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Formation spectra of light kaonic nuclei by in-flight (K̄,N) reactions with a chiral unitary amplitude
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We study theoretically the in-flight (K−,N ) reactions for the formation of light kaonic nuclear systems to
get deeper physical insights on the spectra and to investigate the formation spectra of the reaction that will be
observed at new facilities like the Japan Proton Accelerator Research Complex (J-PARC). We show the expected
spectra for the formation of the K−pp, K−pn, K−nn, and K−-11B systems that are accessible by the (K−,N )
experiments. By considering the conversion part of the Green’s function, we show the missing mass spectra of the
(K−,N ) reactions in coincident with the particle emissions due to K̄ absorption. To calculate the cross sections,
we use the so-called Tρ approximation to evaluate the optical potential. As for the amplitude T , we adopt the
chiral unitary amplitude of K̄N channel in vacuum for simplicity. The effects of the p-wave optical potential of
� (1385) channel and the contributions from K̄0 mixing in 3He(K−,n) reaction are also evaluated numerically.
We also study the behavior of the poles of kaon Green’s function in nuclear matter. We conclude that 3He(K−,n)
and 3He(K−,p) reaction spectra in coincident with the π� emission may show the structure in the kaon bound
region indicating the existence of the unstable kaonic nuclear states. As for the 12C(K−,p) spectra with the π�

emission, we may also observe the structure in the bound region, however, we need to evaluate the medium
effects carefully for larger nuclei.

DOI: 10.1103/PhysRevC.80.045204 PACS number(s): 25.80.Nv, 13.75.Jz, 21.85.+d, 36.10.Gv

I. INTRODUCTION

Kaon-nucleus bound systems, such as kaonic atoms and
kaonic nuclei, have been studied to obtain information on
the kaon properties in the nuclear medium or kaon-nucleon
interactions at finite density. This information is important as
a basic piece of strangeness in nuclei. It is also important,
for example, for heavy-ion physics and astronuclear physics
to determine the constraints on kaon condensation in high-
density matter.

The K−-nucleus interaction has been studied so far based
on the experimental data of lightly bound kaonic atoms
obtained by the x-ray spectroscopy [1]. It is known that
interesting features of kaon-nucleus bound systems are tied
to the properties of kaons in nuclei that are strongly influenced
by the change undergone by the �(1405) in the nuclear
medium, because the �(1405) is a resonance state just below
the kaon-nucleon threshold. In fact, there are studies of kaonic
atoms carried out by modifying the properties of the �(1405)
in the nuclear medium [2–4]. These works reproduce the
properties of specific kaonic atoms reasonably well. The
theoretical studies on kaon-nucleus optical potential based
on the chiral unitary model were also reported [5,6], and
our understanding of the properties of �(1405) has been
developed [7–10] recently. It is expected that, in near future,
one completes the study on the kaon properties for lightly
bound kaonic atoms accessible by the kaonic x-ray technique.
The frontier of this subject is in higher density region that
will be studied by deeply bound kaonic atoms [11] and kaonic
nuclei.

In recent years, there have been many studies of kaonic
nuclear states, which are kaon-nucleus bound systems by the
strong interaction inside the nucleus. From the theoretical

study of the structure of the kaonic nuclear states using
K̄-nucleus optical potentials obtained in the phenomenological
approach [12,13] and the chiral unitary model [5], it has turned
out that kaonic nuclear states have large decay widths of
the order of several tens of MeV. The kaonic nuclear states
for lighter nuclei [14–18] and baryon resonances with two
kaons [19,20] were also studied theoretically.

Common achievement of the theoretical study on the K−pp

system [14–18] is that the K−pp system forms a bound state
with a rather large width. But the binding energy and width do
not reach agreement within the theoretical calculations yet. In
the experimental side, an indication of the K−pp bound state
was observed by the FINUDA experiment [21]. However, the
critical analyses of the latest data were reported by Oset, Toki,
and their collaborators [22,23], who claimed that the origins
of the structure seen in the experimental spectra [21] can be
explained by the well-known processes. The detailed analysis
was also performed to understand fully the FINUDA data [24].
Thus, the studies of the kaonic nuclear structure still have some
sources of controversy and we need further studies.

As for the formation and observation of the kaonic nuclear
states by direct reactions, in-flight (K̄,N ) reactions were
proposed and performed by Kishimoto and his collaborators
[25,26]. The theoretical calculations of the energy spectra of
the in-flight (K̄,N ) reaction were performed in the effective
number approach [27] and in the Green’s function method
[28–30]. In Ref. [27], the same theoretical technique as
Ref. [31] was used, which was successfully applied for the
deeply bound pionic atom formation reactions [32,33]. In
Ref. [28], clear peak structure indicating the kaonic bound
states has not been found in the formation spectra and it has
turned out that it is difficult to observe clear signals for kaonic
nuclear states solely with missing-mass spectroscopy due to
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the large K̄ absorption width. The theoretical prediction that
there are no clear peaks for the K−-11B bound system in the
formation spectra is consistent with the data in Ref. [34], which
observed missing mass spectra of the (K−,N ) reactions with
1 GeV/c kaon. Based on the data of this experiment, Ref. [34]
extracted the potential depth of the kaon in nuclei by fitting
the formation spectra in the Green’s function method with
simple background estimation and found that the depth was
as deep as −160 to −190 MeV. As a new experiment, the
3He(K−,n) reaction for the formation of the K−pp system is
proposed [35] in the new facility the Japan Proton Accelerator
Research Complex (J-PARC). We may be able to have new
experimental information in the coming experiments in near
future that will make us possible to reach the final conclusion
for the properties and/or existence of the controversial kaonic
nuclear states.

As described above, there are several controversies about
properties of the light kaonic nuclei. In this exploratory level,
the purpose of this article is to show the formation spectra of
various light kaonic nuclei that are accessible by the (K̄,N )
reactions, namely K−pp, K−pn, K−nn, K̄0pn, K̄0nn (listed
in Table I), and K−-11B systems, to compare formation spectra
observed in forthcoming experiments. For this purpose, we
study semiexclusive (K−,N ) spectra observed in coincidence
detection of the final nucleon with the particles emitted by K̄

absorption into nuclei. This is one of the main novelties of this
work.

To calculate the semiexclusive (K−,N ) spectra, we exploit
the Green’s function method with a simple K̄ optical potential
obtained by a low-density Tρ approximation. The optical
potential is given by the K̄N -scattering amplitude T and
the nuclear density distribution ρ(r). The K̄N -scattering
amplitude is evaluated in coupled channels of K̄N , π�,
π�, η�, η�, and K� based on the chiral unitary approach
and the �(1405) is dynamically generated. This potential
automatically includes one-body K̄ absorption to the π�

and π� channels. Thus we can calculate the semiexclusive
processes of the kaonic nuclei decays including K̄N → π�

and π�. We assume a simple two-parameter Fermi function
for the nuclear density ρ(r), which should be calculated
dynamically by few-body treatments though. As we will
see later, even with such a simple estimation of the optical
potential, the obtained potential produces a similar bound
state structure with one calculated by an elaborated few-body
formulation. Thus, we expect to obtain very similar formation
spectra with the few-body formulation.

In the present article, we also discuss the effects of
the p-wave optical potential of the �(1385) channel and
the contributions from K̄0 mixing in 3He(K−,n) reaction.
As for the K̄N amplitude T , to see the effects of the
medium modifications, we compare the spectra calculated
with the in-vacuum amplitude and those obtained with the
in-medium kaon self-energy evaluated beyond the low-density
approximation based on the chiral unitary model.

In Sec. II, we describe the theoretical models for the studies
of the formation of the K̄NN systems and the K̄ optical
potential with the chiral unitary K̄N amplitude. In Sec. III,
we study the behavior of the poles of kaon Green’s function in
nuclear (proton) matter. Numerical results of the formation of

the K̄NN and K−-11B systems are presented and discussed in
Sec. IV. We give conclusions of this article in Sec. V.

II. FORMALISM

To investigate the formation of the light kaonic nuclei such
as K̄NN systems, we apply basically the same theoretical
framework as our previous publications [11,28]. We solve the
Klein-Gordon equation to obtain the eigenenergies of the states
and apply the Green’s function method [36] to calculate the
reaction spectra. In this section, we explain our theoretical
model for studying light kaonic nuclear systems in detail.

We consider the (K−,N ) reactions as the production
reaction of light kaonic nuclei with a 600 MeV incident
energy of K− in the laboratory frame. In this reaction, the
incident kaon kicks out one of the nucleons in the target
nucleus and the kaon-nucleus system is produced. The emitted
nucleon is observed in the forward direction to make the
momentum transfer smaller. Because the incident kaon has
large momentum, the impulse approximation may be good
to evaluate the formation spectrum. We use the local density
approximation to evaluate the medium effects on kaon and
do not consider the multistep process that the kaon hits many
nucleons in daughter nucleus.

The energy conservation of this reaction in the laboratory
frame is written as EK− + MA = EA−1⊗K− + EN , where EK−

and MA indicate the energy of the initial kaon and the mass of
the target nucleus, and EA−1⊗K− and EN are the energies of the
kaon-nucleus systems and the emitted nucleon. The momen-
tum of the kaon-nucleus system, equivalently the transferred
momentum, is indicated as q. The momentum conservation
is written as pK− = q + pN , where pK− and pN indicate
the momenta of the initial kaon and the emitted nucleon,
respectively. In the present reaction, the transferred momentum
is about 200 MeV/c in the laboratory frame. We assume
that the recoil kinetic energy of the kaon-nucleus system,
T = |q|2/(2MA−1⊗K− ), is small and negligible. Writing the
target nucleus mass as MA = MA−1 + MN − SN with the one
nucleon separation energy SN , and the kaon energy measured
from the in-vacuum kaon mass (binding energy) as E =
MA−1⊗K− − MA−1 − MK− , we obtain TN = TK− − SN − E,
where TK− is the incident kaon kinetic energy and TN the
emitted nucleon kinetic energy.

TABLE I. Possible K̄NN systems and accessible (K−,N )
reactions. Optical potentials used in the calculation of reaction
are also listed.

System Formation reaction Optical potential

K−pp 3He(K−,n) Eq. (12)

K−pn 3He(K−,p) Eq. (13)

t(K−,n) Eq. (13)

K−nn t(K−,p) Eq. (14)

K̄0pn 3He(K−,n) Eq. (13)

K̄0nn t(K−,n) Eq. (12)

045204-2



FORMATION SPECTRA OF LIGHT KAONIC NUCLEI BY . . . PHYSICAL REVIEW C 80, 045204 (2009)

In the impulse approximation, the expected spectra of
the (K−,N ) reactions

(
d2σ

d�dEN

)
are evaluated by the nuclear

response function S(E) and elementary cross section
(

dσ
d�

)ele

as, (
d2σ

d�dEN

)
=

(
dσ

d�

)ele

× S(E). (1)

We use the Green’s function method [36] to calculate the
response function of the light kaonic nuclei in the (K−,N )
reactions. The details of the application of the Green’s function
method are found in Refs. [11,28,37–40]. The calculation of
the nuclear response function with the complex potential is
formulated by Morimatsu and Yazaki [36] as

S(E) = − 1

π
Im

∑
f

∫
d rd r ′τ †

f G(E; r, r ′)τf , (2)

where the summation is taken over all possible final states.
G(E; r, r ′) is the Green’s function of kaon interacting in the
nucleus and defined as

G(E; r, r ′) = 〈α|φK (r)
1

E − HK + iε
φ+

K (r ′)|α〉, (3)

where α indicates the proton hole state and HK indicates the
Hamiltonian of the kaon-nucleus system. The amplitude τf

denotes the transition of the incident particle (K̄) to the nucleon
hole and the outgoing nucleon, involving the nucleon-hole
wave function ψjN

and the distorted waves χi and χf , of the
projectile and ejectile. By taking the appropriate spin sum, the
amplitude τf can be written as,

τf (r) = χ∗
f (r)ξ ∗

1/2,ms

[
Y ∗

lK̄
(r̂) ⊗ ψjN

(r)
]
JM

χi(r), (4)

with the meson angular wave function YlK̄ (r̂) and the spin
wave function ξ1/2,ms

of the ejectile. We assume the harmonic
oscillator wave functions for ψjN

with the range parameter
determined by the rms radii of the target nuclei.

The semiexclusive spectra can be calculated by decompos-
ing the response function (2) into the escape and conversion
parts: S = Sesc + Scon. This decomposition can be done exactly
by

Sesc(E) = − 1

π

∑
f

∫
d rd r ′τ †

f (1+G†V †
opt)ImG0(1+VoptG)τf

(5)
Scon(E) = − 1

π

∑
f

∫
d rd r ′τ †

f G†ImVoptGτf .

where Vopt is the kaon-nucleus optical potential given in
Hamiltonian. The conversion part is known to express the
contributions of the kaon absorption to the (K̄,N) spectra [36].
We can further decompose the conversion part of the response
function [and clearly the (K̄,N ) spectra] into different particle
emission channels as,

Scon(E) =
∑

j

S(j )
con(E), (6)

where j indicates the decay channel. In this work we consider
j = K̄N, π�, π�, η� channels. The separated spectrum to
each channel can be compared with the experimental spectrum

observed in coincident measurements of emitted particles due
to the kaon absorption.

To calculate the Green’s function G(E; r, r ′), we use
multipole expansion,

G(E; r, r ′) =
∑
Lm

Y ∗
Lm(�′)YLm(�)GL(E; r, r ′), (7)

with the solution GL(E; r, r ′) of the radial equation,[
d2

dr2
+ 2

r

d

dr
− L(L + 1)

r2
− 2µVopt

− 2µVcoul + 2µE

]
GL(E; r, r ′)

= −2µ

r2
δ(r − r ′), (8)

where µ is the reduced mass of the K̄ and nucleus system and
Vcoul is the Coulomb potential with a finite nuclear size. The
strength of the energy-dependent potential used in this article
is also evaluated using this kaon energy. To solve the Eq. (8),
the kaon energy E is regarded as an external parameter. The
solutions of the radial equation can be expressed as [41],

GL(E; r, r ′) = −2µ

(r ′)2�[uL(r ′), vL(r ′)]
uL(r<)vL(r>), (9)

with the regular solution uL(r) at the origin, the outgoing
solution vL(r) of the homogeneous equation of Eq. (8) for the
fixed values of E and the Wronskian �(f, g) = fg′ − f ′g,
where f ′ denotes the derivative of f with respect to r ′. Here,
we have introduced the symbol r> (r<) to indicate the larger
(smaller) radial coordinate variable of r and r ′ .

For the values of the nucleon separation energies SN , we
use the binding energies of 3He and t , 7.72 and 8.48 MeV, for
the 3He(K−,n) and t(K−,p) reactions, respectively, because
the residual two-nucleon systems are not bound, while, for the
3He(K−,p) reaction, we use the proton separation energy of
3He, which is the energy difference of p + d and 3He systems.
For the 12C(K−,p) reaction, we use the measured values of
the s1/2 and p3/2 proton separation energies of 12C given in the
Table of Isotopes [42].

Because we are interested in the calculation of the formation
spectra of the kaonic nuclei, we use the one-body Green
function of the in-medium kaon, in which the interactions of
the kaon and nucleus are expressed by the optical potential Vopt.
The optical potential is evaluated simply by the low-density
approximation, in which the optical potential is given by
the forward-scattering amplitude of the kaon and nucleon in
vacuum. For the description of the K̄N -scattering amplitude,
we exploit the chiral unitary approach, in which the K̄N

interactions are summed up in a nonperturbative way in the
coupled-channels formulation and the �(1405) is dynamically
generated in the K̄N scattering. Because the iterative K̄

interactions with one nucleon in the nucleus is already taken
into account in the construction of the scattering amplitude,
we include a correction factor (A − 1)/A for the nuclear
density to avoid double-counting of the iteration with the same
nucleon. Thus, the optical potential is given in the low-density
approximation by

Vopt = − 1

2µ

A − 1

A
T (E)ρ, (10)
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where ρ is the nuclear density and T (E) is the K̄N -scattering
amplitude calculated in vacuum. The s-wave K̄N amplitude is
taken from Ref. [43]. The importance of the energy dependence
of the interactions is emphasized in Refs. [28,44], especially
for the imaginary part. We include the full energy dependence
of the interactions in microscopic way [43] both for real and
imaginary parts in this article.

The optical potentials between K̄ and NN systems, then,
can be written as,

V K̄NN
opt (r,E) = 1

2V K̄NN
s (E)ρNN (r), (11)

where ρNN indicates the density profile of the two nucleon
systems and V K̄NN

s the s-wave potential strength given by the
s-wave chiral unitary K̄N amplitude Ts as,

V K−pp
s = V K̄0nn

s = 1

2µ

1

2
[Ts(I = 0) + Ts(I = 1)], (12)

V K−pn
s = V K̄0pn

s

= 1

2µ

1

2

[
Ts(I = 0) + Ts(I = 1)

2
+ Ts(I = 1)

]
,

(13)

V K−nn
s = 1

2µ
Ts(I = 1). (14)

Here, I indicates the isospin of K̄N and µ the reduced mass
of the kaon and the NN system.

The optical potential for the K−-11B system is obtained in
the similar way:

V
11B−K−

opt

= 1

2µ
ρ11B(r)

[
4

11

Ts(I = 0) + Ts(I = 1)

2
+ 5

11
Ts(I = 1)

]
.

(15)

The first and second terms represent the K−p and K−n

interactions, respectively. Here we have assumed that the
density distributions for the proton and neutron have the same
radius and diffuseness parameters.

In this article, we also study the contribution of the p-wave
optical potential that includes �(1385) effects. We rewrite the
Eq. (11) with the p-wave potential as

V K̄NN
opt (r,E) = 1

2

(
V K̄NN

s ρNN − �∇ · V K̄NN
p ρNN

�∇)
, (16)

where V K̄NN
p indicates the p-wave potential strength defined

by the p-wave K̄N amplitude Tp by the same isospin
combinations as in Eqs. (12)– (14). Tp is defined as the first
term of Eq. (18) in Ref. [45] including factor 3.

In our model, we assume the density profile of two nucleons
as the form of the two-parameter Fermi function with the radius
R and diffuseness a. Here we take Rpp = Rnn = 1.01 fm
and app = ann = 0.50 fm for the pp and nn systems, which
provide ρpp(0) = ρnn(0) = 0.117 fm−3, and Rpn = 1.40 fm
and apn = 0.51 fm for the pn system, which is a similar
with the deuteron density distribution. As we will see later
in Sec. IV, we will try other radius parameters and will find
that the calculated spectra is insensitive to the change of the
parameter. We do not specify the isospin of the NN systems
here. We also use the two-parameter Fermi density distribution

for 11B as in Ref. [28] with parameters R = 2.23 fm and
a = 0.44 fm.

In the following sections, we compare the formation spectra
calculated with the optical potential given in Eq. (10) with
those obtained with the in-medium kaon self-energy calculated
beyond the low-density approximation in the chiral unitary
approach done in Ref. [46]. Because the latter potential has
higher-order medium effects beyond two-nucleon processes,
it is not appropriate for the three-body system. But it may
be interesting to know the medium effects beyond the low-
density approximation and the uncertainties of our theoretical
framework.

To calculate the conversion part of different particle emis-
sion channels (6), we consider the optical theorem satisfied by
the chiral unitary amplitude T as

ImTK̄N→K̄N =
∑

j

TK̄N→j σjT
∗
j→K̄N

, (17)

where j indicates the intermediate state considered to calculate
the K̄N → K̄N amplitude TK̄N→K̄N by the chiral unitary
model and means j = K̄N, π�, π�, η�, η�, and κ�, and σj

is the two-body phase space of the intermediate state j . We can
interpret each term in the right-hand side as the contribution
of the each intermediate channel to the absorptive part of K̄

optical potential in the Tρ approximation.
In the present calculations, the final-state interaction effects

to the emitted particles from K̄ absorption are not considered,
which should be included for more quantitative results. And
the only one-body absorption processes are evaluated here and
the two-body absorption processes such as K̄NN → N� are
not included in this calculation.

For the simple estimations of kaon bound states for the
light kaonic nuclear systems, we solve the Klein-Gordon
equation with the local-density approximation assuming two-
nucleon density distribution. We solved numerically as in
Refs. [11,27,28], following the method of Oset and Salcedo
[47]. Because we adopt the theoretical optical potential in
Eq. (11) with the complex energy dependence, we solve the
Klein-Gordon equation iteratively to obtain self-consistent
solution for complex energy E.

III. KAON POLE IN NUCLEAR MATTER

In this section, we study the behavior of the kaon poles
in the nuclear matter before showing the (K̄,N ) spectra. We
use the s-wave optical potential in Eq. (11) and obtain the
pole energies by solving the Klein-Gordon equation in nuclear
matter,

ω2 − m2
K − 2mKV K̄NN

s (ω)ρ = 0, (18)

where mK is the kaon mass, ρ is the nucleon density of the
matter, and ω is written as ω = E + mK . We neglect the
kaon kinetic energy and the p-wave optical potential terms
by postulating the small momentum of the bound kaon.

The calculated pole positions of K− in the proton matter,
where ρ indicates the proton density and no neutron is in the
matter, are shown in Fig. 1 in the complex energy plane.
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FIG. 1. Trajectories of the poles in the complex ω plane of
K− propagator in proton matter obtained by solving the Klein-
Gordon equation Eq. (18) for various proton density ρ. In vacuum
(ρ = 0), only a single pole appears at the energy of the free kaon
mass. Crosses correspond to the step size of density δρ = 0.25ρ0 with
ρ0 = 0.17 fm−3. The vertical lines indicate the threshold energies of
neutral K̄N and π� channels.

As we can see from the figure, we have only one pole at
ρ = 0 at ω = mK corresponding to the free kaon. At finite
density ρ > 0, there appear two other poles that correspond to
the �(1405) resonance of the K̄N system. As pointed out in
Ref. [7], both of the two poles appeared at ρ > 0 correspond
to the �(1405) resonances. As increasing the density ρ from
0, we find that the kaon pole at ω = mK moves to the direction
to higher Re ω and wider width � = −2Imω, as shown by
the dashed line in Fig. 1. One of the �(1405) pole shown
by the solid line moves to lower Re ω region with smaller
width �, which indicates the possible existence of the narrow
peak structure in the (K̄,N ) spectra in finite nucleus. In this
calculation, we have only included the one-body processes for
the kaon absorption, and thus the width � become smaller

in this energy region because of the threshold effects of the
π� decay. The third pole, which starts from ω = (452.2,

−66.0) MeV, moves inside the Im ω = −65 to −80 MeV
region for ρ = 0–0.5ρ0 and never comes closer to Re ω axis.

From the behaviors of the poles in proton matter, we may
have a schematic picture of the (K̄,N ) spectra. Because the
kaon pole at ω = mK at ρ = 0 gets larger width � ∼ 80 MeV
and larger real energy at ρ = 0.5ρ0, this pole is expected to
contribute to the quasielastic energy region in the spectra with
large width as a smooth slope. The pole shown as the solid
line in Fig. 1, which is one of the �(1405) poles, has smaller
width at larger density and is expected to be seen as peak
structures in the reaction spectra, which could be considered
as candidates of the signals of K−pp states. As seen in Fig. 1,
the state (pole) is originated from the one of the �(1405)
poles in the matter and are not connected to free kaon at
ρ → 0 limit. This is one of the interesting findings in our
framework. In the experimental spectra, this single pole may
provide several peak structures, because in quantum mechanics
we have in general more than one discrete bound level in the
finite system for a single pole in the infinite system. The third
pole moves only around the Im ω = −65 to −80 MeV (� =
130–160 MeV) region and thus makes no clear structures in the
spectra. For further qualitative analyses, one needs to calculate
the optical potential beyond the low-density approximation
and treat the meson self-energies in a self-consistent way as
done in Ref. [48].

IV. NUMERICAL RESULTS

A. Kaon optical potential and bound states for finite systems

We show first in Fig. 2 the s-wave optical potential
defined in Eq. (11) to see the strength and the energy de-
pendence of the microscopic potential. The contribution of the
p-wave potential will be discussed later. Because we use the
microscopic K̄N -scattering amplitude of the chiral unitary

FIG. 2. The s-wave optical potentials be-
tween K− and two nucleons defined in Eq. (11)
with the free space chiral K̄N amplitude T

[43] in the Tρ approximation as a function
of the radial coordinate r for the (a) K−-pp,
(b) K−-pn, and (c) K−-nn systems, respectively.
The upper and lower panels show the real and
imaginary parts. The solid, dashed, and dotted
lines indicate the potential strength for the real
kaon energies Re E ≡ Reω − mK = 0 MeV,
−50 MeV, and −100 MeV with Im E = 0,
respectively.
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model, we can consider the potentials between kaon and
two nucleons for the K−-pp, K−-pn, and K−-nn systems
simultaneously. The energy dependence of each potential
appears theoretically in both real and imaginary parts.

As we can find easily in Fig. 2, the microscopic optical
potentials have strong energy dependence and channel depen-
dence. For the real part of the potential shown in the upper
panels in Fig. 2, we can see that the K−-pp potential is
repulsive at the threshold energy corresponding to the negative
sign of the K−p scattering length, while it shows the strong
attractive nature at lower energies due to the existence of
the �(1405) resonance. The real potential for K−-pn has
rather milder energy dependence than the K−-pp case, and
it is almost energy independent for the K−-nn system by
reflecting there are no baryon resonance in the s-wave K−n

system in this energy region. As for the imaginary potential,
only one-body absorption processes are included for all cases
shown in Fig. 2, and thus the strength of the absorption is
significantly weaker for smaller kaon energies due to the
smaller phase space of π� decay. As for the p-wave potential
introduced in Eq. (16), the strengths of the V

K−pp
p at the

nuclear center are Re V
K−pp
p (0) ∼ 2.5 × 10−4 (MeV−1) and

Im V
K−pp
p (0) ∼ −0.8 × 10−4 (MeV−1) at the kaon threshold

energy.
We have solved the Klein-Gordon equation with these

potentials in self-consistent manner for the complex kaon
energy in finite nuclear systems. The eigenenergies obtained in
the calculation are compiled in Table II. As the consequences
of the strong complex energy dependence of the optical
potential, we have found interesting spectra of the bound
states in K−pp, where the 2s level is significantly close
to the 2p level. Because the depth of the energy-dependent
potential becomes so deep at the energy of 2p state in complex
energy plane and the centrifugal force is considered in the
Klein-Gordon equation, the kaon-nucleon subsystem has the
component with l �= 0. As we can expect from the potential
shape in Fig. 2, the number of bound states is different for
each system. We have also evaluated the effects of the p-wave
optical potential and found that the variations of the binding
energies and widths due to the p-wave potential are lesser than
10% for the states shown in Table II. In all cases considered
here, the self-consistent solutions in the complex energy plane
have large decay widths, and thus the pole position in the
complex plane is far from the real axis.

We also notice that because we have assumed the ρNN

profile in this article, we should consider the results listed in
Table II as qualitative. These binding energies and widths could
be interesting to interpret the formation spectra calculated

TABLE II. Calculated binding energies and widths in unit
of MeV for the K−NN systems using the optical potential
defined in Eq. (11). The widths are shown in parenthesis.

K−pp K−pn K−nn

1s 23.0(41.3) 12.9(36.4) –
2s 9.0(36.8) – –
2p 11.5(38.5) 8.6(35.4) –

FIG. 3. The K−-pn s-wave optical potential of the chiral unitary
approach based on the K− self-energy in the symmetric nuclear
matter [46], as a function of the radial coordinate r . The upper and
lower panels show the real and imaginary parts, respectively. The
solid, dashed, and dotted lines indicate the potential strength for the
kaon real energies Re E ≡ Reω − mK = 0 MeV, −50 MeV, and
−100 MeV with Im E = 0 MeV, respectively.

with the same density distributions and interactions. Even
in our simple framework, the calculated results shown in
Table II resemble to the results of the bound states obtained
in three-body calculations with a variational approach [16], in
which they use a K̄N effective interaction derived by the chiral
unitary approach [49]. Because the bound state structures are
similar with each other, the formation spectra obtained in the
present calculation could be like the spectra calculated with
the three-body wave function obtained in Ref. [16].

In Fig. 3, we show the optical potential for the K−-pn

system evaluated by the K− self-energy in the symmetric
nuclear matter [46] with medium modifications of the chiral
unitary amplitude. We see that the real part of the potential
is attractive even at the threshold by the medium effects and
has smaller energy dependence than that shown in Fig. 2(b).
The imaginary potential, which includes the multinucleon
absorption effects, also has milder energy dependence.

B. Inclusive spectra of K̄ N N system formation

We show the calculated inclusive 3He(K−,n) spectra in
Fig. 4(a) for the formation of the K−pp system with the s-wave
optical potential defined in Eq. (11). We find that there is a
certain bump structure in the subthreshold region that could
be identified as the signal of the K−pp system. Actually we
can find the eigensolution of the Klein-Gordon equation in
this energy region. This pole is expected to be connected to
�(1405) resonance in ρ → 0 limit as we have discussed in
Sec. III. Thus, it is expected that this structure can be the
signal of the mixture of the K−pp and �(1405)p states. It
would be interesting to study the origins of the structure in the
spectra in detail as reported recently in Ref. [50] for η-mesic
nucleus case in connection with the N∗(1535) state in nucleus.

In Figs. 4(b) and 4(c), we consider other K̄NN systems
accessible by the (K̄,N ) reactions. In Fig. 4(b), we con-
sider the K−pn system formation by 3He(K−,p) reactions.
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FIG. 4. Calculated spectra for the forma-
tion of (a) K−pp in 3He(K−,n), (b) K−pn

in 3He(K−,p), (c) K−nn in t(K−,p), and
(d) K̄0pn in 3He(K−,n) reactions at TK− =
600 MeV (PK− = 976 MeV/c) are plotted as a
function of the real kaon energy at θ lab

N = 0◦ for
the s-wave chiral unitary optical potential. The
horizontal axis E indicates the real kaon energy.
Solid line shows the total spectra. Dashed,
dotted, and dot-dashed lines indicate the con-
tributions from kaon s, p, and d partial waves in
the final state, respectively. The vertical dashed
line indicates the kaon production threshold.

Because the optical potential of K−-pn is less attractive than
the K−-pp case in the subthreshold region as shown in Fig. 2,
the bump structure in Fig. 4(b) is smaller than that in Fig. 4(a).
This subthreshold bump for K−-pn formation, however, still
reflects the existence of the pole of Klein-Gordon equation
in the complex energy plane and is interesting to be studied
experimentally. In Fig. 4(c), we show the expected spectra
for the formation of the K−-nn system by t(K−,p) reaction.
As we can expect from the weakest K−nn interaction in all
systems considered here, we do not find the subthreshold
structure in the spectra in this case. We only expect to observe
a possible cusp structure at the threshold that could be a
reminiscent of bound states.

The calculated results of the formation spectra for the
K̄NN systems in Figs. 4(a)–4(c) show the characteristic
features indicating the differences of the structures and optical
potentials for the K−pp, K−pn, and K−nn systems. It would
be interesting that the measurements will be performed for all
three channels and compared each other to see the differences.
The signals appearing in the inclusive spectra as enhancements
in the bound energy region, however, are small portions of
the whole spectra in general and, thus, we also consider the
semiexclusive spectra later in this section.

Here we discuss the isospin relation among the K̄NN

formation spectra. Because we use the isospin symmetric
optical potentials as given in Eqs. (12) and (13) and we
do not consider the NN correlations, namely the isospin
dependence in the NN subsystems, in the present calculation,
the Green’s functions are same for the K−pp and K̄0nn

systems and for the K−pn and K̄0pn systems, respectively.
This means that, if there are bound states, the spectra of
the bound states are equivalent in each pair of the systems.
But, because the elementary cross section and the distortion
factor are different in each system, the formation spectra
obtained with these potentials are quantitatively different in
the magnitude. For example, we show the calculated spectrum
for the K̄0pn system in the 3He(K−,n) reaction in Fig. 4(d),
which is compared with the K−pn formation spectrum in
Fig. 4(b) calculated with the same optical potential strength.
These spectra have very similar shape qualitatively but are

different in the absolute values. We can learn the influences
of the elementary cross section and the distortion factor to the
formation spectra from these figures. We have also confirmed
that the spectrum of the K̄0nn formation in the t(K−,n)
reaction resembles that of K−pp shown in Fig. 4(a).

C. Semiexclusive spectra of K̄ N N system formation

We show in this subsection the semiexclusive (K̄,N ) reac-
tions spectra in coincident with the particle pair emissions due
to kaon absorption in K̄NN → MBN one-body processes,
where M and B indicate the octet mesons and baryons,
respectively. We indicate the spectator nucleon as N in the
final state.

First, we consider the conversion part of the formation
spectra defined in Eq. (1) with the Scon in Eq. (6) [36], which
corresponds to the (K̄,N ) spectra accompanied by the kaon
absorption. The calculated results are shown in Fig. 5 for the
four kinds of the K̄NN systems. By comparing these results
with the total spectra in Fig. 4, we have found that the spectra in
the kaon bound region are more clearly seen in the conversion
spectra.

For example, we can compare Fig. 5(a) with the Fig. 4(a)
for the K−pp formation. Because the total spectra in the kaon
positive energy region include the K− escaping contribution,
which is removed by considering the conversion, the conver-
sion spectrum in Fig. 5(a) has prominent bump structure in
the subthreshold region. Thus, by measuring the conversion
spectra, we can expect to obtain clearer signals in (K̄,N )
spectra.

Next, we proceed the step further. We calculate semiex-
clusive spectra by dividing the conversion spectra into each
particle state as formulated in Eqs. (6) and (17). The results
of the semiexclusive spectra are shown in Fig. 6 for the
K−pp system formation. As we can see from the figure,
by measuring the semiexclusive spectra, we expect further
clearer signals in the subthreshold region. Especially, the peak
structures appearing in the subthreshold region in the π�

emission spectra are prominent. This is because the K−pp

bound states are driven mainly by the strong attraction in
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FIG. 5. Conversion parts of the calculated
formation spectra of (a) K−pp in 3He(K−,n),
(b) K−pn in 3He(K−,p), (c) K−nn in t(K−,p),
and (d) K̄0pn in 3He(K−,n) reactions at TK̄ =
600 MeV (PK̄ = 976 MeV/c) are plotted as a
function of the real kaon energy at θ lab

N = 0◦

for the s-wave chiral unitary optical potential.
The horizontal axis E indicates the real kaon
energy. Solid lines show the total conversion
spectra. Dashed, dotted, and dot-dashed lines
indicate the contributions from kaon s, p, and
d partial waves in the final state, respectively.
The vertical dashed line indicates the kaon
production threshold.

the I = 0 K̄N channel with the �(1405) resonance, which
decays into the π� state. Thus, our calculated results indicate
that the 3He(K−,n) reaction in coincident with the π�

emission by K−p → π� one-body kaon absorption is one
of the best choice to observe the subthreshold strength of
the spectra to obtain the information on the K−pp state
formation. In the K−p and K̄0n emission channels, we have
the contributions only for the quasifree energy region, because
the K̄N emissions below the threshold are kinematically
forbidden.

In the 3He(K−,n) reaction, both the K−pp and K̄0pn

states are produced and experimentally these states cannot be
separated out in the observation of the formation spectrum.
Thus, two contributions should be summed up when we
compare the calculated spectrum with experimental obser-
vation. In the impulse approximation, the spectra for the
K−pp and K̄0pn systems are incoherently summed, and
the result is shown in Fig. 7. In this figure, we plot the
spectrum as a function of the emitted neutron energy, which
is calculated by including the recoil kinetic energy of the
kaon-nucleus system, because the kaon production thresholds

are different in the K−pp and K̄0pn systems. From the figure,
we find that the signals of the bound energy region in the
conversion spectra become smaller and less clear by including
the effects of K̄0pn formation. However, still there are certain
strength in this region, which could be observed in the
experiments.

For the comparison of the theoretical calculations of the
formation spectra with experimental observations of the K̄NN

system, it is interesting to consider semiexclusive spectra of
two-baryon emissions, which are planed to be observed in
the experiment performed at J-PARC [35]. The two-baryon
emissions correspond to the nonmesonic decays of the K̄NN

system or, equivalently, the two-nucleon absorptions of K̄ .
The nonmesonic decay of the kaonic nuclei has been recently
discussed in Ref. [51]. The semiexclusive spectra of the YN

emissions will be discussed elsewhere [52].

D. Uncertainties of theoretical spectra

To see the effects of the medium modifications of the
chiral unitary amplitudes, we show in Fig. 8 the calculated

FIG. 6. Semiexclusive spectra for the for-
mation of the K−pp system in 3He(K−,n) reac-
tions at TK− = 600 MeV (PK− = 976 MeV/c)
at θ lab

n = 0◦ for the s-wave chiral unitary optical
potential. As indicated in the figure, each figure
corresponds to the different meson (M)-baryon
(B) emission channel after one-body kaon
absorption process K−N → MB. Solid line
shows the total spectrum for each semiexclusive
channel. Dashed and dotted lines indicate the
contributions of K̄N isospin = 0 and 1 optical
potential, respectively. The vertical dashed line
indicates the kaon production threshold.
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FIG. 7. Calculated results of 3He(K−,n) reaction spectra at
TK− = 600 MeV (PK− = 976 MeV/c) including both K−pp and
K̄0pn in the final states are shown in (a) total spectra and
(b) conversion part at θ lab

n = 0◦ for the s-wave chiral unitary optical
potential. Dashed and dotted lines indicate the contributions from
K−pp formation and K̄0pn formation, respectively. Solid lines are
the sum of the both contributions.

3He(K−,p) spectra for the formation of the K−pn systems
using the optical potential shown in Fig. 3 based on the K−
self-energy evaluated beyond the low-density approximation
in Ref. [46] for symmetric nuclear matter. By comparing Fig. 8
with Fig. 4(b), we find that the subthreshold behavior in Fig. 8
is smoother than that in Fig. 4(b) and does not show the
bump structure because of the larger imaginary potential in this
energy region. The self-energy used to obtain Fig. 8 includes
the higher-order medium effects such as multinucleon K−
absorption processes in the matter, although the K−pn system
considered here, we need to evaluate the medium effects up
to two-body processes. Thus, we expect that the effects of the
imaginary potential would not be so strong as seen in Fig. 4
and that the medium effects would not change the spectra
significantly, but the signal could be a little unclearer due to
the inclusion of two-body absorption.

We also study the proton density profile dependence
of the 3He(K−,n) total spectra for the K−pp formation.
In the previous spectrum calculations shown in Fig. 4 to
Fig. 7, we have used the density profile given by the Fermi
distribution with the radius Rpp = 1.01 fm and the diffuseness
app = 0.50 fm. We also calculate the formation spectra of
the K−pp systems with the density distributions that have
the central density with 50% lower and 50% higher. These
density configurations are achieved in the Fermi distributions

FIG. 8. Same as Fig. 4(b), except for the K−-pn optical potential
used in the calculation. The K− self-energy � in the symmetric
nuclear matter with medium effects [46] is used as the K−-pn optical
potential.

FIG. 9. Calculated results of 3He(K−,n) spectra at TK− =
600 MeV (PK− = 976 MeV/c) for the formation of K−pp state at
θ lab
n = 0◦ with the s-wave chiral unitary optical potential. Solid line

shows the same result as that in Fig. 4(a). Dashed and dotted lines
indicate the results with the pp distributions with Rpp = 1.58 and
0.68 fm, which have 50% lower and 50% higher central densities,
respectively. See details in text.

with Rpp = 1.58 fm and 0.68 fm, respectively, which are
obtained by adjusting the radius parameters with keeping the
normalization and the diffuseness. The calculated formation
spectra with these density profiles are shown in Fig. 9 together
with the spectrum obtained in the previous calculation. As
seen in the figure, the spectra are insensitive to the 50%
variation of the central density. We have carried out the same
study for the K−nn formation spectra and confirmed that
the spectra are also insensitive to the change of the density
distribution. Having also performed the study of the density
profile dependence of the formation spectra with a different K̄

optical potential, which is given in Ref. [53], we have obtained
the similar formation spectra within the variation of the density
distributions.

In Fig. 10, we show the contribution from p-wave optical
potential, which takes account of the �(1385) resonance
effects in K̄N channel. We have used the p-wave scattering

FIG. 10. Same as Fig. 4(a), except for the K−-pp optical potential
used in the calculation. The dashed line indicates the result calculated
with the s-wave chiral unitary optical potential [Eq. (11)], and
the solid line indicates that with s- and p-wave optical potential
[Eq. (16)]. The p-wave chiral amplitude calculated in Ref. [45] is
used to evaluate the optical potential.
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FIG. 11. Calculated spectra of the 12C(K−,p)11B ⊗ K− reaction
at TK− = 600 MeV (PK− = 976 MeV/c) plotted as a function of the
emitted proton energy Tp at θ lab

p = 0◦ for the s-wave chiral unitary
optical potential. The thick solid and dotted lines indicate the total
and conversion spectra calculated with the free space chiral amplitude,
respectively. The thin solid line indicates the total spectrum calculated
with the in-medium chiral amplitude reported in Ref. [28]. The
vertical dashed line indicates the kaon production threshold with
the ground state of 11B.

amplitude calculated in Ref. [45] in chiral unitary model and
used the optical potential defined in Eq. (16). We found that
the contributions from the p-wave optical potential is tiny
for the total spectra in our present theoretical framework as
in Fig. 10. This results is consistent with that in Ref. [54],
where the p-wave potential effects are very small for kaonic
atoms. The effects of the p-wave potential and/or �(1385)
resonances are also reported in Refs. [15,16,55] in the studies

of the structure of the K̄NN systems, where these effects are
not negligible for quantitative discussions.

Finally, we add a few comments on the uncertainties of our
results. In our framework, only one body operator is considered
as shown in Eq. (4), and the momentum transfer in the (K̄,N )
reaction is shared by the high-momentum components of the
wave functions of a nucleon in the target in the initial state
and a kaon in the final state as in Ref. [30]. The many-body
reaction processes, which we have not evaluated here, exist in
reality and have certain contributions to the reaction spectra.
We think that the contributions from the many-body processes
are structureless and mainly appear in the lower emitted proton
energy region in general, which corresponds to the quasifree
kaon production region. Hence, we think the calculated results
in the quasifree kaon production region can be affected by
the many-body processes [34]. Several processes may have
finite contributions to the spectrum in the bound kaon energy
region as backgrounds as discussed in Ref. [44], which will be
evaluated quantitatively in future works.

E. (K−, p) spectrum for 12C target

Finally, we show the calculated spectra of the
12C(K−,p)11B ⊗ K− reaction at TK− = 600 MeV with the
chiral unitary amplitude. In Fig. 11, we show the total and
the conversion spectra calculated with the chiral amplitude in
free space together with the total spectra with the amplitude
at finite density for comparison [28]. As we can see from
Fig. 11, the spectra around the threshold becomes smooth and
structureless due to the medium effects to the chiral unitary
amplitude. This is the same tendency that we have observed for
the K−pn systems in Fig. 4(b) and Fig. 8. The medium effects

FIG. 12. As indicated in the figure, each
figure corresponds to the different meson
(M)-baryon(B) emission channel after one-
body kaon absorption process K−N → MB.
Due to the isospin symmetry, the spectrum
with π 0�− emission channel is the same
as that of π−�0 channel. Upper and middle
six panels show the emission channels from
K− + p and lower three panels the emission
channels from K− + n, respectively. Thick
solid line show the total spectrum for each
semiexclusive channel. The thick and thin
dashed lines indicate the contributions of
K̄N isospin = 0 with s1/2 and p3/2 proton-
hole states, and the thick and thin dotted
lines indicate those of K̄N isospin = 1 with
s1/2 and p3/2 proton-hole states, respectively.
There are no isospin = 0 contribution in the
K− + n amplitude (lower three panels).
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that include the multinucleon processes for kaon absorption
make it more difficult to observe clear structures in the total
spectrum.

We show in Fig. 12 the semiexclusive spectra for the
12C(K−,p)11B⊗K− reaction calculated with the chiral am-
plitude in free space. These figures show the (K−,p) spectra
with the meson and baryon emissions due to kaon absorption as
explained for the K−pp system case in Fig. 6. In the 12C target
case, we have two different features from the K−pp system,
which are the contributions from p3/2 proton hole state in 11B
and the kaon absorption by neutron. In Fig. 12, we show the
contributions from different K̄N isospin and proton-hole states
separately. The contributions of kaon absorption by neutron
are shown in three lower panels. We find that the qualitative
features of the semiexclusive spectra are resemble to the K−pp

case and we find again that the π� emission channel from the
initial K−p subsystem have large components in the bound
energy region. We also find that the π−�, π−�0, and π0�−
emission channels from K−n initial subsystem have certain
strength in subthreshold kaon energies. Though we do not
include the final-state interaction for the emitted meson and
baryon after kaon absorption, it would be interesting to explore
the semiexclusive spectra even for larger nuclei such as 12C
because we have possibilities to observe clearer structure in
the spectra and to obtain information on subthreshold kaon
properties at finite density, which could not be observed in
total spectra alone.

V. CONCLUSION

We have made systematic studies for the formation spectra
of the K̄NN and K−-11B systems that are accessible by
the (K̄,N ) reactions. We have adopted the theoretical K̄N

amplitude obtained by the chiral unitary model and formulated
the optical potential within the so-called Tρ approximation to
calculate the formation spectra systematically. This theoretical
optical potential has the complex energy dependence in
contrast to the phenomenological potentials for which we need
to assume (or neglect) the energy dependence. Although we
have used the Green’s function with the density-dependent
optical potential for the K̄NN systems rather than treating
them as few-body systems, this simplification makes the
spectrum calculation much simpler.

To know the basic features of the light kaonic nuclear sys-
tems, we solve the Klein-Gordon equation with the theoretical
potential self-consistently for kaon in proton matter and for
K̄NN bound states with assuming the two nucleon density
distributions. From the behaviors of poles in the proton matter,
we found that the pole in the kaon bound energy region is
connected to one of the poles of �(1405) in the low-density
limit and not connected to free kaon in vacuum. The solutions
of the Klein-Gordon equation of the K̄NN systems show
clearly the differences of the structure of the bound spectra for
K−pp, K−pn, and K−nn states due to the different characters
of the interactions.

As for the formation spectra of the light kaonic nuclei,
we have made detail analyses along to the line described in
the Introduction. We emphasize that the semiexclusive spectra

for (K̄,N ) reaction coincident with the particle emissions due
to kaon absorption are important to obtain the experimental
information on the subthreshold kaon properties at finite den-
sity. Especially, in π� emission channels we expect to obtain
subthreshold kaon properties and clearer indications of kaon
bound states as enhancements in the spectra. Namely it is possi-
ble to obtain the information on the existence of bound states by
knowing the strength of the subthreshold spectrum. However,
it is difficult to know the binding energies and widths quanti-
tatively from the spectra in general for the systems with large
width.

Finally, we mention the effects of the mixture of the K̄0pn

formation process to K−pp formation in the 3He(K−,n)
reaction. This effect should be evaluated because it is included
experimental spectra as a kind of background. We have
reported the calculated results in our theoretical framework
in this article.

We believe that our theoretical results are interesting and
stimulating for both theorists and experimentalists in this field
and help to develop the research of the kaon physics.

Note added in proof. In the present work, the study on
the structure of the K̄NN systems is in a exploratory stage,
as we have mentioned in the main part of the article. We
would like to add further two remarks along this line. For
the Green’s function of the K̄NN systems, we work in the
particle base without channel mixing among the same charged
states. The channel mixing, for instance between K−pp and
K̄0np, may be important for these light nuclear systems
to have definite isospin. The mixing effect will make the
K̄NN state with I = 1/2 more deeply bound. Secondly, the
K̄ optical potential evaluated under the Tρ approximation
with the K̄N scattering amplitude T has energy-dependence
and a singularity at the pole position of the �(1405) in the
complex energy plane. Due to this singularity, the potential
gets very deep at the complex energies close to the �(1405)
pole position. Thus, in the vicinity of the pole position,
one may find infinite bound state solutions having definite
principal quantum number and angular momentum, when one
solves the Klein-Gordon equation with this energy-dependent
optical potential in a self-consistent manner in terms of the
complex energy. This series of the solutions should not be
interpreted as three-body K̄NN bound states, but it could be a
�(1405) formed by a two-body K̄N subsystem. The solutions
shown in Table II except 1s of K−pp have complex energies
closed to the �(1405) pole position. These solutions might be
interpreted as two-body bound states.
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