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We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature.
The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann
representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion
self-energy. The in-medium spectral densities of the K and K̄ mesons are obtained from a chiral unitary approach
in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy
is determined from the P -wave coupling to particle-hole and �-hole excitations, modified by short-range
correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions
from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity
of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.
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I. INTRODUCTION

The properties of hadrons, both mesons and baryons, in hot
and dense matter have been a matter of intense investigations
over the past several years [1–4] and it is a subject that is
calling the attention of many present and future experimental
programs [5].

Of particular relevance are the lightest strange and non-
strange mesons, namely kaons and pions. They typically
appear as final-state interacting particles in nuclear production
reactions. Being light, these pseudoscalar mesons are also
abundantly produced as thermal excitations in heavy-ion
collisions. Moreover, they constitute a relevant ingredient in
the medium modification of vector (ρ,ω,φ) and axial-vector
(a1) mesons, as these decay strongly into light mesons and
thus their in-medium properties are tied to the modifications
of the meson-cloud component of their spectra. Vector-mesons
provide a unique tool to study high-density and/or temperature
regions from electromagnetic decays, whereas the combined
study of the vector and axial-vector spectral functions can
shed light on the onset and physical realization of chiral
symmetry restoration in hot/dense strongly interacting matter.
Therefore, a solid knowledge of their interactions with the
medium through their coupling to light pseudoscalar mesons
is mandatory. Another relevant role of the properties of light
mesons in nuclear matter is played in the study of mesic atoms
and nuclei, where the observation of bound states of mesons
and their spectral properties can lead to a better understanding
of meson-meson and meson-baryon interactions at finite
nuclear density.

One of the aims of many theoretical studies is to describe
the propagation of hadrons in hot and dense matter. A natural
way to face this problem is to build the single-particle
Green’s function of the hadron. In turn, the latter requires
the knowledge of the hadron self-energy, which describes the
interactions of the particle with the medium. Obviously, the
quality of the calculation of the self-energy relies on having
a good model for the interaction and a robust many-body

framework. The single-particle Green’s function has well-
defined analytical properties that impose some constraints on
both the many-body formalism and the interaction model. To
exploit these analytical properties it is convenient to introduce
the Lehmann representation, which gives the Green’s function
in terms of the single-particle spectral functions. An excellent
tool to analyze these constraints is provided by the energy-
weighted sum rules (EWSR) of the single-particle spectral
functions.

Energy-weighted sum rules have been extensively and
successfully used in the literature, mainly to analyze the
response function of many-body systems in particular for
nuclear matter [6], quantum liquids [7], and, more recently, in
the context of cold atoms [8]. The energy-weighted moments
of the response to a given operator allow one to estimate
the low-energy states excited by this operator, specially for
highly collective states that concentrate a substantial amount of
strength. An important advantage of the sum rules is that they
can be most of the times directly calculated without knowing
the response function by just evaluating the expectation value
in the ground state of commutators involving the excitation
operator and the Hamiltonian [6].

In the context of chiral-symmetry breaking in hadronic
physics, one finds a prominent example in the well-known
set of EWSR’s proposed by Weinberg [9], which has been
extended to hot and dense matter systems [10]. The first of
these relations connects the integrated difference of the vector
and axial vector mesonic spectral functions (current-current
correlators) with the pion decay constant. Together with
suitable model calculations, the first Weinberg sum rule can
shed light on the degree and physical mechanism of chiral
symmetry restoration at finite nuclear densities [11,12].

In the case of single-particle Green’s functions, EWSR’s for
the nucleon spectral functions have been well established for a
long time in the literature [13]. However, only recently has the
progress in the numerical calculation of the single-particle
spectral functions in nuclear matter permitted, through a
careful analysis of the EWSR’s, identification of the effects
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of nucleon-nucleon correlations in the distribution of the
single-particle strength, both at zero [14] and finite temperature
[15,16].

However, EWSR’s have not been used much for the case of
meson single-particle properties. They have been obtained in
Ref. [17] for ω mesons coupling to particle-hole excitations in
a dense medium within the long-wavelength approximation.
In this article, we present a derivation of the EWSR for the
single-particle spectral functions associated to the propagation
of mesons in a hot and dense medium and discuss the physical
implications of the fulfillment of these sum rules in connection
with the underlying interaction models as well as with certain
aspects of the meson nuclear phenomenology. Our aim is not
only to analyze the consistency of the many-body formalism
used to calculate the meson Green’s function but also to obtain
useful insights on the validity of the meson-nucleon interaction
model.

In Sec. II we discuss the derivation of the EWSR’s for
mesons propagating in cold nuclear matter and particularize
for the case of kaons and pions. In the case of kaons, the particle
(K) and antiparticle (K̄) modes behave differently in the
nuclear medium, while the isotriplet pions exhibit a common
behavior in symmetric nuclear matter, which allows for a
simplification in the sum rules expressions. The generalization
of the sum rules to nuclear matter at finite temperature is
also provided in this section. In Sec. III we briefly summarize
particular models of the kaon and pion self-energies in the
nuclear medium, which have been discussed elsewhere. The
kaon self-energy is built from the effective kaon nucleon
interaction in S and P waves described in a chiral unitary
approach [18,19]. In the case of pions, we consider the standard
P -wave coupling to ph and �h configurations modified by
spin-isospin short-range correlations [20,21]. The resulting
sum rules for kaons and pions are discussed in Sec. IV, for
various momenta, nuclear densities, and temperatures. We
analyze the contribution of the different collective modes
by studying the saturation of the sum rules as a function
of the energy and discuss useful insights that can be drawn
for the particular self-energy models. A summary of our
main conclusions is presented in Sec. V, together with some
discussion on the application of the present method to test the
consistency of the many-body scheme or the meson nuclear
interaction model in a hot symmetric nuclear medium, as well
as in other scenarios that will be explored in the near future.

II. DERIVATION OF ENERGY-WEIGHTED SUM RULES

A. Zero temperature

The derivation of the energy-weighted sum rules (EWSRs)
for hadrons and, in particular, for mesons follows from
comparing the in-medium propagator with the corresponding
Lehmann spectral representation. The propagator for a meson
M of energy q0 and momentum �q in symmetric nuclear matter
of density ρ reads:

DM (q0, �q ; ρ) = 1

(q0)2 − ω2
M (�q) − �M (q0, �q ; ρ)

, (1)

where ωM (�q) =
√

m2 + �q 2 is the free dispersion relation
and �M the meson self-energy. The corresponding spectral
(Lehmann) representation when the meson and antimeson
behave as distinct particles in the medium is

DM (q0, �q ; ρ) =
∫ ∞

0
dω

{
SM (ω, �q ; ρ)

q0 − ω + iη
− SM̄ (ω, �q ; ρ)

q0 + ω + iη

}

(2)

with

SM (q0, �q ; ρ) = − 1

π
ImDM (q0, �q ; ρ). (3)

We start by analyzing the q0 → ∞ limit. To obtain the
expansion of the propagator in powers of 1/q0 we first study
the behavior of the self-energy �M (q0, �q ; ρ) at high energies
from its dispersion relation

�M (q0, �q ; ρ) = �∞
M (�q ; ρ) − 1

π

∫ ∞

−∞
dω

Im �M (ω, �q ; ρ)

q0 − ω + iη
,

(4)

where �∞
M is the real nondispersive contribution of the self-

energy. In the particular models discussed in the next section,
this quantity will be either zero or stay finite. By expanding
the real part of Eq. (4) around q0 → ∞ we obtain:

Re �M (q0, �q ; ρ)

= �∞
M (�q ; ρ) − 1

π

1

q0

[∫ ∞

−∞
dω Im �M (ω, �q ; ρ)

+ 1

q0

∫ ∞

−∞
dω ωIm �M (ω, �q ; ρ)

+ 1

(q0)2

∫ ∞

−∞
dω ω2Im �M (ω, �q ; ρ) + · · ·

]
. (5)

Using the properties of the retarded self-energy:

Re �M (−q0, �q ; ρ) = Re �M̄ (q0, �q ; ρ)
(6)

Im �M (−q0, �q ; ρ) = −Im �M̄ (q0, �q ; ρ)

we can rewrite Eq. (5) as

Re �M (q0, �q ; ρ)

= �∞
M (�q ; ρ) − 1

π

1

q0

{∫ ∞

0
dω [Im �M (ω, �q ; ρ)

− Im �M̄ (ω, �q ; ρ)] + 1

q0

∫ ∞

0
dω ω[Im �M (ω, �q ; ρ)

+ Im �M̄ (ω, �q ; ρ)] + 1

(q0)2

∫ ∞

0
dω ω2[Im �M (ω, �q ; ρ)

− Im �M̄ (ω, �q ; ρ)] + · · ·
}

. (7)

Accordingly, the first few terms of the expansion of the real
part of the in-medium propagator [Eq. (1)] read:

Re DM (q0, �q ; ρ)

= 1

(q0)2

{
1 + 1

(q0)2

[
ω2

M (�q) + �∞
M (�q ; ρ)

]

− 1

π

1

(q0)3

∫ ∞

0
dω [Im �M (ω, �q ; ρ) − Im �M̄ (ω, �q ; ρ)]
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+ 1

(q0)4

([
ω2

M (�q) + �∞
M (�q ; ρ)

]2

− 1

π

∫ ∞

0
dω ω[Im �M (ω, �q ; ρ) + Im �M̄ (ω, �q ; ρ)]

)

+ · · ·
}

. (8)

However, we obtain the following expansion around q0 → ∞
from the Lehmann representation [Eq. (2)]:

Re DM (q0, �q ; ρ)

= 1

q0

∞∑
n=0

∫ ∞

0
dω

[
ω

q0

]2n

[SM (ω, �q ; ρ) − SM̄ (ω, �q ; ρ)]

+ 1

q0

∞∑
m=0

∫ ∞

0
dω

[
ω

q0

]2m+1

[SM (ω, �q ; ρ) + SM̄ (ω, �q ; ρ)],

(9)

which displays separately the terms involving the sum and the
difference of the meson and antimeson spectral functions. The
sum rules are readily obtained from matching Eqs. (8) and (9)
order by order in 1/q0. The first few terms up to (1/q0)4

determine:

m
(∓)
0 (q; ρ) :

(n = 0)
∫ ∞

0
dω [SM (ω, �q ; ρ) − SM̄ (ω, �q ; ρ)] = 0 (10)

(m = 0)
∫ ∞

0
dω ω[SM (ω, �q ; ρ) + SM̄ (ω, �q ; ρ)] = 1 (11)

m
(∓)
1 (q; ρ) :

(n = 1)
∫ ∞

0
dω ω2[SM (ω, �q ; ρ) − SM̄ (ω, �q ; ρ)] = 0 (12)

(m = 1)
∫ ∞

0
dω ω3[SM (ω, �q ; ρ) + SM̄ (ω, �q ; ρ)]

= ω2
M (�q) + �∞

M (�q ; ρ). (13)

The dispersive part of the self-energy contributes to the right-
hand side starting from (1/q0)5. For instance, in the case n =
m = 2 the sum rules read:

m
(∓)
2 (q; ρ) :

(n = 2)
∫ ∞

0
dω ω4[SM (ω, �q ; ρ) − SM̄ (ω, �q ; ρ)]

= − 1

π

∫ ∞

0
dω [Im �M (ω, �q ; ρ) − Im �M̄ (ω, �q ; ρ)]

(14)

(m = 2)
∫ ∞

0
dω ω5[SM (ω, �q ; ρ) + SM̄ (ω, �q ; ρ)]

= [
ω2

M (�q) + �∞
M (�q ; ρ)

]2 − 1

π

∫ ∞

0
dω ω[Im �M (ω, �q ; ρ)

+ Im �M̄ (ω, �q ; ρ)]. (15)

Furthermore, another sum rule results from the evaluation of
the zero-mode propagator, namely q0 = 0:

m−1(q; ρ) :
∫ ∞

0
dω

1

ω
[SM (ω, �q ; ρ) + SM̄ (ω, �q ; ρ)]

= 1

ω2
M (�q) + �M (0, �q ; ρ)

. (16)

Note that, as implied by the sum rules m−1 and m
(+)
1 , the self-

energy �M (q0, �q ; ρ) at q0 = 0 and q0 → ∞ is necessarily
real. One expects this from the phenomenological point of
view: at zero energy there should not be any open in-medium
channel for the meson to decay into, whereas at high energies
form factors or cutoffs are usually applied to truncate the
modes not accounted for explicitly by the hadronic model.
Also note that the sum rules have to be satisfied for every
value of the meson momentum, q. The m0 sum rule is
of particular relevance, because it is a consequence of the
canonical commutation relation of the meson field [22].

The sum rules given by Eqs. (10) to (16) are valid for
the general case in which the meson and the antimeson
behave differently in the nuclear medium, such as kaons
and antikaons, or pions in asymmetric nuclear matter. For
instance, by substituting M → K̄ and M̄ → K the former
expressions would represent the sum rules for the antikaon.
Similar expressions would be obtained for the kaon case if
M → K and M̄ → K̄ . It is worth noting that, even if the K̄N

and KN interactions are very different in nuclear matter, the
EWSRs impose constraints on the behavior of the K̄ and K

self-energies. In particular and due to the symmetry under the
exchange K ↔ K̄ on the left-hand side, the m−1 and m

(+)
1 sum

rules indicate that not only �K̄ (q0, �q) and �K (q0, �q) should be
real for q0 = 0 and q0 → ∞ but also that both must coincide
at the corresponding low- and high-energy limits. Actually,
this is a consequence of the crossing symmetry relations given
in Eq. (6). Therefore, sum rules obtained from models that do
not respect this symmetry will be fulfilled only to a certain
level, depending on the severity of the violation.

In the particular case of pions in symmetric matter, we
have �M (q0, �q ; ρ) = �M̄ (q0, �q ; ρ) because particles and
antiparticles behave identically. Consequently, only the even
powers of 1/q0 survive in the expansion of the propagator and,
correspondingly, the sum rules acquire the following simplified
forms:

m0(q; ρ) :
∫ ∞

0
dω 2ωSπ (ω, �q ; ρ) = 1 (17)

m1(q; ρ) :
∫ ∞

0
dω 2ω3Sπ (ω, �q ; ρ) = ω2

π (�q) + �∞
π (�q ; ρ)

(18)

m−1(q; ρ) :
∫ ∞

0
dω

2

ω
Sπ (ω, �q ; ρ) = 1

ω2
π (�q) + �π (0, �q ; ρ)

.

(19)

B. Finite temperature

The extension of the EWSRs to finite temperature T

is straightforward. We elaborate on this for the antikaon
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case below, whereas for the pion case the derivation is
completely similar. Once again, the sum rules are obtained
from the expansion at high energy of both the Dyson form of
the propagator and its Lehmann representation. At finite T ,
the spectral representation is obtained in the Matsubara space,
namely

DK̄ (ωn, �q ; ρ, T ) = − 1

π

∫ ∞

−∞
dω

ImDK̄ (ω, �q; ρ, T )

iωn − ω
, (20)

where iωn = 2nπT is the bosonic Matsubara frequency. If we
now split the integral in two pieces,

DK̄ (ωn, �q ; ρ, T ) = − 1

π

[∫ 0

−∞
dω

ImDK̄ (ω, �q ; ρ, T )

iωn − ω

+
∫ ∞

0
dω

ImDK̄ (ω, �q ; ρ, T )

iωn − ω

]
(21)

and change ω → −ω in the first term, we obtain

DK̄ (ωn, �q ; ρ, T ) = − 1

π

[∫ ∞

0
dω

ImDK̄ (−ω, �q ; ρ, T )

iωn + ω

+
∫ ∞

0
dω

ImDK̄ (ω, �q ; ρ, T )

iωn − ω

]
. (22)

In a fully relativistic thermal calculation, the imaginary part of
the retarded self-energy satisfies

Im�K̄ (−ω, �q ; ρ, T ) = −Im�K (ω, �q ; ρ, T ) (23)

and, hence, the same applies to the spectral function. Thus, the
spectral representation of the propagator actually reads

DK̄ (ωn, �q ; ρ, T ) = − 1

π

[∫ ∞

0
dω

ImDK̄ (ω, �q; ρ, T )

iωn − ω

−
∫ ∞

0
dω

ImDK (ω, �q ; ρ, T )

iωn + ω

]
. (24)

We then perform the analytical continuation onto the real axis,
iωn → q0 + iη, and one finally gets

DK̄ (q0, �q ; ρ, T )

=
∫ ∞

0
dω

{
SK̄ (ω, �q ; ρ, T )

q0 − ω + iη
− SK (ω, �q ; ρ, T )

q0 + ω + iη

}
, (25)

where

SK̄(K)(ω, �q ; ρ, T ) = − 1

π
ImDK̄(K)(ω, �q ; ρ, T ). (26)

The expression of Eq. (25) for the spectral representation of
the propagator has the same behavior at q0 = 0 and q0 → ∞
as the one obtained in the T = 0 case. Therefore, the EWSRs
at finite density and temperature have the same form as the
ones at T = 0. Summarizing, for m−1, m

(∓)
0 , and m

(∓)
1 one has

m−1(q; ρ, T ) :
∫ ∞

0
dω

1

ω
[SK̄ (ω, �q ; ρ, T ) + SK (ω, �q ; ρ, T )]

= 1

ω2
K (�q) + �K̄ (0, �q ; ρ, T )

(27)

m
(∓)
0 (q; ρ, T ) :

∫ ∞

0
dω [SK̄ (ω, �q ρ, T )−SK (ω, �q ; ρ, T )] = 0

∫ ∞

0
dω ω[SK̄ (ω, �q ; ρ, T )+SK (ω, �q ; ρ, T )] = 1

(28)

m
(∓)
1 (q; ρ, T ) :

∫ ∞

0
dω ω2[SK̄ (ω, �q ; ρ, T ) − SK (ω, �q ; ρ, T )]

= 0∫ ∞

0
dω ω3[SK̄ (ω, �q ; ρ, T ) + SK (ω, �q ; ρ, T )]

= ω2
K (�q) + �∞̄

K
(�q ; ρ, T ). (29)

III. K̄, K , AND PION SELF-ENERGY MODELS

The EWSRs constitute an ideal test of the quality of any
hadronic model. The energy-weighted integrals of the hadronic
spectral function, on the one side, are compared to the low-
and high-energy limits of the corresponding self-energy or to
model-independent values, on the other side.

Here we briefly recall the essential features of recent
calculations of the properties of kaons in dense matter at zero
and finite temperature. We refer to Refs. [18,19] for details. The
K̄ and K self-energies in symmetric nuclear matter at finite
temperature are obtained from an evaluation of the in-medium
kaon-nucleon interaction within a chiral unitary approach. The
model incorporates the S and P waves of the kaon-nucleon
interaction.

At tree level, the S-wave amplitude arises from the
Weinberg-Tomozawa term of the chiral Lagrangian. Uni-
tarization in coupled channels is imposed by solving the
Bethe-Salpeter equation with on-shell amplitudes. With a
single regularization parameter, the unitarized K̄N amplitude
generates dynamically the �(1405) resonance in the I = 0
channel and provides a satisfactory description of low-energy
scattering observables. The in-medium solution of the S-wave
amplitude accounts for Pauli-blocking effects, mean-field
binding on the nucleons and hyperons via a σ − ω model,
and the dressing of the pion and kaon propagators through
their corresponding self-energies in a self-consistent manner.
The relation

�s
K̄(K)(q0, �q; ρ, T ) =

∫
d3p

(2π )3
nN ( �p, T )[T (I=0)

K̄(K)N (P0, �P ; ρ, T )

+ 3T
(I=1)
K̄(K)N (P0, �P ; ρ, T )] (30)

determines the antikaon (kaon) dominant S-wave component
of the self-energy in terms of the in-medium effective
antikaon(kaon)-nucleon interaction in the S wave.

We should mention that the loop integrals are regularized
by a cutoff momentum of qmax = 630 MeV/c. This means that
the right-hand side unitary cut is correctly implemented up to
center-of-mass energies

√
s of about 2 GeV, above which the

model cannot be trusted. This in turn imposes a limit of q0 ∼
1 GeV for the calculated self-energies of the K and K̄ mesons.
We will make sure in the next section that energies beyond this
range no longer contribute to the sum rule under study. The
model incorporates, in addition, a P -wave contribution to the
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self-energy from hyperon-hole (Yh) excitations, including �,

, and 
∗ components.

Finite temperature effects are implemented in the inter-
mediate meson-baryon states following the imaginary time
formalism, thus keeping the analytical constraints of the
retarded self-energies of the K and K̄ mesons.

The results from Ref. [19] show that the K̄ effective mass
gets lowered by about 50 MeV in cold nuclear matter at
saturation density, whereas finite temperature reduces this
attraction to 50% at T = 100 MeV. The P -wave contribution
to the K̄ optical potential, due to �, 
, and 
∗ excitations,
becomes significant for momenta larger than 200 MeV/c and
softens the attraction felt by the K̄ in the nuclear medium
moderately. The K̄ spectral function spreads over a wide range
of energies, reflecting the melting of the �(1405) resonance
and the Yh contributions at finite temperature. Regarding the K

self-energy, it is found that the low-density theorem is a good
approximation close to saturation density, due to the absence
of resonance-hole excitations in the KN interaction. The K

potential shows a moderate repulsive behavior, whereas the
quasiparticle peak is considerably broadened with increasing
density and temperature. Implications of these results for the
decay of the φ meson and transport calculations in heavy-ion
collisions were also discussed in Ref. [19].

Next, we briefly discuss the many-body mechanisms
included in the modification of the pion propagator in a
nuclear medium. In cold nuclear matter, the pion spectral
function exhibits a mixture of the pion quasiparticle mode
and particle-hole (ph), Delta-hole (�h) excitations. Following
the calculation in Ref. [20] (extended to finite temperatures
in Ref. [19]), the lowest-order irreducible P -wave pion self-
energy reads

�
p

πNN−1+π�N−1 (q0, �q; ρ, T )

=
(

fN

mπ

)2

�q 2 [UNN−1 (q0,�q; ρ,T ) + U�N−1 (q0, �q; ρ, T )],

(31)

where the finite temperature Lindhard functions for the ph
and �h excitations are given in detail in the appendix of
Ref. [19]. The strength of the collective modes excited by
the pion is further modified by repulsive, spin-isospin NN

and N� short-range correlations [21], which we include
in a phenomenological way with a Landau-Migdal effective
interaction.

At normal nuclear matter density, the pion spectral function
clearly exhibits the different modes excited in the medium.
At low momentum, the pion quasiparticle peak carries most
of the strength together with a moderate contribution of the
ph excitations at lower energies. The pion mode feels a
sizable attraction with respect to that in free space. At larger
momentum values of a few hundred MeV/c, the excitation
of the �h mechanism takes over and provides a considerable
amount of strength overlapping with the pion quasiparticle
peak that broadens considerably.

At finite temperatures, the softening of the nucleon occu-
pation number due to thermal motion causes a broadening of
the three modes present in the spectral function. In the next

section we discuss how these features of the pion spectral
function reflect in the saturation of the different EWSRs.

IV. RESULTS AND DISCUSSION

In this section we analyze the behavior of the energy-
weighted sum rules for the particular models of the kaon and
pion properties in a hot and dense nuclear medium described
in the former section. As commonly done [14–16], we depict
the left-hand side of each sum rule as a function of the upper
limit of the energy integration. This allows us to examine how
relevant is the contribution of the different modes populating
the meson spectral function (collective modes, quasiparticle
peak) in saturating the sum rule. Note that depending on the
energy weight of the sum rule different energy regions will
be scanned. The horizontal scale ends at 1000 MeV because,
as noted in the previous section, the model calculation of the
K(K̄) self-energy cannot be trusted beyond this energy value.

The m−1, m
(−)
0 , and m

(+)
0 sum rules for the antikaon

propagator are shown in Fig. 1 in the case of normal
nuclear matter density, zero temperature, and 150 MeV/c kaon
momentum. The contributions from K̄ and K to the left-hand
side of the sum rule, cf. Eqs. (10), (11), and (16), are depicted
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FIG. 1. (Color online) m−1, m
(−)
0 , and m

(+)
0 sum rules for the

K and K̄ spectral functions at q = 150 MeV/c, ρ = ρ0 and zero
temperature. The K̄ , K spectral functions are also displayed for
reference in arbitrary units. Note that the m

(+)
0 sum rule (lower panel)

is independent of the meson momentum.
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separately. The K̄ and K spectral functions are also shown for
reference in arbitrary units.

The left-hand side of the m−1 sum rule (upper panel)
converges properly and saturates a few hundred MeV beyond
the quasiparticle peak. The antikaon part has a soft behavior as
the K̄ spectral function spreads as a consequence of the mixing
of the quasiparticle peak and the �(1405)h mode. Note that the
subthreshold P -wave Yh components, although small at low
momentum, have a visible contribution to the sum rule below
the quasiparticle peak, as a consequence of the ω−1 energy
weight in the integrand of Eq. (16). The K contribution carries
about half the weight of the saturated sum rule, as it would be
the case in the absence of interactions. The contribution, which
is mainly concentrated at the quasiparticle energy, reflects the
narrowness of the K spectral function even at normal matter
density, as no baryonic resonances in the S = +1 channel can
be excited.

We have also plotted in Fig. 1 the right-hand side of the
m−1 sum rule both for the antikaon and kaon, namely their
off-shell propagators evaluated at zero energy (modulo a minus
sign). The difference between both values indicates �K (q0 =
0, �q; ρ) 	= �K̄ (q0 = 0, �q; ρ), which reflects the violation of
crossing symmetry present in the chiral model employed for
the kaon and antikaon self-energies. Although this model
works well in the timelike region for kaon (antikaon) energies
from mK to about 1 GeV, its limitations show up for spacelike
kaons (antikaons) since their zero-mode propagators do not
coincide.

We recall that, in fact, the chiral K(K̄)N amplitudes are
dominated by the unitarized S-wave component that is built
by neglecting the explicit exchange of a meson-baryon pair in a
t-channel configuration, thus violating crossing symmetry.
This approximation plays a minor role in the S-wave am-
plitudes at energies around the K(K̄)N threshold but may
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FIG. 2. (Color online) m−1 sum rule for the
K and K̄ spectral functions at several momenta
(q = 0, 150, 450 MeV/c) and ρ = ρ0. (Upper
panel) Zero temperature. (Lower panel) T =
100 MeV. The arrows indicate the value of the
right-hand side in vacuum.
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turn relevant for the largely off-shell amplitudes explored
in the evaluation of the K(K̄) propagator at q0 = 0 MeV.
With this in mind, we may still expect the saturated value
of the left-hand side of the m−1 sum rule to provide a
constraint for the value of the zero-mode propagator appearing
on the right-hand side. This is so because, as seen in Fig. 1,
the very low energy contribution to the saturation value of
the left-hand side of the sum rule is marginal, whereas most
of the strength sets in at energies of the order of the meson
mass, where the neglected terms of the K(K̄)N amplitudes
are irrelevant. Therefore, the fact that the sum rule is well
satisfied when comparing the left-hand side with DK̄ (0,�q)
indicates that neglecting the t-channel dynamics in the K̄N

interaction is actually quite a good approximation. In fact, the
omitted mechanisms start appearing at the one-loop level and
involve the excitation of intermediate KN states in a t-channel
configuration. These KN loop contributions have shown to
be relatively weak in the dynamics of the crossed s-channel
configuration of the KN system. Conversely, the neglected
t-channel meson-baryon loop terms in the KN -scattering
amplitude involve the excitation of both S = −1, K̄N , and
πY , intermediate states, which have been shown to interact
quite strongly in the s-channel configuration present in K̄N

dynamics. It is then clear that the calculated K̄ propagator is
more accurate because the neglected terms are smaller, a fact
that is corroborated by the better fulfillment of the m−1 sum
rule in this case.

The m
(−)
0 sum rule tells us that the areas subtended by

the K and K̄ spectral functions should coincide. This is
indeed the case for the calculation considered here, as can
be seen in the middle panel of Fig. 1. We emphasize here that
the fulfillment of the m

(−)
0 sum rule for the model of kaon

interactions under analysis is far from being trivial. We recall
that, whereas one expects the K̄ and K spectral functions to
be related by the retardation property, SK̄ (−ω) = −SK (ω),
the actual calculation of the meson self-energies is done
exclusively for positive meson energies [timelike region in
the K̄(K)N scattering amplitude]. The analytical constraints
are nevertheless imposed in the self-consistent evaluation of
the scattering amplitudes and self-energies [19] through the
use of K̄ and K in-medium propagators in the form of Eq. (2),
which couples the information of the two spectral functions.
We note, for instance, that a simplified mean-field-like de-
scription of the meson self-energies by means of effective
in-medium masses, namely S(ω,�q) = δ[ω − ω∗(�q)]/2ω∗(�q)
with ω∗(�q) =

√
�q 2 + m∗2, would clearly violate the m

(−)
0 sum

rule because �m∗̄
K

(ρ) < 0 and �m∗
K (ρ) > 0.

The m
(+)
0 sum rule saturates to one independently of the

meson momentum, nuclear density or temperature, thus posing
a strong constraint on the accuracy of the calculations. It has
been thoroughly used to test the quality of the nucleon spectral
function in the nuclear many-body problem. The lower panel
in Fig. 1 shows that the calculated K and K̄ spectral functions
fulfill this sum rule to a high precision. The particle and
antiparticle parts converge to different values in general, but
the sum perfectly saturates to the required value of 1. Also note
that saturation is progressively shifted to higher energies as we
examine sum rules involving higher-order weights in energy.
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FIG. 3. (Color online) m
(+)
0 sum rule for the K and K̄ spectral

functions at several momenta (q = 0, 150, 450 MeV/c) and ρ = ρ0.
(Upper panels) Zero temperature. (Lower panels) T = 100 MeV.

Next we show in Figs. 2 and 3 the results for m−1 and m
(+)
0 ,

respectively, at normal nuclear density for different kaon mo-
menta, at zero temperature (upper panels) and T = 100 MeV
(lower panels). As the meson momentum is increased, the
saturation of the integral part of the sum rules is progressively
shifted to higher energies, following the strength of the spectral
distribution. In particular, m−1 exhibits a growing sensitivity
to the low-energy P -wave Yh modes, which are enhanced at
finite momentum. At finite temperature the K̄ spectral function
spreads considerably [19] and in particular acquires a sizable
low-energy tail from smearing of the Fermi surface, which
contributes substantially to the left-hand side of the sum rule
below the quasiparticle peak. Note also that the K contribution
softens at finite temperature and increasing momenta, as the K

in-medium decay width is basically driven by the KN thermal
phase space.

We observe that the m−1 sum rule is well satisfied
by the zero-temperature K̄ spectral function for the three
different momenta represented in the plot, which reinforces
our discussion about the model approximations elaborated
above (we have also checked the momentum dependence of
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the saturated sum rule in a wide range of momenta from 0
to 1 GeV/c with the same conclusions). At finite temperature,
however, there is no longer a good agreement for the antikaon.
This is not a failure of the model interaction but of the
calculation itself: the expression in Eq. (30) for the (dominant)
S-wave antikaon self-energy contains in fact an approximation
to the dispersive contribution, as explained in Appendix B of
Ref. [19], which is appropriate for energies close to the kaon
mass or higher. It can also be seen there that the dispersive
contributions to the kaon and antikaon self-energy practically
vanish at q0 = 0 (this is exact for the imaginary part of
the self-energy), while our approximated finite-T expression,
Eq. (30), does not satisfy this requirement. Therefore, it is
expectable that neither the kaon nor the antikaon self-energies
fulfill properly the m−1 sum rule at finite T under the current
approximations. Moreover, we observe that the discrepancy
of either contribution with the left-hand side is of the same
order of magnitude as if we had just used the free propagator
to evaluate the right-hand side. As a consequence, one may not
employ this sum rule as a way to test the interaction model,
unless a very refined finite-T calculation of the self-energy is
performed in the far off-shell, spacelike energy region.

The m
(+)
0 sum rule is fulfilled satisfactorily for the dif-

ferent momenta and the two temperatures considered. We
note, though, that convergence turns slower for increasing
momentum and finite temperatures and, in some of the cases
shown and up to the maximum energy explored, the limiting
value of one has not yet been reached.

We have checked that, for a wide range of momentum
values, the m

(−)
0 sum rule at T = 0 converges to zero with

similar precision as the q = 150 MeV/c case shown in Fig. 1.
At finite T , the agreement is slightly worse but consistent with
zero, admitting a 3% error in the calculated spectral functions.

In the case of the m
(−)
1 sum rule, the additional ω2 weight tends

to magnify the numerical inaccuracies or model deficiencies
of the spectral functions. Nevertheless, for any of the two
temperatures explored in this work, we find that the finite
value at which the m

(−)
1 sum rule saturates is compatible with

zero if one admits a 10% numerical error in our calculated
spectral function at energies around 1 GeV. Finally, we do
not evaluate the m

(+)
1 sum rule for our model calculation of

the kaon spectral functions. The reason is twofold: on the one
hand, the K(K̄) spectral function has been calculated only
up to about 1 GeV, due to limitations in the validity of the
chiral unitary amplitudes, while the m

(+)
1 sum rule carries a ω3

energy weight and thus the contribution of higher energies is
still relevant in establishing the saturation of the left-hand
side. On the other hand, the nondispersive contribution of
the self-energy, associated to the high energy limit of the
interaction and entering the right-hand side, corresponds in our
model to the tree-level K̄(K)N vertex from the meson-baryon
chiral Lagrangian. Its essentially linear energy dependence
cannot be extrapolated to high energies without introducing
hadronic form factors (and thus additional free parameters),
leaving the actual value of �∞̄

K(K) unconstrained.
The pion sum rules are discussed in the following. They

exhibit notable differences with respect to those of the kaon
propagator. To start with, there are no sum rules weighted with
even energy powers, so we shall present results on m−1, m0,
and m1. Second, the pion spectral function at intermediate mo-
menta displays well-separated collective modes, particularly
at very low energies, which can be easily tracked in the sum
rule saturation. The changes introduced by finite temperature
are also visible and worth discussing.

In Fig. 4 (left column) we show m−1 for two pion momenta,
at normal nuclear density and zero temperature. In the case of
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FIG. 4. (Color online) m−1 sum rule for the pion spectral function at q = 150, 300 MeV/c and ρ = ρ0. The left column corresponds to the
zero temperature result and the right column to T = 100 MeV. The pion spectral function is also displayed for reference in arbitrary units.
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q = 150 MeV/c most of the strength of the spectral function
is carried by the pion quasiparticle peak. However, the ph
component lies at low energies and therefore is rather enhanced
in the integral by the inverse energy weight, contributing
in more that 30% to the saturation value, whereas the pion
quasiparticle peak practically carries the remaining strength.
The �h mode is barely visible to the right-hand side of the
pion peak and contributes little at small momentum. Note the
plateau in m−1 due to the energy gap between the low-energy
part of the spectrum and the pion mode. At higher momentum
(q = 300 MeV/c), the ph and �h excitations acquire more
relevance with respect to the quasipion. The left-hand side
saturates and is in good agreement with the right-hand side,
slightly overshooting the value of the inverse pion propagator
at zero energy for increasing momentum. We understand
these tiny deviations as originating by the implementation
of the � decay width in the �h contribution, which may
lead to small violations of the analytical properties of the
pion self-energy and propagator. Essentially, the � self-energy
employed here accounts for the � width and its energy
dependence coming from its decay to a πN pair in P wave.
However, the nucleon momentum in the �h excitation is
averaged out to make the � self-energy dependent only on
the pion external four-momentum q. The fulfillment of the
m−1 sum rule therefore indicates that, up to tiny deviations
tied to these kinematical averages, accounting for the � decay
width and its energy dependence not only provides a more
realistic description of the phenomenology but additionally
complies with analyticity requirements through the sum rules.
As a test, we have also calculated m−1 with a constant �

decay width and the agreement between left-hand side and
right-hand side of the sum rule is far worse than in the present
model.

At finite temperature, the softening of the nucleon occupa-
tion number due to thermal motion causes the broadening of
the three modes, as can be seen in the right column of Fig. 4.
At a momentum value of 300 MeV/c they are rather mixed,
which removes the plateau visible at zero temperature (left
panels), and the contribution from each excitation mechanism
to the left-hand side of the sum rule can no longer be resolved.

The m0 sum rule is depicted in Fig. 5 for three values of
the pion momenta and T = 0, 100 MeV. Despite the markedly
different distribution of strength in the spectral density with
increasing momentum and temperature, the sum rule is quite
well satisfied in all cases. The deviations observed may also
be attributed to the small violations of the analytical properties
of the pion self-energy mentioned above.

Finally we show m1 for the pion propagator in Fig. 6, for
several momenta and two temperatures, T = 0 and 100 MeV.
The m1 sum rule carries a ω3 energy weight that makes it
sensitive to higher energies and thus its convergence is much
slower. Conversely, the contribution from low-energy modes
is marginal in this case. The pion self-energy analyzed here,
built from the tree-level P -wave coupling to ph and �h modes,
admits a purely dispersive representation, as it can be easily
derived from the Lindhard function. Therefore, �∞

π = 0 in our
model and the left-hand side of the sum rule is seen to slowly
converge to the squared single-particle pion energy in vacuum,
ω2

π = m2
π + �q 2.
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FIG. 5. (Color online) m0 sum rule for the pion spectral function
at several momenta, ρ = ρ0 and T = 0, 100 MeV. The pion spectral
functions are also displayed for reference in arbitrary units, labeled
as Sq with q the corresponding momentum in MeV/c. Note that this
sum rule is independent of the meson momentum.

V. SUMMARY AND OUTLOOK

In summary, we have presented a derivation of the energy-
weighted sum rules of the meson propagator in nuclear matter,
which can be applied to a wide range of scenarios such as
meson systems with a different in-medium behavior of particle
and antiparticle modes, isospin-asymmetric matter, and matter
at finite temperature. We have particularized the sum rules for
kaons and pions in cold and hot symmetric nuclear matter,
where specific models for the meson self-energy and spectral
function have been analyzed from the point of view of the
saturation of the sum rules.

The sum rules have been shown to be a useful tool to
magnify troublesome situations where certain approximations
typically done in the calculation of the scattering amplitudes
(and, thus, of the meson self-energies) may not work properly
in particular kinematical regimes. This is possible because
the sum rules explored relate the energy-weighted meson
spectral function, integrated over all energies, to the meson
propagator, evaluated at low or high energies, as well as to
model-independent quantities. For instance, thanks to visible
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FIG. 6. (Color online) m1 sum rule for the
pion spectral function at several momenta, ρ =
ρ0 and T = 0, 100 MeV. The dashed, horizontal
lines correspond to the right-hand side of the sum
rule for each momentum, ω2

π = m2
π + �q 2.

deviations in the m−1 sum rule, we have seen that violation
of crossing symmetry in the chiral unitary K(K̄)N interaction
model employed becomes relevant at timelike energies. The
m−1 sum rule is not properly fulfilled in the case of pions
either if a constant (energy-independent) � decay width is em-
ployed in the intermediate �h excitations. An oversimplified
description of medium effects on the meson single-particle
properties, such as the use of effective in-medium masses
or approximating meson spectral functions by quasiparticle
Breit-Wigner peaks—thus ignoring the role of Nh, �h, Yh,
or Y∗h components—may lead to violations of the sum rules
already at the lowest orders. We also note that, even if the
interaction model fulfilled the proper analyticity requirements,
certain sum rules may also be useful to check the accuracy of
the numerical evaluation of the meson spectral functions, as is
the case of the momentum-independent m0.

The present work can be used to study the quality of many-
body approaches and interaction models in other systems such
as light vector and axial-vector meson resonances, where
a straightforward extension of the formalism is required to
describe transverse and longitudinal modes. The study of

open- and hidden-charm meson resonances in hot and dense
matter has also received much interest lately and will be
subject of experimental investigation in heavy-ion experiments
at Facility for Antiproton and Ion Research. Present and
future calculations of the interaction of these systems with
the medium can also be scrutinized from the point of view of
EWSR’s. Work along these lines is in progress.
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