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Bimodality: A general feature of heavy ion reactions
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Recently, it has been observed that events with the same total transverse energy of light charged particles
(LCP) in the quasitarget region, E

QT
⊥12, show two quite distinct reaction scenarios in the projectile domain:

multifragmentation and residue production. This phenomenon has been dubbed “bimodality.” Using quantum
molecular dynamics calculations we demonstrate that this observation is very general. It appears in collisions of
all symmetric systems larger than Ca and at beam energies between 50A MeV and 600A MeV and is due to large
fluctuations of the impact parameter for a given E

QT
⊥12. Investigating in detail the E

QT
⊥12 bin in which both scenarios

are present, we find that neither the average fragment momenta nor the average transverse and longitudinal
energies of fragments show the behavior expected from a system in statistical equilibrium, in experiment as well
as in QMD simulations. On the contrary, the experimental as well as the theoretical results point toward a fast
process. This observation questions the conjecture that the observed bimodality is due to the coexistence of two
phases at a given temperature in finite systems.

DOI: 10.1103/PhysRevC.80.044615 PACS number(s): 24.10.Lx, 24.60.Lz, 25.70.Pq

I. INTRODUCTION

A while ago the INDRA and ALADIN collaboration
discovered [1] that, in collisions of heavy ions—Xe + Sn
and Au + Au between 60 and 100 A MeV incident energy—in
a small interval of the total transverse energy of light charged
particles (Z � 2) in the quasitarget (QT) domain, E

QT
⊥12, a

quantity which is usually considered as a good measure of the
centrality of the reaction, two distinct reaction scenarios exist.
In this E

QT
⊥12 interval, in the forward, quasiprojectile direction,

either a heavy residue is formed which emits essentially
light charged particles, or the system fragments into several
intermediate mass fragments. In the original publication this
phenomenon has been termed “bimodality” due to reasons
we will discuss later on. We stick to this name although our
interpretation of the origin of this phenomenon is different,
and we will call this interval in E

QT
⊥12 “bimodality interval.”

In the meantime, this effect has also been observed by other
groups [2].

This observation created a lot of attention due to the fact
that a couple of years before a theory was launched which
predicted that in finite size systems [3–5], in finite size systems
a first order phase transition weakens: in a finite size canonical
ensemble, which is determined by the temperature T , the
number of particles N , and a given volume V (or a given
pressure p), it becomes more like a crossover. In infinite matter
the two phases coexist only at the transition temperature.
Below the transition temperature, Tt (N,V ), the system is in
one phase and above Tt in the other phase. Because energy
fluctuations are suppressed by ∝ 1/

√
N , this statement is also

true if the large system is treated microcanonically. In finite
systems, the situation is different. In a canonical description
of the system, for a given T , N , and V , the energy fluctuations
can become large, even larger than the finite latent heat.
Therefore—for a given temperature close to Tt—for the same
values of T , N , and V , the system can either be in the gas
or in the liquid phase. This means that if the system stays in
thermal equilibrium for long, it moves back and forth from one
phase to the other. The simultaneous appearance of these two
modes (phases) for a given value of T , N , V has been called
“bimodality.” In a microcanonical description, bimodality is
not possible, because the energy of the two phases differs.

It is of course all but easy to identify these theoretical
results with observables obtained in a heavy-ion reaction.
Assuming that EQT

⊥12 is also a measure of the temperature of the
system [1], it is nevertheless tempting to identify the residue
with the liquid phase of nuclear matter, and the creation of
several medium or small size fragments with the gas phase. The
experimental observation of the above-mentioned bimodality
scenario would then just be the experimental confirmation of
the theoretically predicted bimodality.

If this were true, the observation of bimodality would solve
a longstanding problem of heavy-ion physics, the quest to
identify the reaction mechanism which leads to multifragmen-
tation. This problem arrived because many observables could
be equally well described in thermodynamical or statistical
theories [6,7] as in molecular dynamics type models [8–11],
although the underlying reaction mechanism is quite different.
The statistical models assume that the system is in statistical
equilibrium when its density reaches a fraction of normal
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nuclear matter density. Then, it suddenly freezes out and
the fragment distribution is determined by phase space at
freeze-out. In dynamical models, on the contrary, fragments
are surviving initial state correlations which have not been
destroyed by hard nucleon-nucleon collisions during the
reaction, and equilibrium is not established during the reaction.
They can be already identified very early in the reaction, when
the density is still close to nuclear matter density. A detailed
discussion of how the reaction proceeds in these models can
be found in [12].

Recently, it has been shown that the observation of bimodal-
ity alone does not allow for the identification of the reaction
mechanism. Dynamical models describe the bimodality signal
as well. In the bimodality E

QT
⊥12 interval, they also show

the presence of two different event classes, and reproduce
quantitatively the scaling properties of E

QT
⊥12 [13]. Therefore,

further studies of the bimodality interval in E
QT
⊥12 are necessary

to elucidate the reaction mechanism.
The variables T , N , and V determine the canonical ensem-

ble completely. If bimodality, in the sense of the coexistence
of the two phases at a given temperature, is at the origin of
the experimental observation, the values of the average source
velocity of both modes as well as their temperature have to be
identical.

In this article, we analyze the experimental and theoretical
events which fall in the bimodality E

QT
⊥12 interval, without

further cuts, to study the average system properties in this
interval, and to investigate why bimodality, defined as above
as the observation of two different reaction scenarios in a
narrow interval of E

QT
⊥12, is feasible even if the system has not

reached thermal equilibrium. In Sec. II, we investigate in detail
the experimental observables in the bimodality E

QT
⊥12 bin and

whether they are compatible with the assumption that there
are two phases in thermal equilibrium. This detailed study is
possible due to the very good acceptance properties of the
INDRA detector. In a second step, we investigate in Sec. III
whether bimodality is a phenomenon which occurs only in
a small range of system sizes and beam energies in which
the system hits the transition temperature, or whether it is a
more general phenomenon. Especially, the energy dependence
is of interest, because with increasing energy there is a change
in the type of matter from which fragments are formed. At
low energies, it is the participant matter (the overlapping part
of projectile and target) which forms the fragments, whereas
at energies of a couple of hundred A MeV, the fragments
are formed from spectator matter (the nonoverlapping part)
[12,15].

II. SYSTEM PROPERTIES IN THE BIMODALITY
INTERVAL OF EQT

⊥12

For the investigation of the physics in the bimodality E
QT
⊥12

interval, we follow the definitions of Ref. [1]. E
QT
⊥12 is defined

as the total transverse energy of particles with charge Z � 2
on the quasitarget side (θc.m. � 90◦), calculated in the frame
in which the momentum tensor of all fragments with charge
Z � 3 is diagonal. The diagonalization is done event by event.

We define a2 as

a2 = (Zmax1 − Zmax2)/(Zmax1 + Zmax2), (1)

where Zmax1 is the charge of the largest fragment, while Zmax2

is the charge of the second largest fragment, both observed
in the same event in the quasiprojectile (QP) hemisphere—at
polar angles θc.m. < 90◦—in the center of mass of the system.
For a more accurate extraction of a2, we reject events where
less than 70% of the charge of the projectile has been detected.
Bimodality means that there exists a narrow interval in E

QT
⊥12

in which events with large and small a2 values are observed. In
this narrow transition region, we expect two types of events:
One with one big projectile residue accompanied with some
very light fragments (large a2), and the other with two or more
similarly sized fragments (small a2). Events with intermediate
values of a2 should be rare. In [13] we have studied a2 as a
function of E

QT
⊥12 for the system Au + Au between 60A MeV

and 150A MeV incident energy that has been measured by the
INDRA-ALADIN collaboration at GSI [14]. We focus here
on the data at 60A MeV and concentrate on that experimental
bimodality interval of E

QT
⊥12 where the transition from small to

large a2 values occurs. We compare the experimental events in
this interval with filtered numerical simulations for the same
E

QT
⊥12 values. The filtering is done using a software replica of

the INDRA experimental setup.
The simulations are performed with one of the dynamical

models which has frequently been used to interpret the multi-
fragmentation observables, the quantum molecular dynamics
(QMD) approach [8,9,12]. This approach simulates the entire
heavy-ion reaction, from the initial approach of projectile
and target up to the final state, composed of fragments and
single nucleons. Here, nucleons interact by mutual density-
dependent two-body interactions and by collisions. The two-
body interaction is a parametrization of the Brückner G-matrix
supplemented by an effective Coulomb interaction. For this
work, we have used a soft equation of state. The initial
positions and momenta of the nucleons are randomly chosen
and respect the measured rms radius of the nuclei as well as
the Fermi distribution in momentum space. Collisions take
place if two nucleons come closer than r = √

σ/π , where σ

is the energy-dependent cross section for the corresponding
channel (pp or pn). The scattering angle is chosen randomly,
respecting the experimentally measured dσ/d�. Collisions
may be Pauli blocked. For details we refer to Refs. [8,9].
For the later discussion, it is important to note that, even for
a given impact parameter, two simulations are not identical,
because the initial positions and momenta of the nucleons as
well as the scattering angles are randomly chosen. It has been
shown [13] that these simulations give a bimodality signal in
the same E

QT
⊥12 bin as the experiment and that the beam energy

dependence of this transition is reproduced.

A. a2 dependence of observables

If the experimental signal, i.e., the existence of two distinct
reaction scenarios in a certain E

QT
⊥12 interval, reflects the coex-

istence of two phases of a thermally equilibrated system, the
behavior of several observables can be predicted. In this case,
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both phases must have the same source velocity in the c.m.
and the same temperature. Considering the nuclei resulting
from the decay of the projectile spectator as an ideal, classical,
noninteracting gas, the mean kinetic energy of each fragment
or nucleon in the center-of-mass frame of this gas should be
3kT /2. This has also to be true for the largest fragment,
called the projectile remnant (PR), in contradistinction to
other theoretical approaches in which the PR properties reflect
the violence of the reaction, which depends on centrality
and hence on its size. The longitudinal velocity loss and
the transverse velocity of the heaviest fragment have been
systematically studied for different projectile-target combina-
tions [16]. The value of both differs from the expectation for
a heat bath particle, and depends on the number of nucleons
the projectile has lost in the course of the interaction. This is
one of the interests to study first for the properties of Zmax1 in
the bimodality E

QT
⊥12 interval. The other is that observables of

the heaviest fragment should give a clear signal of the process
because they are the least spoiled by eventual pre-equilibrium
processes which may disturb the light particle spectra.
Figure 1 shows the transverse velocity β⊥ = v⊥/c (top) and
the longitudinal velocity, β‖ = v‖/c (middle), in the c.m. of the
system, for the heaviest fragment in the QP region as a function
a2 and for those fragments which belong to events which
fall into the bimodality interval, 12 < E

QT
⊥ 12/E0c.m. < 17.

E0c.m. is the incident energy per nucleon in the c.m. system.
The bottom panel displays the average charge of the heaviest
fragment as a function of a2. In all figures, we show the
INDRA data as points and compare the experimental results
with unfiltered (full line) and filtered (dashed line) QMD
predictions. We see that the filter changes substantially β⊥ (due
to a cutoff at small transverse velocities) and to a less extent
β‖. After filtering, the QMD calculations reproduce the trend
of the data but overpredict the transparency, i.e., underpredicts
β⊥, for small a2 events corresponding to those with a small
Zmax1. If our assumption that E

QT
⊥12 characterizes the excitation

energy and hence the temperature of the system and that the
events in the bimodality bin have that temperature at which the
system can either be in the gas or in the liquid phase, we expect
that β⊥ as well as β‖ − βsource ∝ 1/

√
mass. Here βsource is the

velocity of the bimodal system in the c.m. which should be
independent of a2 because the velocity of the bimodal system
does not depend on which mode is realized.

Consequently, this assumption does not offer the possibility
that β‖ increases with the particle mass or charge. The
experimentally observed linear increase of β‖ with the mass
of the fragment follows, however, the trend already observed
in central and semicentral Xe + Sn events at 100A MeV [19]
(where no bimodality has been observed). The average velocity
of the heaviest fragment, in events with a smaller E

QT
⊥12 than

at bimodality, follows this systematics as well. This linear
decrease of the PR velocity with decreasing mass is a very
general phenomenon which was first studied by Morrissey [16]
and complemented for higher-beam energies by Ricciardi
et al. [17], although it has not been shown yet that this
systematics is still valid for such small PR in this energy
domain. Such a linear dependence is expected if nucleons are
removed randomly from the cold projectile nucleus, under the

〈
〈

〉
〉

FIG. 1. (Color online) Average transverse velocity β⊥ = v⊥/c

(top) and β‖ = v‖/c (middle) of the QP fragment (θc.m. < 90◦) with
the largest charge, Zmax1, as well as Zmax1 (bottom) as a function of the
QP a2 for those events which fall in the bimodality interval E

QT
⊥12, see

text. We compare INDRA data (symbols) with filtered (dashed lines)
and unfiltered (full lines) QMD simulations for Au + Au collisions
at 60A MeV bombarding energy.

condition that they do not interact with the residue anymore.
This removal leads to a deceleration and an excitation of the
remnant. Thus this increase of β‖ can be understood in models
in which the heaviest fragment is not in thermal equilibrium
with the emitted particles, but finds no explanation in purely
thermal models.

In addition, we observe that the average transverse velocity
decreases with a2. In order to discuss the compatibility with
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the assumption of a canonical bimodal system, we have to
consider the unfiltered QMD events. They show an almost
constant transverse kinetic energy of 35 MeV, independent of
the fragment mass and charge, as will be discussed at the end
of Sec. II B. This value confirms the analysis of [18] and is
too large (even if one considers a radial flow, as we discuss
in the next section) to be compatible with kT : the expected
kinetic energy for fragments in a thermal heat bath has to
be smaller than the binding energy of nucleons. Hence, in
the bimodality E

QT
⊥12interval, also β⊥ is also incompatible with

the assumptions that two phases are present, both having the
same temperature.

Thus neither the mass dependence of β‖ nor that of β‖ of
the heaviest fragment Zmax1 in the bimodality E

QT
⊥12 interval

are compatible with the expectations for a finite system in
which two phases are in equilibrium. On the contrary, they
follow the systematics which we have observed for other
E

QT
⊥12 regions where no experimental signs of the presence of

two phases in thermal equilibrium, i.e., bimodality behavior,
are found. These properties can be explained in models
which are genuinely nonequilibrium and which have suc-
cessfully been applied to interpret data in many experimental
situations.

B. Particle properties in the EQT
⊥12 interval which shows

bimodality

A thermal system has to be isotropic in its rest system. The
system we study here is the ensemble of all QP particles, i.e.,

those which are emitted at angles θc.m. < 90◦. The degree of
isotropy can be studied with the help of the momentum tensor
in the rest system of the source

Qzz = 2
〈
p2

z

〉 − 〈
p2

y

〉 − 〈
p2

x

〉

〈p2〉 . (2)

pz is the momentum in the beam direction. Qzz = 0 if in the
rest system of the source the distribution is isotropic. Negative
values indicate a preferred emission in transverse direction.
Figure 2 gives an overview over Qzz of light charged particles
(Z = 1, 2) and fragments (Z � 3) in the bimodality E

QT
⊥12

interval.
The average longitudinal velocity of all quasiprojectile

nucleons in the c.m. depends on a2. In the bimodality scenario
this should not be the case. It is therefore not meaningful
to analyze all events of the bimodality E

QT
⊥12 interval in a

common rest frame. We concentrate here on the question
of whether for a given a2 the events are isotropic. This a
necessary but—as just mentioned—not a sufficient condition
for bimodality. To obtain the Qzz distribution, we adopt the
following procedure: We select events which fall into the E

QT
⊥12

interval which shows bimodality and calculate for each a2

bin the average velocity of a) all LCP (Z = 1, 2) and b) of
all fragments Z � 3 of all events which fall in this bin. In
one of the rest systems we calculate subsequently for each
event Qzz of either the fragments or the LCP. This procedure
is applied to eliminate the dependence of the velocity of the
rest system of the fragments on a2 (see Fig. 1), because we
expect isotropy only in the rest system. From top to bottom,
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FIG. 2. (Color online) Distribution of
Qzz for Au + Au events at 60A MeV
which fall in the E

QT
⊥12 bimodality bin.

We display the Qzz distribution (see text)
for light charged particles (Z = 1, 2) (top
row) in their own center of mass, and for
fragments with charge Z � 3 in their own
(middle row) and in the Z = 1, 2 c.m.
system (bottom row), as a function of
a2. The points are the mean values of
Qzz as a function of a2. From left to
right, we display unfiltered and filtered
QMD predictions, and the INDRA data,
respectively. The points mark the mean
values.
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we display the Qzz distribution of the LCP in the rest system of
the LCP, that of fragments in the rest system of the fragments,
and that of fragments in the rest system of the LCP. From left
to right we show the unfiltered, the filtered QMD predictions,
and the INDRA data, respectively. Please note that the E

QT
⊥12

interval is determined by the energy of the Z = 1, 2 particles
in the QT domain, whereas here we study the properties of
Z = 1, 2 particles in the QP domain. Thus, autocorrelations
between E

QT
⊥12 and the particles studied in the QP domain are

minimized.
We see from the top figures that the LCP in this E

QT
⊥12 interval

are preferably emitted into a transverse direction in their rest
frame (Qzz < 0). The anisotropy depends only slightly on a2.
It may be due to the fact that not only the bimodal system
but also pre-equilibrium emission contributes to the spectra.
It indicates that the origin of the Z = 1, 2 is never a pure
thermal source, neither for small a2 nor for large a2 events. The
experimental filter changes little as far as the LCP anisotropy
is concerned and the filtered QMD predictions agree quite well
with the INDRA data. In their proper rest system the fragments
are emitted preferably in the forward/backward direction. The
experimental filter brings the QMD predictions of the average
Qzz value closer to zero, in agrement with the experiment.
At very large values of a2, the emission becomes isotropic.
Such an isotropy is expected, for example, for the emission
of a light charged fragment from a compound nucleus. For
small a2 values, Qzz of the fragments in the rest system of
the LCP fluctuates around zero as expected for an isotropic
source. Thus small a2 events come closest to isotropy. For
a2 > 0.5,Qzz is close to 2. This means that in the LCP rest
system, the largest fragment is preferably emitted in the beam
direction. This observation rules out, on the other hand, the
hypothesis that the ensemble of fragments and light charged
particles at large a2 values can be considered as a pure liquid
phase. This would require that the direction of the velocity of
the largest fragment is randomly distributed in the rest system
of the liquid.

One may argue that the largest fragment is not really in
thermal equilibrium in the sense that it has not lost completely
its memory on the entrance channel, i.e., its initial velocity
direction. Such an argument cannot be put forward for the
second largest fragment. Therefore, we display in Fig. 3
the average Qzz for the second largest fragments calculated in
the rest system of those fragments. The INDRA data (symbols)
as well as the unfiltered (full line) and filtered (dashed line)
QMD events show Qzz � 0 independent of a2. The value of
Qzz ≈ −0.2 for large a2 indicates that the emission of the
second largest fragment is essentially random but still more
probable in transverse direction in the fragment rest system.
For the small a2 values we find Qzz ≈ −0.4. Again, the
second largest fragment is preferably emitted in the transverse
direction. For the interpretation, we have to combine this result
with that shown in the lower right panel of Fig. 2: In the
rest system of the fragment, the emission of all fragments is
almost isotropic. A small value of a2 means that the two biggest
fragments have about the same size. Therefore, combining
the Qzz of all fragments and of the second largest fragments
yields the following scenario: For small a2 values the fragment

FIG. 3. (Color online) Qzz for Au + Au at 60A MeV in the
E

QT
⊥12 bimodality bin calculated for the second largest charges Zmax2

of all events taken all together (around their average momentum),
as a function of a2. We compare INDRA data (symbols) with
filtered (dashed lines) and unfiltered (full lines) QMD predictions
for Au + Au collisions at 60A MeV.

with the highest charge has the largest velocity in the beam
direction, but this time the lighter fragment can balance the
momentum and therefore the total emission pattern appears to
be isotropic, although, if one looks into the detail, it is not.

Thus, only for the largest a2 values, the fragments are
isotropically distributed in their rest system as they should
be if the QP system represents the vapor or the liquid phase of
a system in thermal equilibrium. This observation for large a2

values is also compatible with the emission of a light fragment
from a compound nucleus.

Figure 4 shows the average velocity in longitudinal β‖c.m.

and transverse direction β⊥ in the reaction c.m. system as
a function of the fragment mass, for those events which
fall in the bimodality interval of E

QT
⊥12 (left) and for all

events (right). In all figures we display the INDRA data as
points and compare them to the unfiltered (full line) and
filtered (dashed line) QMD predictions. Similar to Fig. 1,
we observe also here an increase of β‖ with increasing
fragment mass. For large fragments the velocity approaches
that of the beam (β‖ = 0.179). The fragments in the selected
E

QT
⊥12 bin show—as Zmax1—an almost identical behavior to

those observed without a selection in E
QT
⊥12, and follow the

Morrissey systematics [16]. QMD simulations reproduce β‖
rather well. The transverse velocity of the heavy fragments is
small and increases with decreasing fragment mass. Such a
dependence has been observed for systems with a collective
radial velocity [28]. In such a scenario, the form of the velocity
dependence of the mass allows for the determination of the
temperature and of the radial velocity if the emitting source
is thermal with a collective radial velocity [28]. In a thermal
system, E⊥ = kT . The dotted curve, calculated according to
the formula given in Ref. [28], gives the best agreement with
the experimental data for E⊥ = 13.5 MeV. This value is too
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〈
〈

〉
〉

FIG. 4. (Color online) Aver-
age longitudinal 〈β‖〉 and average
transverse velocity 〈β⊥〉 in the re-
action center of mass system as a
function of the fragment mass. In
the left panels, we display the quan-
tities for those fragments which
belong to events in the bimodal-
ity interval of E

QT
⊥12, and in the

right panels for those of all events
without any E

QT
⊥12 cut. INDRA data

(symbols) are compared with fil-
tered (dashed lines) and unfiltered
(solid lines) QMD predictions for
Au + Au collisions at 60A MeV.
The dashed bold line is the result
of the fit of the experimental data,
using the approach of Ref. [28]

high to be compatible with the assumption of a thermalized
system. At such a temperature, the fragments would not exist
anymore.

On the contrary, the observed value of 13.5 MeV is well
described by the Goldhaber model [16,22]. It is based on the
assumption that nucleons or fragments are removed rapidly
from a cold nucleus and therefore their momentum distribution
is given by the Fermi motion. Then, the average transverse
squared momentum per nucleon of a fragment of size AF is
given by the Goldhaber formula [22]:

p2
⊥(AF ) ≈ 2

3
· 3

5
p2

F AF

AP − AF

AP − 1
, (3)

where AP (AP ) is the projectile (fragment) mass and pF

denotes the Fermi momentum. Therefore

E⊥(AF ) = p2
⊥(AF )

2AF mN

≈ 1

5

p2
F

mN

≈ 14 MeV (4)

is almost independent of the fragment size and in agreement
with the data. The QMD simulations reproduce the form and
the absolute value of β⊥(A). This is not astonishing, because, in
this model, fragments are surviving initial correlations which
preserve approximately the transverse momentum they had
initially, and therefore, the average transverse energies of
intermediate mass fragments are, independent of the impact
parameter, close to the value expected from the Goldhaber
formula. Thus, the fragment average transverse velocities are
understandable if one assumes that there is a collective radial
expansion of the system which is superimposed to an average
transverse energy given by the Goldhaber model.

Figure 5 displays the experimental average transverse
energy, E⊥, as a function of the fragment mass of QP products.
We see indeed that E⊥ in unfiltered QMD predictions is
almost independent of the fragment size. Filtering for the

experimental acceptance increases E⊥ for intermediate mass
fragments and brings the calculation closer to the experimental
observation. E‖, on the contrary, is strongly mass dependent
in the rest system of the QP. Up to A = 50, this dependence
is well reproduced by QMD predictions. Above, there are
discrepancies.

A thermal system has to be isotropic in coordinate and
momentum space, and for each degree of freedom, the average
kinetic energy of the fragments has to be E = 1

2kT in the rest
system of the source. Therefore it is meaningful to calculate
the deviation of

R = 〈β2
⊥〉

2〈(β‖ − 〈β‖〉)2〉 (5)

from 1. The INDRA data as well as the QMD predictions,
displayed in Fig. 5, show that R strongly depends on the
fragment size. Up to mass A = 40, R decreases strongly and
increases slightly at higher masses. Therefore, this specific
bimodality E

QT
⊥12 interval shows the same behavior which has

been observed in [23] for central collisions, where bimodality
does not occur. The discrepancy above A = 40 between the
experimental data and the QMD predictions disappears if
one rejects the symmetric and asymmetric fission events (by
requiring that the product of the two largest charges is smaller
than 600). Thus, these deviations come from events in which
two fragments of similar charge are observed.

III. SYSTEM SIZE DEPENDENCE OF BIMODALITY

After having established that most of the data for Au + Au
collisions at 60A MeV are quantitatively described in QMD
calculations, we study now the system size dependence of
the bimodality. Unfortunately, no data have been published so
far to verify these theoretical predictions. In order to discuss
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FIG. 5. (Color online) Twice the average longitudinal (top right)
and the transverse (top left) kinetic energy of QP products in the
QP center of mass system, as well as the ratio of both (bottom),
as a function of their mass. We compare the INDRA data with
filtered (dashed lines) and unfiltered (full lines) QMD predictions
for Au + Au collisions at 60A MeV in the bimodality E

QT
⊥12 region.

the physics, we present, in Fig. 6, a2 as a function of the
reduced E⊥12 (right) as well as a function of the reduced impact
parameter b/b0 (left). Here, E⊥12 is calculated over all particles
with charge Z = 1, 2 (QT and QP) and a2 is given for QP
products. To account for system energy and size scalings, E⊥12

is divided by the total mass of the system and by the energy per
nucleon in the center of mass. The top row shows a2 calculated
with all fragments. For the bottom row, we require that the
fragment with the largest charge, Zmax1, and that with the
second largest charge Zmax2 have both a charge larger than 2.
We start the discussion with the Au + Au reaction (top left)
for which we zoom on the narrow impact parameter interval
5 fm � b � 7 fm, where bimodality occurs. If plotted as a
function of E⊥12 for this impact parameter interval, we clearly
see the two event classes with a distinct a2 value for the same
small E⊥12 interval. Whether we limit the events to Zmax1 > 2
and Zmax2 > 2 or not does not make a difference, because there
are almost always two fragments with Z � 3. When plotted as
a function of b/b0, the bimodality structure with a sudden
jump disappears. There, the events with a small a2 value
are distributed over a broad range of impact parameters [12].
Because the fluctuations in E⊥12 for a given impact parameter
are large, some of these events appear in the same bimodality
interval in E⊥12 as the events with a large a2. This is shown in
Fig. 7 which displays the filtered INDRA E⊥12 distribution and
that of b/b0 for a given unfiltered E⊥12 in QMD simulations
of Au + Au reactions at 60A MeV. For an incident energy of
100A MeV, the distributions are similar. The bars mark the
standard deviation. We see that there is a strong correlation
between these observables. In particular, the INDRA setup
provides a mean linear response—no saturation—to E⊥12

over a large range of E⊥12 (hence to the multiplicity and to
the energy of particles). The distributions are, however, quite
broad, and hence, for a given experimentally measured E⊥12

value, the unfiltered E⊥12’s as well as the impact parameters
show large fluctuations.

Like Au + Au, the smaller Xe + Sn system (Fig. 6, top
right) exhibits two distinct maxima of a2, with a sudden jump
of the most probable value of a2 (depicted by the dashed
lines). The two event classes are also seen if the events are
plotted as a function of b/b0, and it is visible that they are both
associated with quite different impact parameters. Thus, nuclei
disintegrate in two quite distinct patterns, but they belong to
quite different impact parameters, and, hence, to quite different
reaction geometries. For the even smaller Kr + Kr system
(Fig. 6, bottom left), there is still a sudden jump of a2 as
a function of E⊥12, but the two event classes become less
distinct, the relative yield of intermediate a2 values getting
higher. This can be explained by the fact that the absolute value
of E⊥12 is reduced and hence the relative fluctuations around
the mean value increase for a given b/b0. Therefore, we find
again the existence of the two maxima in a2 for (almost) the
same value of the reduced E⊥12 if Zmax1 > 2 and Zmax2 > 2.
The impact parameter of the two event classes is, however,
quite different, the minimum of a2 is less pronounced. In
addition, events with Zmax1 > 2 and Zmax2 > 2 become rare.
The majority of events with a large a2 value are now those
in which the second largest fragment charge has Z = 2. For
such small systems, already a beam energy of 100A MeV

044615-7
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FIG. 6. (Color online) Double differential reaction cross section (linear color scale normalized to the number of events) as a function of a2

and of the reduced impact parameter b/b0 and the reduced E⊥12 (see text), respectively. The symbols show the most probable values of a2. The
dotted line is to guide the eye. In the top row of each panel, all events are accepted, in the bottom row only those with Zmax1 > 2 and Zmax2 > 2
are shown. We display Au + Au (top left), Xe + Sn (top right), Kr + Kr (bottom left), and Ca + Ca (bottom right) reactions at 100A MeV
incident energy. For Au + Au, note that a narrow selection in impact parameter (5 fm � b � 7 fm) has been applied around the bimodality
region.

makes the reaction that much more violent that in central
collisions fragments hardly survive. Finally, for the very small
system Ca + Ca (Fig. 6, bottom right), bimodality becomes
almost impossible, many intermediate values of a2 are highly
populated, because the system is too small. For the rare
events with Zmax1 > 2 and Zmax2 > 2, large values of a2 are
impossible, and therefore we cannot have two distinct maxima
anymore. The reaction is dominated by α emission from the
QP, as can be seen in the top row.

It is remarkable that, independent of the system size,
the sudden jump of the mean a2 value occurs around
E⊥12/E0c.m./(AP + AT ) ≈ 0.2, i.e., when the transverse

energy of light charged particles per nucleon is identical. This
scaling is understandable, because this quantity measures the
energy transfer in the reaction and extends the scaling we
have observed already for the beam-energy dependence of the
bimodality for the Au + Au system [1,13].

It is an important observation that nature disfavors in-
termediate a2 (a2 ≈ 0.5) values. Either a big cluster emits
small fragments or we observe multifragmentation, events in
which several intermediate mass fragments are produced. The
dominance of these two reaction scenarios is independent of
the system size. Dynamical models reproduce this observation
but it is very desirable to know whether also statistical models
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FIG. 7. (Color online) Double differential reaction cross section
(logarithmic color scale in arbitrary units), for Au + Au at 60A MeV
QMD predictions, as a function of E⊥12 divided by the kinetic energy
per nucleon in the center of mass of the reaction system for INDRA
filtered events (top) and as a function of the reduced impact parameter
b/b0 (bottom), respectively, and as a function of the unfiltered reduced
E⊥12. The symbols show the mean values of E⊥12/E0c.m. and the error
bars the rms of their distribution.

predict such a suppression of intermediate a2 events. This
would allow to elucidate whether this suppression is related to
phase space or to the nucleon-nucleon interaction.

Independent of the system size, the events with large a2

belong to other impact parameters than those with a small a2.
But E⊥12 and the impact parameter are not well correlated and
therefore, due to the fluctuations of E⊥12 for a given impact
parameter, events with very different a2 values appear in the
same E⊥12 interval. For smaller systems, the events with large
a2 are those in which an α particle is emitted from the residue.
There we see as well that events with different a2 do not belong
to the same E⊥12 interval.

IV. ENERGY DEPENDENCE OF BIMODALITY

If bimodality is a special manifestation of the general
feature that, in heavy-ion reactions, two distinct reaction

scenarios with quite different a2 values exist, it is tempting
to see whether this observation continues to higher energies.
Whereas at low energies multifragmentation happens in central
collisions, and therefore fragments are formed from the partic-
ipating nucleons, at higher energies [12], multifragmentation
happens at large impact parameters and fragments are formed
from spectator nucleons. There are not many experimental
results available which allow to study this question, especially
since there is no experiment in which simultaneously E⊥12

and all fragment charges have been measured in the target
or projectile spectator. The only experiment which allows to
address this question is the ALADIN experiment at GSI. In
this experiment, Au + Au at 600A MeV incident energy [33],
almost all fragments with Z � 2 of the projectile spectator
(PS), i.e., in the forward direction, have been measured, but
no light charged particles. Because Z = 1 particles are not
measured, EPS

⊥12cannot be extracted, and we have to conclude
the existence of bimodality indirectly. In Ref. [30], it has
been shown, however, that the inclusive (impact parameter
averaged) yield of a2 has maxima at small and large values,
separated by a minimum at around a2 = 0.5, similar to the
observations at energies around 100A MeV.

These data have also been analyzed by a statistical model
approach [31] where it has been shown that the experimental
mean values and fluctuations are well described once the
distribution of the system energy, E, has been adapted. It has,
however, not been demonstrated that this energy distribution
corresponds to that which is expected for a given temperature
of the system, as required by the bimodality assumption. In
any case, the experimental inverse slope parameters are much
larger than those of statistical model calculations [32]. These
experimental parameters are compatible with the prediction of
the Goldhaber model [Eq. (3)].

In a first step, we have to verify that QMD simulations
reproduce correctly the pattern of a2 as a function of Zbound,
the measured charge of all fragments with 2 � Z � 30 (Zb2)
or 3 � Z � 30 (Zb3) in the PS. In the ALADIN experiments,
it has been shown that Zbound is strongly correlated with the
energy deposit during the reaction [33]. In a second step,
we replace then Zbound by E⊥12 (calculated with both target
and projectile spectator particles). Because Zbound as well as
E⊥12 are considered as a good measure for the centrality of
the reaction, and more precisely of the energy deposit in the
spectator, such a replacement is meaningful. Figure 8 shows
in the two top rows a2 as a function of the bound charge in
the PS domain. On the left-hand side, we display the results
obtained with the ALADIN setup, on the right-hand side the
filtered QMD events. Filtering is not a very important issue
here, because the ALADIN setup registers the large majority
of the fragments in the PS region. a2 as a function of Zb2 and
Zb3 is shown in the top and middle panels, respectively. We see
a quite reasonable agreement between theory and experiment.
This allows us to replace in the bottom row Zbound by E⊥12.
On the right-hand side of the bottom row, we see that also
at 600A MeV bimodality can be observed. In a E⊥12 interval
around 9 GeV, we see two event classes: one with a large
and one with a small value of a2. The left-hand side of the
bottom row zooms in this E⊥12 interval. As at beam energies
around 100A MeV [12], the two event classes are separated
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FIG. 8. (Color online) a2 of the projectile spectator as a function
of Zb2 (top) and of Zb3 (middle) for Au + Au collisions at 600A MeV
[33]. On the left-hand side, we show the Aladin experimental results,
on the right-hand side the QMD predictions. The bottom row displays
the theoretical predictions of a2 as a function of E⊥12 (right) which
are enlarged around intermediate E⊥12 values (delimited by dashed
lines) in the left panel. In this latter panel, the symbols show
the most probable value of a2, and the dotted line is to guide
the eye.

by a region with a2 ≈ 0.5 which contains only a very limited
number of events.

V. CONCLUSION

The appearance of two distinct reaction scenarios, multi-
fragmentation and residue production for the same value of
E⊥12 is a very genuine phenomenon in heavy-ion collisions.
It exists over almost the whole energy range for which multi-
fragmentation has been observed, and it exists in participant
fragmentation as well as in spectator fragmentation. The fact
that physical events show either a small or a large a2 value
but almost never an intermediate a2 value is first of all
remarkable. It is also very general, and the classification of
events with the help of a2 is a good way to elucidate this
fact. Whether phase space or nuclear interactions are at the
origin of the lack of events with intermediate a2 values is still
unknown.

In the dynamical QMD model, the large impact parameter
fluctuations for a given E⊥12 are the reason that events
with small and large a2 values appear for the same value
of E⊥12. The data are in agreement with predictions of
models which assume that multifragmentation is a fast process.
QMD simulations, in which fragments are surviving initial
correlations, reproduce the large majority of the experimental
observations.

The investigation of the bimodality E⊥12 interval shows that
the majority of the events in this interval has properties which
are not compatible with the assumptions that large and small
a2 events belong to two phases which exist simultaneously
in a small interval of the temperature measured by E⊥12. We
cannot, however, exclude that a subset of the events shows the
properties expected from a statistically equilibrated system.
Investigations whether such a subset can be found have been
advanced recently [34]. It would therefore be interesting to
see whether such a subset may be a sign of true bimodality,
i.e., can be reproduced in statistical models with an energy
fluctuation expected for a system having a fixed temperature.
Of course generalized statistical ensembles can be defined
[35] assuming that in each event E, N , and V differ. It
remains to be seen how the distribution of E, N , V can be
assessed and whether such an approach is compatible with
data.
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