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Generalized Dalitz plot analysis of the near-threshold pp → ppK+ K− reaction in view of the
K+ K− final state interaction
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The excitation function for the pp → ppK+K− reaction revealed a significant enhancement close to threshold
that may plausibly be assigned to the influence of the pK− and K+K− final-state interactions. In an improved
reanalysis of COSY-11 data for the pp → ppK+K− reaction at excess energies of Q = 10 and 28 MeV,
including the proton-K− interaction, the enhancement is confirmed. Invariant mass distributions for the two- and
three-particle subsystems allow us to test at low excess energies the ansatz and parameters for the description of
the interaction in the ppK+K− system as derived from the COSY-ANKE data. Finally, based for the first time
on the low-energy K+K− invariant mass distributions and the generalized Dalitz plot analysis, we estimate the
scattering length for the K+K− interaction to be |Re(aK+K− )| = 0.5+4.0

−0.5 fm and Im(aK+K− ) = 3.0 ± 3.0 fm.
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I. INTRODUCTION

The basic motivation for investigating the pp →
ppK+K− reaction near the kinematical threshold is compre-
hensively reviewed in Ref. [1], as an attempt to understand the
nature of the scalar resonances f0(980) and a0(980), whose
masses are very close to the sum of the K+ and K− masses.
In addition to the standard interpretation as qq̄ mesons [2],
these resonances were also proposed to be qqq̄q̄ states [3],
KK̄ molecules [4,5], hybrid qq̄/meson-meson systems [6], or
even quark-less gluonic hadrons [7]. The strength of the KK̄

interaction is a crucial quantity regarding the formation of a
KK̄ molecule, whereas the KN interaction is of importance
in view of the vigorous discussion concerning the structure of
the excited hyperon �(1405) that is considered a three-quark
system or a KN molecular state [8]. Additionally, these
interactions appear to be very important also with respect to
other phenomena, like possible kaon condensation in neutron
stars [9] or production of strange particles immersed in a dense
nuclear medium studied by means of heavy-ion collisions
[10–13].

Measurements of the near threshold pp → ppK+K−
reaction have been made possible by beams of low emittance
and small momentum spread available at storage ring facilities,
in particular at the cooler synchrotron COSY at the research
center in Jülich, Germany [14]. A precise determination
of the collision energy, in the order of fractions of MeV,
permitted us to deal with the rapid growth of cross sections
[15] and thus to take advantage of the threshold kinematics
like, e.g., full phase-space coverage achievable with dipole
magnetic spectrometers being rather limited in geometrical
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acceptance. Early experiments on K+K− pair production at
COSY conducted by the COSY-11 collaboration revealed,
however, that the total cross section at threshold is more than
seven orders of magnitude smaller than the total proton-proton
production cross section, making the study difficult due to
low statistics [16–18]. A possible influence from the f0 or a0

mesons on the K+K− pair production appeared to be too weak
to be distinguished from the direct production of these mesons
based on the COSY-11 data [17]. Recent results obtained by
the ANKE collaboration with much higher statistics can also
be explained without the need of including the scalars f0 or
a0 [19,20]. However, the combined systematic collection of
data below [16–18] and above [19,21] the φ-meson threshold
reveal a significant signal in the shape of the excitation function
that may be due to the K−p and perhaps also to the K+K−
interaction. This signal is based on the COSY-11 data that, as
indicated by authors of article [19], were analyzed calculating
the acceptance without the inclusion of the pK− interaction.
Therefore a more detailed analysis of the COSY-11 data
at excess energies of Q = 10 and 28 MeV including now
studies of both the differential cross-section distributions and
the strength of the final-state interaction between the K+
and K− mesons was performed. The analysis is based on a
generalization of the Dalitz plot for four particles as proposed
by Goldhaber et al. [22–24].

II. EXCITATION FUNCTION FOR THE
NEAR-THRESHOLD pp → ppK+ K− REACTION

The measurements of the pp → ppK+K− reaction were
conducted at low excess energies by the collaborations ANKE
[19], COSY-11 [16–18], and DISTO [21]. The achieved results
are presented in Fig. 1 together with curves representing
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FIG. 1. (Color online) Excitation function for the pp →
ppK+K− reaction. Triangle and circles represent the DISTO and
ANKE measurements, respectively. The four points close to the
threshold are results from the COSY-11 measurements. The curves
are described in the text.

three different theoretical expectations [19] normalized to the
DISTO data point at Q = 114 MeV. The dashed curve repre-
sents the energy dependence from four-body phase space when
we assume that there is no interaction between particles in the
final state. These calculations differ from the experimental
data by two orders of magnitude at Q = 10 MeV and by a
factor of about five at Q = 28 MeV. Hence, it is obvious that
effects of final-state interactions cannot be neglected in the
ppK+K− system [25]. Inclusion of the pp-FSI (dashed-dotted
line in Fig. 1), by folding its parametrization known from the
three body final state [26] with the four-body phase space,
produces a result that is closer to that of the experimental
data but does not fully account for the difference [18]. The
enhancement may be due to the influence of pK and K+K−
interaction that was neglected in the calculations. Indeed,
as shown by authors of Refs. [19,20], the inclusion of the
pK−-FSI (solid line) reproduces the experimental data for
excess energies down to Q = 28 MeV. These calculations of
the cross section were accomplished under the assumption that
the overall enhancement factor, originating from final-state
interaction in the ppK+K− system, can be factorized into
enhancements in the pp and two pK− subsystems [19]:

FFSI = Fpp(q) × Fp1K− (k1) × Fp2K− (k2), (1)

where k1, k2, and q stand for the relative momenta of the
particles in the first pK− subsystem, second pK− subsystem,
and pp subsystem, respectively. The factors describing the
enhancement originating from the pK−-FSI are parametrized
using the scattering length approximation. It is important
to note that the inclusion of the pp and pK− final-state
interaction is not sufficient to describe the data very close
to threshold (see Fig. 1). This enhancement may be due to
the influence of the K+K− interaction, which was neglected

in the calculations.1 However, as pointed out in Ref. [19],
the observed increase of the total cross section near threshold
may be due to the neglect of the pK−-FSI in the calculations
of the COSY-11 acceptance. As a consequence the extracted
cross sections would decrease if this interaction was taken
into account during the analysis of the experimental data.
This encouraged us to check quantitatively the influence of
the interaction in the pK− subsystem on the acceptance
of the detection setup. In addition, absolute values for the
differential distributions of the pK and ppK invariant masses
were extracted, and generalized Dalitz plot analysis of the data
in view of the K+K− interaction was performed.

III. MEASUREMENTS OF THE pp → ppK+ K−

REACTION PERFORMED WITH THE COSY-11
MAGNETIC SPECTROMETER

The measurements of the pp → ppK+K− reaction close
to threshold have been conducted using the cooler synchrotron
COSY [14] and the COSY-11 detector system [27] shown
schematically in Fig. 2. The target, being a beam of H2

molecules grouped to clusters of up to 105 atoms [28],
perpendicularly crosses the proton beam circulating in the ring.

If a collision of protons leads to the production of a
K+K− meson pair, then the reaction products, having smaller
momenta than the circulating beam, are directed by the
magnetic dipole field toward the COSY-11 detection system
and leave the vacuum chamber through a thin exit foil
[27]. Tracks of positively charged particles, registered by
drift chambers, are traced back through the magnetic field

1It is worth mentioning that in the calculations also the pK+

interaction was neglected. It is repulsive and weak and hence it can
be interpreted as an additional attraction in the pK− system [19].
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FIG. 2. Schematic view of the COSY-11 detector with a typical
event of the pp → ppK+K− reaction channel. For the description
see text.
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to the nominal interaction point leading to a momentum
determination. The knowledge of the momentum combined
with an independent measurement of the velocity, performed
by means of the scintillation detectors S1 and S3, permits
identification of the registered particles and to determine their
four-momentum vectors. Knowing both the four-momenta of
the three positively charged ejectiles and the proton-beam
momentum, one can calculate the mass of the unobserved
system X−. In the case of the pp → ppK+K− reaction this
should correspond to the mass of the K− meson, but we
observe also background originating partly from the pp →
ppπ+X− reaction, where the π+ was misidentified as a K+
meson, and in part due to the K+ meson being associated
with the hyperons �(1405) or �(1385) production [17,18].
This background, however, can be completely removed by
demanding a signal in the silicon pad detectors (mounted inside
the dipole) at the position where the K− meson originating
from the pp → ppK+K− reaction is expected. This clear
identification allows us to select the pp → ppK+K− events
and to determine the total and differential cross sections.
A more detailed description of the experiment and data
evaluation is given in Refs. [16–18,27,29].

IV. DIFFERENTIAL OBSERVABLES FOR COSY-11 DATA
AT Q = 10 MeV AND Q = 28 MeV

To check the sensitivity of the result to the assumption of the
pK− final-state interaction we derived the distributions of the
differential cross section assuming that the acceptance depends
only on the pp-FSI.2 We then calculated the acceptance with
inclusion of the pp- and pK−-FSI and derived analogous
distributions. In this calculations we assumed the factorization
of the final-state interaction given by Eq. (1) and used the
pK− scattering length apK− = (0 + 1.5i) fm [19]. The results
are presented in Fig. 3 for data at Q = 10 MeV and in
Fig. 4 for Q = 28 MeV. The distributions obtained under
both assumptions are almost identical, which shows that the
acceptance of the COSY-11 detection setup is only very
weakly sensitive to the interaction between K− and protons.
Thus, the observed enhancement in the excitation function
cannot be explained by approximations in the determination
of the detection efficiency as suspected by Ref. [19]. This
justifies the assumption made in the original analysis, where
the efficiency was calculated taking into account the pp-FSI
only. The derived values of differential cross sections are listed
in Table I. This result constitutes an additional information
to the total cross sections published previously [18]. The

2In all calculations we used the following parametrization of the
proton-proton scattering amplitude:

Fpp = e−iδpp (1S0) × sin δpp(1S0)

C × q
,

where C stands for the square root of the Coulomb penetration
factor [26]. The parameter δpp(1S0) denotes the phase-shift calculated
according to the modified Cini-Fubini-Stanghellini formula with
the Wong-Noyes Coulomb correction [30–32]. A more detailed
description of this parametrization can be found in Refs. [26,30–33].

TABLE I. The differential cross sections of the pp →
ppK+K− reaction as a function of invariant masses for different
subsystems. The values of Mij denote the center of the invariant
mass bins of 2.5 MeV/c2 and 7.0 MeV/c2 width for Q = 10 MeV
and Q = 28 MeV, respectively.

Q = 10 MeV Q = 28 MeV

Mpp( GeV
c2 ) dσ

dMpp
( nb

GeV/c2 ) Mpp ( GeV
c2 ) dσ

dMpp
( nb

GeV/c2 )

1.8778 216 ± 53 1.880 388 ± 92
1.8803 106 ± 34 1.887 346 ± 87
1.8828 43 ± 22 1.894 148 ± 67
1.8853 14 ± 14 1.901 48 ± 48

MpK+ ( GeV
c2 ) dσ

dMpK+ ( nb
GeV/c2 ) MpK+ ( GeV

c2 ) dσ

dMpK+ ( nb
GeV/c2 )

1.4332 107 ± 34 1.435 255 ± 72
1.4357 122 ± 39 1.442 261 ± 76
1.4382 125 ± 42 1.449 287 ± 83
1.4407 32 ± 21 1.456 63 ± 37

MpK− ( GeV
c2 ) dσ

dMpK− ( nb
GeV/c2 ) MpK− ( GeV

c2 ) dσ

dMpK− ( nb
GeV/c2 )

1.4332 173± 47 1.435 581 ± 117
1.4357 145 ± 42 1.442 135 ± 56
1.4382 36 ± 21 1.449 97 ± 46
1.4407 13 ± 11 1.456 25 ± 21

MK+K− ( GeV
c2 ) dσ

dMK+K− ( nb
GeV/c2 ) MK+K− ( GeV

c2 ) dσ

dMK+K− ( nb
GeV/c2 )

0.9887 169 ± 44 0.991 221 ± 70
0.9912 174 ± 51 0.998 454 ± 114
0.9937 35 ± 21 1.005 230 ± 70
0.9962 0 ± 9 1.012 38 ± 22

MppK+ ( GeV
c2 ) dσ

dMppK+ ( nb
GeV/c2 ) MppK+ ( GeV

c2 ) dσ

dMppK+ ( nb
GeV/c2 )

2.3715 0 ± 13 2.374 20 ± 20
2.3740 68 ± 28 2.381 61 ± 36
2.3765 164 ± 43 2.388 247 ± 72
2.3790 99 ± 38 2.395 566 ± 121

MppK− ( GeV
c2 ) dσ

dMppK− ( nb
GeV/c2 ) MppK− ( GeV

c2 ) dσ

dMppK− ( nb
GeV/c2 )

2.3715 60 ± 30 2.374 204 ± 68
2.3740 115 ± 39 2.381 284 ± 79
2.3765 127 ± 39 2.388 176 ± 63
2.3790 87 ± 31 2.395 216 ± 69

values of the cross sections in the former analysis [18] were
determined using the total number of events identified as a
pp → ppK+K− reaction and the total acceptance of the
COSY-11. Now after the determination of the absolute values
for the differential distributions one can calculate the total
cross sections in a less model-dependent manner regardless of
the assumption of the pp-FSI. The cross sections, calculated
for both excess energies as an integral of the Mpp distribution
derived with the inclusion of the pK−-FSI in the acceptance
calculations:

σtot =
∫

dσ

dMpp

dMpp,

amount to σtot = (0.95 ± 0.17) nb for measurement at Q =
10 MeV and σtot = (6.5 ± 1.1) nb for Q = 28 MeV. These
results are statistically consistent with the previously evaluated
total cross sections. However, the values extracted in the actual
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FIG. 3. (Color online) Differential cross sections for the pp → ppK+K− reaction at Q = 10 MeV. Circles and dashed bars (in black)
denote spectra where the acceptance was determined taking into account only the pp-FSI, and triangles with solid bars (in red) denote results
where pp- and pK−-FSI was taken into account in the acceptance calculations. They are hardly distinguishable. Vertical bars indicate statistical
errors, whereas the horizontal bars stand for the invariant mass intervals for which the cross-section values were established.

analysis with smaller error bars are larger by about 20% for
Q = 10 MeV and 50% for Q = 28 MeV, which strengthens
the confidence to the observed enhancement at threshold.

The determination of the absolute values for the differ-
ential cross sections permitted us to establish the absolute
values for the following ratios at the close to threshold

FIG. 4. (Color online) Differential cross sections for the pp → ppK+K− reaction at Q = 28 MeV. For the description see the caption to
Fig. 3.
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FIG. 5. (Color online) The distributions of the absolute values of ratios RpK and RppK for data at Q = 10 MeV [(a) and (b)] and Q = 28 MeV
[(c) and (d)]. Solid curves represent theoretical expectations calculated taking into account pp and pK− final-state interaction. It should be
stressed that the absolute values are not fitted but are the result of the model and used parameters [19].

region3:

RpK = dσ/dMpK−

dσ/dMpK+
,

RppK = dσ/dMppK−

dσ/dMppK+
.

If pK+ and pK− interactions were the same, the distribution
of RpK as well as RppK should be flat and equal to unity. But as
one can see in Fig. 5 and as presented already in the previous
publication by COSY-11 [18] and ANKE [19], for both excess
energies RpK is far from being constant and increases toward
the lower MpK invariant masses. This effect might be due to
the influence of the pK− final-state interaction. Similarly the
distributions of RppK differs from expectations assuming only
FSI in the pp system. This is a confirmation of effects observed
also by the ANKE collaboration at higher excess energies
[19]. The determination of the absolute values of the ratios
RpK and RppK allows us to compare the parameters of the
scattering length apK− derived by the ANKE group (from data
at excess energies above the φ-meson production threshold),
to the present data near the K+K− threshold. As demonstrated
in Fig. 5, simulations taking into account the pK− final-state
interaction with the scattering length apK− = (0 + 1.5i) fm
determined by the ANKE group from data at significantly
higher excess energies reproduce very well the distributions of
RpK and RppK near the threshold.

V. ANALYSIS OF THE K+ K− FINAL-STATE
INTERACTION

A factorization ansatz for the pp and pK− interaction un-
derestimates the excitation function for the pp → ppK+K−
reaction very close to threshold, indicating that in this energy
region the influence of the K+K− interaction is significant
and cannot be neglected. The interaction may manifest itself
even stronger in the distributions of the differential cross
sections [15]. This observation demands an analysis of the
double differential cross sections for the low-energy data at
Q = 10 MeV (27 events) and Q = 28 MeV (30 events), in
spite of the quite low statistics available.

3In the former analysis only the shape of the ratios was established.

A. Generalization of the Dalitz plot: Goldhaber approach

There are many different types of generalizations of
the Dalitz plot for four-body final states [34,35]. Here a
generalization proposed by Goldhaber is presented [22–24].

Consider a reaction like a + b −→ 1 + 2 + 3 + 4 yielding
four particles with masses mi and total energy

√
s in the center-

of-mass frame. The probability, that the momentum of the i th

particle is in a range d3pi is given by:

d12P = d3p1d
3p2d

3p3d
3p4

1

16E1E2E3E4

× δ3

⎛
⎝ 4∑

j=1

pj

⎞
⎠ δ

⎛
⎝ 4∑

j=1

Ej − √
s

⎞
⎠ |M|2, (2)

where Ei =
√

p2
i + m2

i denotes the energy of the i th particle
(c = 1) and M denotes the invariant matrix element for the
process. Assuming that the matrix element M depends only on
the invariant masses of the two- and three-particle subsystems
[34], the distribution given by Eq. (2) can be expressed in some
choice of five independent invariant masses.4 An especially
convenient choice is M2

12, M2
34, M2

14, M2
124, and M2

134 [34].
Using such variables, after integrations, one obtains an event
distribution in the following form:

d5P = π2

8s
|M|2 1√−B

dM2
12dM2

34dM2
14dM2

124dM2
134, (3)

where B is a function of the invariant masses with the exact
form to be found in Nyborg’s work [34]. An advantage of the

4Actually for four particles in the final state we have six two-particle
and four three-particle invariant masses. But only five of them are
independent due to following relations [34]:

4∑
i,j=1(i>j )

M2
ij = s + 2

4∑
i=1

m2
i ,

M2
123 = M2

12 + M2
23 + M2

13 − m2
1 − m2

2 − m2
3,

M2
134 = M2

13 + M2
34 + M2

14 − m2
1 − m2

3 − m2
4,

M2
124 = M2

12 + M2
24 + M2

14 − m2
1 − m2

2 − m2
4,

M2
234 = M2

22 + M2
34 + M2

24 − m2
2 − m2

3 − m2
4.
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FIG. 6. Goldhaber plots for the pp → ppK+K− reaction. The solid lines of the triangles show the kinematically allowed boundaries.
Raw data are shown in (a) and (b) as black points. The superimposed squares represent the same distributions but binned into intervals
of �M = 2.5 MeV/c2(�M = 7 MeV/c2) widths for an excess energy of Q = 10 MeV (28 MeV), respectively. The size of the square is
proportional to the number of entries in a given interval. In (c) and (d) Monte Carlo results are presented. In the simulated distributions both
the pp and the pK−-FSI are taken into account.

choice of mass variables used here is the high symmetry of
the function B [34], which is very usefull in the consideration
of the boundary of the kinematically allowed region in the
(M2

12, M2
34, M2

14, M2
124, M2

134) space defined by B = 0. If
we additionally change the integration variables to invariant
masses the projection of the physical region on the (M12,M34)
plane gives a convenient and simple distribution, which can be
used to analyze the final-state interaction in the same way as in
case of three particles. Such an analysis was originally made
by Goldhaber et al. in 1963 [22,23] and is called the Goldhaber
plot. As it is shown in Fig. 6 the kinematically allowed region
in the Goldhaber plot is a right isosceles triangle within which
the area (contrary to the Dalitz plot) is not proportional to the
phase-space volume [34]. Moreover, even in the case of the
absence of any final-state interaction the density of events on
the Goldhaber plot is not homogeneous. However, it is still a
very convenient tool due to its Lorentz invariance and simple
boundary equations [34]:

M12 + M34 = √
s, M12 = m1 + m2, and M34 = m3 + m4.

B. Determination of the K+ K− scattering length

Complementary to previous derivations [36–39] here we
estimate the K+K− scattering length directly from the low-
energy differential mass distributions of K+K− and pp pairs
from the ppK+K− system produced at threshold. The raw data
[represented by black points in Figs. 6(a) and 6(b)] were first
binned into intervals of �M = 2.5 MeV/c2 width for the mea-
surement at Q = 10 MeV and intervals of �M = 7 MeV/c2

for the data at Q = 28 MeV and then for each bin corrected for
the acceptance and detection efficiency of the COSY-11 facility
[40]. The resulting Goldhaber plots are presented together
with the raw distributions in Figs. 6(a) and 6(b). Figures 6(c)
and 6(d) show corresponding distributions simulated with the
Monte Carlo method, taking into account the pp and pK−
interaction according to the factorization ansatz [19].

To estimate the strength of the K+K− interaction, the
derived cross sections were compared to results of simulations
generated with various parameters of the K+K− interaction,

taking into account strong final-state interaction in the pp and
pK− subsystems. To describe the experimental data in terms
of final-state interactions among (i) the two protons, (ii) the K−
and protons, and (iii) the K+ and K−, the K+K− enhancement
factor was introduced such that Eq. (1) changes to:

FFSI = Fpp(q) × Fp1K− (k1) × Fp2K−(k2) × FK+K−(k3). (4)

As for the case of the pK−-FSI, the FK+K− was calculated in
the scattering length approximation:

FK+K− = 1

1 − ik3aK+K−
, (5)

where aK+K− is the effective K+K− scattering length and
k3 stands for the relative momentum of the kaons in their
rest frame. Using this parametrization we compared the
experimental event distributions to the results of Monte
Carlo simulations, treating the K+K− scattering length as an
unknown parameter, which has to be determined. To estimate
the real and imaginary part of aK+K− we constructed the
Poisson likelihood χ2 statistic derived from the maximum
likelihood method [41,42]:

χ2 (aK+K− , α) = 2 ×
∑

i

[
αNs

i − Ne
i + Ne

i ln

(
Ne

i

αNs
i

)]
,

(6)

where Ne
i denotes the number of events in the i th bin of

the experimental Goldhaber plot, Ns
i stands for the content

of the same bin in the simulated distributions, and α is
the normalization factor. The data collected at both excess
energies have been analyzed simultaneously. The obtained χ2

distributions (suppressed by its minimum value) as a function
of the real and imaginary part of the K+K− scattering length
are presented in Fig. 7. The best fit to the experimental data
corresponds to |Re(aK+K− )| = 0.5+4

−0.5 fm and Im(aK+K− ) =
3 ± 3 fm. The final-state interaction enhancement factor
FK+K− in the scattering length approximation is symmetrical
with respect to the sign of Re(aK+K− ), therefore only its
absolute value can be determined.

045202-6



GENERALIZED DALITZ PLOT ANALYSIS OF THE NEAR- . . . PHYSICAL REVIEW C 80, 045202 (2009)

FIG. 7. χ 2-χ 2
min distribution as a function of |Re(aK+K− )| and Im(aK+K− ). χ 2

min denotes the absolute minimum with respect to parameters
α, |Re(aK+K− )|, and Im(aK+K− ).

VI. CONCLUSIONS

In conclusion, the more detailed analysis of the COSY-11
data with inclusion of the pK− final-state interaction did not
change significantly the result of the previous analysis [18].
Moreover, the new more precise determination of the total
cross sections from the differential Mpp distributions even
increased the enhancement at threshold.

In addition, the analysis of the pp → ppK+K− reaction
has been extended to the determination of differential cross
sections in view of the K+K− final-state interaction. The
extracted K+K− scattering length amounts to:

aK+K− = [(
0.5+4

−0.5

) + i(3 ± 3)
]

fm.

Due to the low statistics the uncertainties are rather large. In
this analysis we cannot distinguish between the isospin I = 0
and I = 1 states of the K+K− system. However, as pointed
out in Ref. [43], the production with I = 0 is dominant in the
pp → ppK+K− reaction independent of the exact values of
the scattering lengths.

Regarding the comparison of the interactions in the pK−,
pK+, ppK−, and ppK+ subsystems, the absolute ratios
determined from the COSY-11 data measured at Q = 10 MeV
and Q = 28 MeV are consistent with the predictions based on
the parametrization introduced in Ref. [19] and on the values
of the scattering length apK− extracted from the ANKE data
at higher excess energies [19].
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