the spin, angular momentum, and total momentum of the pair,
respectively, while I denotes the isospin. A unified picture
and a better specification in the radiative decays is achieved,
semiquantitatively, with an effective three-gluon exchange
model [8]. This description indicates the final γpp̄ state to
be dominated by the pp̄ 11S0 partial wave. In this wave, the
Paris potential generates a 52 MeV broad quasibound state at
4.8 MeV below threshold. This state is named NN̄S(1870).
A similar conclusion has been reached by the Jülich group,
although the Bonn-Jülich potential does not generate a bound
state in the pp̄ 11S0 partial wave [7].
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TABLE I. States of the low-energy pp̄ pairs
allowed in the J/ψ → γpp̄ decays. The first column
gives the decay modes to the specified internal states of
the pp̄ pair. The J PC for the photon is 1−−. The second
column gives the J PC for the internal pp̄ system, the
last column gives the relative angular momentum of
the photon vs the pair. J PC = 1−− for J/ψ .

Decay mode J PC(pp̄) Relative l

γpp̄(1S0) 0−+ 1
γpp̄(3P0) 0++ 0
γpp̄(3P1) 1++ 0

Under the assumption that the π+, π−, and η′ are produced
in relative S waves, reaction (2), if attributed to an intermediate
pp̄ as suggested by the BES group, is even more restrict-
ive than reaction (1). It allows only one intermediate state,
the pp̄1S0, which coincides with the previous findings. The
presence of an intermediate pp̄ state in reaction (2) is possible
but not granted. We show below that a more consistent
interpretation is obtained with the dominance of the NN̄ (1870)
state, which is a mixture of pp̄ and nn̄ pairs.

The content of this work is as follows. Section II contains a
description of the final state pp̄ interaction and is included here
for completeness. The subthreshold NN̄ scattering amplitude,
needed to describe reaction (2), is defined in Sec. III.
Section IV gives the equation to be solved to calculate the
amplitude of the meson formation through the intermediate
NN̄ interaction. The results are presented and discussed in
Sec. V together with some concluding remarks.

II. FINAL STATE INTERACTIONS

For any multichannel system at low energies, described by
an S-wave K matrix, the transition amplitude from an initial
channel i to a final channel f may be described by

Tif = Aif

1 + iqf Aff

, (3)

where Aif is a transition length, Aff is the scattering length in
the channel f , and qf is the momentum in this channel [13]. In
the following, channel f is understood to be the pp̄ channel.
Within the same formalism, the scattering amplitude in channel
f reads

Tff = Aff

1 + iqf Aff

. (4)

For S waves at low energies, Aif ,Aff are functions of q2
f and

the main energy dependence of the amplitudes comes from
the denominators in Eqs. (3) and (4). With large values of Re
Aff > 0, one may expect a bound (quasibound) state. For large
Re Aff < 0, a virtual state is likely, but one cannot determine
these properties with absolute certainty unless a method to
extrapolate below the threshold exists. This is particularly true
in the pp̄ case, where the absorptive part Im Aff is large

FIG. 1. Final state factor qf |Tif |2 for the J/ψ decays into γ and
pp̄. The latest version of the Paris model generates a quasibound
state of � = 52 MeV and 4.8 MeV binding energy and is the most
consistent with the data.

because of the presence of many open annihilation channels.
Since the final photon interactions are believed to be negligible,
the energy dependence observed in the J/� → γpp̄ decay
rate reflects the energy dependence in qf |Tif |2.

Practical calculations also indicate an energy dependence
in Aff and the Watson approximation, i.e., the constant
Aif is not applicable in a broader energy range. One needs
to use Eq. (3) and a weakly energy-dependent formation
amplitude Aif ∼ 1/(1 + q2

f r2
i ) as explained in Ref. [8], where

a best fit value ri = 0.55 fm was found. Figure 1 displays
sizable model dependence of qf |Tif |2 for the 1S0 calculated
for four versions of the Paris potential model [9–12]. These
versions followed the increasing data basis which, for the most
recent case, includes antineutron scattering and antiprotonic
hydrogen data. The threshold enhancement is attributed to a
strong attraction in this partial wave. It does not prove the
existence of a quasibound state, but such a state is indeed
generated by the model in the 11S0 wave [9]. There are
additional arguments to support this result which follow from
light p̄ atoms. The absorptive amplitudes can be extracted
from the atomic level widths. With the data from Refs. [4,5]
such an extraction was described in Refs. [14] and [15]. The
data allow one to obtain only an isospin-spin average, but
as indicated in Fig. 2, the existence of a quasibound state is
consistent with the atomic data. The increase of subthreshold
absorption is also supported by the atomic level widths in
heavy p̄ atoms [15]. In addition to the broad S-wave state,
the Paris potentials generate a narrow 33P1 quasibound state,
which arises in Paris 08 and Paris 99 potentials. It gains some
support from widths in the antiprotonic deuterium as indicated
in Fig. 2.

The procedure outlined above is based on a simple form
of the low-energy final state wave function �pp̄. At large
distances and for small qf r , it becomes

�(r)pp̄ ∼ 1 − Tff exp (iqf r)

r
≈ [1 − Aff /r]

1

1 + iqf Aff

.

(5)

The right side of this relation expands the wave up to q2
f terms.

At shorter distance, the wave function is no more directly
related to the scattering matrix and depends on details of the
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FIG. 2. Absorptive parts of spin-isospin averaged Np̄ scattering
amplitudes extracted from the atomic level widths in H, 2H, 3He,
and 4Hep̄ [14]. Squares: S waves; circles: P waves. The bottom
scale indicates the energy below threshold. The curves, calculated
with the Paris 2008 potential, give the amplitudes separately: an(p)

denote the np̄ or pp̄S-wave amplitudes, respectively, and bn(p) the
corresponding P -wave amplitudes. The strong increase of absorption
in the p̄p S wave is attributed mainly to the 11S0 state.

interaction in channel f . Integrated over an unknown transition
potential Vif it generates the formation amplitude Aif in the
transition amplitude Tif . Equation (3) was used with the Paris
[8] and Jülich [16] potentials. These potentials also generated
the Aff . Formulas (3) or (5) are useful above the threshold
but cannot be simply extrapolated to the subthreshold region.
The difficulty is related to the momentum qf = √

2µNN̄ENN̄

where µNN̄ is the reduced mass. Above the threshold, ENN̄

is the kinetic energy in the c.m. system; below the threshold,
ENN̄ is negative and qf becomes imaginary. The outgoing
wave exp(iqf r)/r becomes exp(−|qf |r)/r . It damps strongly
the interaction term in Eq. (5) and a more precise description
is necessary. We now turn to this point.

III. OFF-SHELL N N̄ INTERACTIONS

For further calculations, one needs the off-shell extension
of the scattering amplitude in the energy as well as in the
momentum variables. The most general extension for S waves
is given by

f (k,E, k′) = µNN̄

2π

∫
ψo(r, k)VNN̄ (r, E)�+(r, E, k′)r2 dr,

(6)

where �+(r, E, k′) is the full outgoing wave calculated
with the regular free wave ψo(r, k′) = sin(rk′)/(rk′). In this
equation, the momentum k′ is not related to the energy E.
The Fourier-Bessel double transform of f (k,E, k′) would
generate a nonlocal f̃ (r, E, r ′) matrix in the coordinate
representation. Therefore, involved calculations do not seem
necessary, because the experimental data are rather crude. We
resort to a simpler procedure, standard in nuclear physics (for
an application in the antiproton physics see Ref. [17]). The
subthreshold scattering amplitudes are calculated in terms of
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FIG. 3. (Color online) Real Re V (r, E) potential for NN̄ interac-
tions in the 11S0 state.

the T matrix defined in the coordinate representation by

T̃ (r, E) = µNN̄

2π
VNN̄ (r, E)

�+(r, E, k′(E))

ψo(r, k′(E))
, (7)

with k′(E) = √
2µNN̄E. The T̃ (r, E) is a local equivalent

of the nonlocal T matrix in the sense that matrix ele-
ments in the S waves fulfill the relation f (k,E, k′(E)) =∫

dr r2 ψo(r, k)T̃ (r, E)ψo(r, k′(E)) valid in a narrow sub-
threshold region where the last integral is convergent. The
VNN̄ (r, E) is the recent Paris interaction potential [9] which is
used in the Schrödinger equation to calculate �+(r, E, k′(E)).
The potentials used are plotted in Figs. 3 and 4, and the
resulting scattering amplitude is given in Fig. 5.

To describe the intermediate NN̄ state, we need also the
Fourier transform of T (r, E)

T (κ,E) =
∫

dr T̃ (r, E)
sin(κr)

κr
. (8)

In the next step, Eq. (8) is used at negative energies E = ENN̄ .
For positive energies, this equation is not practical because
of the zeros in the denominator that occur in T̃ (r, E) [see
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FIG. 4. (Color online) Absorptive −ImV (r, E) potential for NN̄

interactions in the 11S0 state.
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FIG. 5. Real Re T (E) and imaginary Im T (E) parts for NN̄

scattering amplitude in the 11S0 state.

Eq. (7)] at multiplicities of k′ = π/r . One could nevertheless
use it for k′ < π/rmax, where rmax is the distance at which the
potential is cut off. One has to set rmax � 2 fm if one wants to
extend the calculations up to energies of ≈ 20 MeV above the
NN̄ threshold. The normalization of T̃ (r, E) by ψo(r, k′(E))
in Eq. (7) ensures the convergence of the integral [Eq. (8)]
below threshold. To see the predictions of our model above
threshold, we shall replace in Eq. (7) ψo(r, k′(E)) by unity for
E � 0.

The relevant on-shell S-wave scattering amplitudes given
by

T (E) =
∫

dr T̃ (r, E) (9)

are normalized to the corresponding scattering lengths at the
threshold. The results for T (E) are plotted in Fig. 5. One can
notice a resonant behavior of the imaginary part. Roughly,
the structure of this amplitude is dominated by the weakly
bound state NN̄S(1870) in this wave. However, the location of
the bound state given as a pole in the complex energy plane
(Re E = 1871.7 MeV, � = 52 MeV) corresponds neither to
the maximum in the Im T (E) which occurs at E ≈ 1840 MeV
nor to the maximum of the π+π−η′ invariant-mass distribution
that occurs at 1835 MeV. The interpretation of the X(1835)
turns out to be more involved.

The potentials that generate this state are plotted in Figs. 3
and 4. The real potential (Fig. 3) contains a very weak attractive
tail, a repulsive barrier, a strong energy-dependent attraction
in the 0.5–1.0 fm range, and a repulsive core [11]. These fea-
tures, modified by the energy-dependent annihilation potential
(Fig. 4) and the proximity of the threshold, generate a rather
untypical NN̄ scattering matrix in the subthreshold energy
region. The width of the 11S0 bound state indicates some
energy dependence. Moreover, the bound-state form factor
displays strong enhancement in the subthreshold region, which
is a typical phenomenon of the subthreshold extrapolations.
Altogether, a strong enhancement of Im T is generated in the
region well below the actual binding energy. As discussed
above, this effect finds support in the widths of the p̄-atom
levels indicated in Fig. 2.

IV. THE INTERMEDIATE p p̄ STATES

We assume that the photon in reaction (2) is emitted before
the annihilation into mesons has taken place, as it happens in
reaction (1). A specific model for that process was suggested in
Ref. [8], but it will not be needed here. We assume, however,
that the formation of the NN̄ pair is described by a source
function Fi,f and the annihilation by another function Ff,mes.
In this way, the effect of the intermediate NN̄ interactions can
be described by an amplitude for the meson formation

Ti,mes =
∫

dp dp′Fi,f (p) G(p, p′, ENN̄ )Ff,mes(p
′,Q), (10)

where G(p, p′, ENN̄ ) is the full Green’s function for the inter-
mediate NN̄ system. The form assumed for the annihilation
amplitude is

Ff,mes(p
′,Q) = 〈

exp
(−(Q − p′)2r2

f

)〉
, (11)

where the angular average over Q is indicated by the brackets.
This choice is motivated by simple model considerations and
the simplest possible assumption that the two π mesons in
reaction (2) are correlated to the f0(600) (also named σ

meson). The mass of the latter is assumed to be 500 MeV
in our calculations. The relative momentum1 of the final η′
and σ mesons is denoted by Q, while the Gaussian profile
comes from quark rearrangement models of annihilation which
operate Gaussian wave functions.

The Green’s function in Eq. (10) may be expressed in
terms of the free Green’s function Go and the NN̄ scattering
amplitude T as

G = Go + GoT Go. (12)

Now, with the scattering amplitude defined by Eq. (7) and
Eq. (8), one obtains

Ti,mes =
∫

dpdp′Fi,f (p)Go(p,ENN̄ )[δ(p − p′)

+ T (|p − p′|, ENN̄ )Go(p′, ENN̄ )]Ff,mes(p
′).

(13)

The first term in Eq. (13) corresponds to a background
amplitude with a noninteracting NN̄ pair. The second one
describes intermediate state interactions. Green’s function is
Go(p,E) = 4π/[(2π )3(q2

f − p2)], and the normalization is
chosen such that T in Eq. (13) has dimension of length. Let
us notice that below the NN̄ threshold, both q2

f and Go are
negative. Below the quasibound state, T is attractive (negative)
and the interference in Eq. (13) becomes constructive. This
effect extends the peak structure to lower energies. We assume
the formation amplitude to be described by

Fi,f (p) = 1

1 + p2r2
i

, (14)

with the range parameter ri = 0.55 fm determined before
from the final interactions above the threshold [8]. The

1Denoting by MN , mσ , and mη′ the masses of the nucleon, σ and η′

mesons, respectively, one has
√

m2
σ + Q2 +

√
m2

η′ + Q2 = 2MN −
|ENN̄ |.

045207-4



STRUCTURE OF THE X(1835) BARYONIUM PHYSICAL REVIEW C 80, 045207 (2009)

normalization is arbitrary. The angular integrations in Eq. (13)
generate an amplitude that depends only on |Q|; that is due to
the momentum dependence of the half-off shell T matrix and
to the absence of any preferred direction in the initial NN̄ state.

A semifree parameter rf is related to the radius parameter
in the quark models for the nucleon and mesons. The range
of allowed rf values is limited. The upper limit rf ≈ 0.55 fm
is obtained assuming the rms radii of the quark densities to
be equal to the electromagnetic radii (0.8 fm for baryons and
0.6 fm for mesons). A lower limit rf ≈ 0.25 fm is obtained
with the radii used in NN interaction models based on quark
approaches [18] and quark rearrangement models of NN̄ an-
nihilation [19]. These rely on rms radii in the range 0.5–0.6 fm
for baryons and 0.4–0.6 fm for mesons.

The last factor needed in this calculation involves the four-
body phase space for J/ψ → γπ+π−η′. We follow Ref. [13]
to find

dL4(M2
J ; Pγ , Pπ+ , Pπ− , Pη′ )

=
(
M2

J − SM

)
(2π )24M2

J

dL3(SM ; Pπ+ , Pπ− , Pη′ )dSM, (15)

where MJ is the mass of J/ψ and dL3 is the invariant phase
space for the three-meson system of invariant mass squared
SM . The dL3 may be found in Ref. [20], and it generates only
a weak energy dependence. The full phase space is used, but
one finds a simple approximation dL4 ∼ ε/(mη′ + 2mπ + ε)2

with ε = √
SM − mη′ − 2mπ to work well in the whole region

of interest.
All together, the spectral function representing the X(1835)

is given by

XS = |Ti,mes|2dL4/dSM. (16)

V. RESULTS AND CONCLUDING REMARKS

The best description of the BES data is obtained with rf ≈
0.4–0.5 fm, and the shape of X(1835) calculated in this way is
given in Fig. 6. The intermediate state is the isospin 0 state. The
data are reproduced fairly well despite the fact that the bound
state itself occurs at 1871.7 MeV, i.e., 4.8 MeV below the
threshold. This shape is determined by the interference effect
of the two terms in Eq. (13) describing the decay process.
Within the Paris potential model and within a broad range of
semifree ri, rf parameters, one finds no peak structure with
the intermediate pp̄ state. This result is consistent with the
observation that isospin 1 for the final mesons is not allowed
and the decay NN̄ (T = 1) → π+π−η′ is not permitted by the
isospin conservation [19].

Other contributions, possible improvements. Above the
NN̄ threshold, our estimation of XS from our model Eq. (13)
using Eq. (8) with Eq. (7), where ψo(r, k′(E)) is replaced by
unity [see our discussion in Sec. II just below Eq. (8)] generate
a minimum (see Fig. 6) that is deeper than the minimum
indicated by the data. Below we indicate several possible
explanations.

(i) The JPC conservation allows the NN̄ pair in the 11S0

state to decay into the f0(600)η′ pair in a relative S

FIG. 6. Spectral function XS representing the X(1835) shape.
Here the range parameter of the annihilation amplitude [Eq. (11)]
is rf = 0.45 fm. This S-wave contribution has been normalized to
reproduce the data close to the X(1835) peak. The experimental
points are from Ref. [6]. Above the NN̄ threshold, the calculation is
performed replacing ψo(r, k′(E)) by unity in Eq. (7).

wave. This case has been discussed so far. In addition,
with the baryons in 13P1 states another decay mode to
the f0(600)η′ pair is possible. It requires the two final
mesons to be in the relative P -wave state. In the recent
Paris 08 [9] as well as in the former Paris 99 potential
[10], a close to threshold resonance is generated in the
related 13P1 state. With the energy EP = 1872 MeV
and width �P = 20 MeV, it may contribute a spike to
the spectral distribution in Fig. 6. Since two different
partial waves are involved in the final states, such a
decay produces no interference with the main mode
and could contribute a term

XP =
∣∣∣∣ CP Q

ENN̄ − Ep + i�p/2

∣∣∣∣
2

dL4/dSM (17)

to be added to the main expression for XS given in
Eq. (16). The XP possibility is a speculative one, and
the relative strength CP would be very hard to predict.
Also, with the recent update of the Paris potential, the
position of the P -wave resonance is not generated at
the “proper” position.

(ii) In a more complete study, outside the scope of the
present work, one could extend our S-wave equations
[Eqs. (7), (8), and (13)] to the P -wave case. Here we
illustrate in Fig. 7 the possible effect of an effective
P wave represented by a resonant term given by
Eq. (17). It can be seen that such an effective resonance
with Ep = 1900 MeV and �p = 200 MeV can fill up
the above threshold dip of XS .

(iii) The off-shell extension in terms of Eq. (7) cannot
be fully trusted, and the procedure of Eq. (6) should
be used.

(iv) The final state factor given by Eq. (11) is perhaps too
simple to be used above the NN̄ threshold. In some
decay models, an energy-dependent phase factor Fmes

is expected [19]. This would have a very limited effect
below the threshold, since the loop integrals over Go

generate real functions. However, above the threshold,
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FIG. 7. Spectral functions XS (calculated as for Fig. 6) and XP

[Eq. (17) with Ep = 1900 MeV and �p = 200 MeV] and their
sum representing the X(1835) shape. Here the S- and P -wave
contributions have been normalized to reproduce the data [6].

the loop integral becomes complex, and the interference
pattern seen in Fig. 6 might be changed.

These effects go beyond the technique used in this
paper.

(v) To confirm experimentally a direct link between the
pp̄ system and the X(1835), authors of Ref. [7]
have suggested a search at the future GSI Facility
for Antiproton and Ion Research (FAIR) project using
the proton antiproton detector array (PANDA) in
reactions such as p̄p → π+π−X and X → π+π−η′.
Another possible reaction would be p̄p → γX(1835).
It could be performed with the Polarized Antiproton

Experiment (PAX) apparatus [21] with ∼ 50 MeV
polarized antiprotons on polarized protons at the CERN
antiproton decelerator (AD) ring. The shape of the
X(1835) could be tested by the photon energy dis-
tribution. Of special value would be the comparison
of two measurements obtained with the parallel and
antiparallel initial spin configurations. That could give
information on the mechanism of the X(1835) forma-
tion. In particular, it would check the simple model
presented in Ref. [8], where the initial state (in the
J/� case, the intermediate) of the pp̄ system is the
spin triplet, which, after the emission of a magnetic
photon, turns into the final spin singlet.

In summary. It is shown that the X(1835) structure can
be generated by a conventional NN̄ potential model. Such
a structure stems from a broad and weakly bound state, the
NN̄S(1870) that exists in the 11S0 wave. The existence of a
quasibound S-wave state receives an additional confirmation
from the level widths of antiprotonic atoms.

ACKNOWLEDGMENTS

We thank M. Lacombe for useful discussions. This research
was performed in the framework of the IN2P3-Polish Lab-
oratory Convention (Collaboration No. 05-115). S.W. was
supported by the EC 6-Th Program MRTN-CT-206-03502
(FLAVIA network). This work was also supported in part
by the US Department of Energy, Office of Nuclear Physics,
Contract No. DE-AC02-06CH11357.

[1] M. Augsburger et al., Phys. Lett. B461, 417 (1999).
[2] M. Augsburger et al., Nucl. Phys. A658, 149 (1999).
[3] J. Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 91, 022001

(2003).
[4] D. Gotta et al., Nucl. Phys. A660, 283 (1999).
[5] M. Schneider et al., Z. Phys. A 338, 217 (1991).
[6] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett. 95,

262001 (2005).
[7] J. Haidenbauer, Ulf-G. Meißner, and A. Sibirtsev, Phys. Rev. D

74, 017501 (2006).
[8] B. Loiseau and S. Wycech, Phys. Rev. C 72, 011001(R)

(2005).
[9] B. El-Bennich, M. Lacombe, B. Loiseau, and S. Wycech, Phys.

Rev. C 79, 054001 (2009).
[10] B. El-Bennich, M. Lacombe, B. Loiseau, and R. Vinh Mau,

Phys. Rev. C 59, 2313 (1999).
[11] M. Pignone, M. Lacombe, B. Loiseau, and R. Vinh Mau, Phys.

Rev. C 50, 2710 (1994).
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