
PHYSICAL REVIEW C 80, 044614 (2009)

Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering
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The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of
Brueckner theory for nucleon-nucleon (NN ) effective interaction (complex G matrix) in the nuclear matter. A
new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a
realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering.
The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with
nucleon density distributions in colliding nuclei. We first analyze in detail the 16O + 16O elastic scattering at
E/A = 70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles
only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important
to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local
density have also been tested, but only the FDA prescription gives a proper description of the experimental cross
sections as well as the effect of the TBF. The effects of the three-body attraction and the ω-rearrangement term are
also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective
density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the
elastic scattering of 16O by the 12C, 28Si, and 40Ca targets at E/A = 93.9 MeV, and in the elastic scattering of
12C by the 12C target at E/A = 135 MeV with great success. The decisive effect of the TBF is clearly seen also
in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the 16O + 16O system at various
energies.
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I. INTRODUCTION

The role of the nuclear three-body force (TBF) in com-
plex nuclear systems is one of the key issues not only in
nuclear physics but also in nuclear astrophysics relevant to
high-density nuclear matter in neutron stars and supernova
explosions. It is well known that the empirical saturation point
of nuclear matter (the binding energy per nucleon E/A ≈
16 MeV at a saturation density ρ0 ≈ 0.17 fm−3) cannot be
reproduced by using only two-body nucleon-nucleon (NN )
interactions [1]. To obtain a reasonable saturation curve, it is
indispensable to take into account the additional contributions
of the TBF, which contains two parts: a three-body attraction
(TBA) and a three-body repulsion (TBR). It is important here
that the saturation curve in the high-density region is strongly
pushed upward by the TBR contribution, and, as the result, the
nuclear-matter incompressibility becomes large [2–5]. This
effect is intimately related to our problem. In Ref. [6], we
reported for the first time clear evidence of the important role of
the TBF (especially the TBR) in nucleus-nucleus elastic scat-
tering in the case of an 16O + 16O system at E/A = 70 MeV.
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Understanding nucleon-nucleus (NA) and nucleus-nucleus
(AA) interactions microscopically starting from underlying
NN interactions has been a longstanding and fundamental
subject. To solve a complicated many-body problem in nuclear
reactions, one needs to rely upon a realistic approach based on
reasonable approximations. One of the promising approaches
would be to derive the NA and AA folding potentials on
the basis of the lowest order Brueckner theory. Here, the
NNG-matrix interactions are obtained in infinite nuclear
matter and folded into NA and AA density distributions with
the local-density approximation (LDA). The Bethe-Goldstone
(B-G) equation is solved for an NN pair in medium, one of
which corresponds to an incident nucleon and the other is
under a scattering boundary condition. The obtained G-matrix
interaction is composed of real and imaginary parts, being
dependent on the incident energy and the nuclear-matter
density. As noted here, the G matrix is considered to be an
effective NN interaction in nuclear medium, into which the
short-range and tensor correlations are renormalized.

The folding-model study with the use of complex G-matrix
interactions for the NA system has a long history. Various
G-matrix interactions starting from different kinds of free-
space NN interactions were proposed and applied to the
analysis of proton-nucleus elastic scattering with more or less
successful results. However, all of the G matrices proposed so
far were derived from just the two-body force, and the effect
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of the TBF was not included nor discussed. This is partly
because the TBF contributions at densities lower than ρ0 have
been considered to be not large enough to affect NA scattering
observables. Here, one should note that the local density felt by
the incident nucleon inside the target nucleus does not exceed
ρ0 even deep inside the nucleus in usual cases.

Recently, the present authors proposed a new complex
G-matrix interaction CEG07 [7] derived from the extended
soft-core (ESC) model [8,9]. The ESC model is designed
to give a consistent description of interactions not only for
the NN system but also for nucleon-hyperon and hyperon-
hyperon systems. In this model, the TBR effect is represented
as density dependences of two-body parts which appear
by changing vector-meson masses in a density-dependent
way [9]. In contrast, the TBA part typically results from
two-pion exchange with excitation of an intermediate �

resonance, that is, the Fujita-Miyazawa diagram [10], which
gives an important contribution at low densities. Although the
saturation curve of nuclear matter can be produced reasonably
as combined contributions of the TBA and the TBR, it is
decisively important in our results that the TBR contribution
becomes more and more significant as the density increases.
The CEG07 models were first applied to the analysis of
proton-nucleus elastic scattering over a wide range of incident
energies and target nuclei with great success [7]. Although
the inclusion of the TBF effect, in general, gave rise to only
a minor change of pA elastic-scattering cross sections, as
expected from our earlier discussion, it was demonstrated that
the inclusion of the TBF effect clearly improved the fit to
the analyzing power data at forward angles in some energy
regions.

In the AA scattering system, the local density (ρ1 + ρ2)
in the projectile-target overlap region may exceed the normal
density of nuclear matter, ρ0, and could reach about twice
this value under the frozen-density approximation (FDA), as
mentioned later. The TBR contributions are remarkably large
in such high-density regions; hence, one may expect clear
evidence of a TBR effect through the calculated folding-model
potential (FMP) and the resultant elastic-scattering observ-
ables. The importance of a consistent description of nuclear
saturation properties and elastic scattering of AA systems was
first pointed out by Khoa et al. [11,12] on the basis of folding-
model analyses. They used density-dependent effective NN

interactions such as DDM3Y, BDM3Y, and CDM3Y obtained
from the density-independent effective interaction M3Y [13]
by multiplying various kinds of phenomenological density-
dependent factors by hand, the parameters of which were
chosen so as to represent various types of saturation curves in
nuclear matter. The real part of the AA potential was calculated
by the folding of these interactions with nucleon densities
of the AA system, whereas the imaginary part was treated
in a completely phenomenological way because M3Y was
composed only of a real part. They showed the importance
of using an effective interaction to be chosen to reproduce
the realistic saturation curve in nuclear matter for the proper
description of elastic scattering of AA systems. However,
their purely phenomenological density-dependent factor had
no explicit or logical relation to the TBF in the nuclear
medium.

The present paper is organized as follows. Section II
gives the expressions of the G-matrix interaction and the
double-folding model for a nucleus-nucleus potential with the
use of the complex G-matrix interactions. Our analyses for
various scattering AA systems are given in Sec. III. Here, the
importance of the TBF effect is demonstrated in the typical
case of the 16O + 16O elastic scattering at E/A = 70 MeV,
and then the analyses are performed for the elastic scattering
of 16O on the 12C, 28Si, and 40Ca targets at E/A = 93.9 MeV,
for the 12C + 12C elastic scattering at E/A = 135 MeV and
for the 16O + 16O elastic scattering at various energies. The
summary of this work is given in Sec. IV.

II. FORMALISM

A. G-matrix interaction

Let us recapture the derivation of the G-matrix interaction
given in our previous work [7]. We start from the G-matrix
equation for the nucleon pair of the moving nucleon with
momentum k and a bound nucleon with momentum k j in
symmetric nuclear matter at the Fermi momentum kF , where
the starting energy ω is given as the sum of the energy
E(k) of the propagating nucleon and a single-particle (s.p.)
energy e(kj ). The G-matrix calculations are performed with
the continuous choice for intermediate nucleon spectra. The
scattering boundary condition with iε in the denominator
leads to complex G matrices, summation of which gives the
complex s.p. potential U (k,E(k)). Then, the energy E(k) =
h̄2

2m
k2 + UR(k) is determined self-consistently, UR(k) being the

real part of U (k,E(k)).
Relative and center-of-mass momenta are given as q =

(k − k j )/2 and P = k + k j , respectively. Angular momenta
of relative-orbital, spin, and total states are denoted by L,
S, and J , respectively, and isospin is done by T . Then, the
coordinate-space G-matrix equation in a (L, S, J, T ) pair state
is represented as

uJST
LL′ (r; q) = jL(qr)δLL′

+ 4π
∑
L′′

∫
r ′2dr ′FL(r, r ′; q)V JST

L′L′′ (r ′)uJST
LL′′ (r ′; q)

FL(r, r ′; q) = 1

2π2

∫
q ′2dq ′

× Q̄(q ′, P̄ ; kF )jL(q ′r)jL(q ′r ′)

ω −
(

h̄2

m
q ′2 + h̄2

4m
P̄ 2 + UR(q̄ ′+) + UR(q̄ ′−)

) ,

(1)

where jL(qr) is a spherical Bessel function for the incident
momentum q, and uJST

LL′ (r; q) is the corresponding scattering
wave function. Q̄, P̄ , and q̄ ′

± are the angle-averaged expres-
sions for the Pauli operator Q, the center-of-mass momentum
P , and |q ′ ± 1

2 P |, respectively. The G-matrix elements and
the s.p. potentials are given as

〈q|GJST
LL |q〉 = 4π

∑
L′′

∫
r2drjL(qr)V JST

LL′′ uJST
LL′′ (r; q), (2)
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U (k,E(k); kF ) = 1

2π2

∫
q2dqZ(q; k, kF )

×
∑
LJST

1

2
(2J + 1)(2T + 1)〈q|GJST

LL |q〉,

(3)

with

Z(q; k, kF ) = 1

kq

(
k2
F − (k − 2q)2

)
. (4)

The G-matrix interaction represented as a local form in the
coordinate space can be given as

GJST
LL′ (r; kF ,E)

=
∫

q2dqZ(q; k, kF )jL′(qr)
∑

L′′ V
JST
L′L′′ (r)uJST

LL′′ (r; q)∫
q2dqZ(q; k, kF )jL′(qr)jL(qr)

, (5)

where the q dependence in the G matrix (2) is averaged
over so as to reproduce the s.p. potential (3) in the first-
order perturbation. The apparent k dependence in the right
side is attributed to the E dependence through the relation
E(k) = h̄2

2m
k2 + UR(k). The obtained interaction GJST

LL (r) is
parametrized in a three-range Gaussian form: the outer two
ranges are determined by fitting the radial form of GJST

LL (r)
in long- and intermediate-range regions, and the innermost
part is fixed so as to reproduce the (LSJT )-state contribution
of the s.p. potential U . The central and LS components of
the G-matrix interaction in the (LST ) state are given by the
adequate linear combinations of GJST

LL on J . The L dependence
is further averaged for each parity state with the statistical
weight given by the denominator of Eq. (5). Thus, we obtain
the three-Gaussian potential GST

± (r), ± being even and odd
parities. Our Gaussian-parametrized G-matrix interaction is
named CEG07. The detailed form and the parameters are given
in the Appendix.

As for the NN interaction model, we adopt the extended
soft core (ESC) model [8,9]. Though many NN interaction
models have been proposed so far, the recent models reproduce
the experimental phase shifts equally well. The G-matrix
interactions derived from these models are considered to
give rise to similar results for the nucleon-nucleus scattering
observables. A reason for adopting ESC here is in the
nuclear saturation problem. As is well known, the empirical
saturation point can be reproduced with the use of not only
the two-body NN interactions but also the three-body force
(TBF) composed of the three-body attraction (TBA) and the
three-body repulsion (TBR). The TBA is typically due to
the two-pion exchange with excitation of an intermediate �

resonance, which is the Fujita-Miyazawa diagram. We derive
the effective two-body interaction from the TBA, which is
added on our G-matrix interaction, according to the formalism
in Ref. [14]. In our calculations, the pionic form-factor mass
is taken as 420 MeV and the NN correlation effect for the
TBA is neglected. On the other hand, the origin of the TBR
is not necessarily established. In the ESC approach, the TBR
effect is included rather phenomenologically by changing the
vector-meson masses MV in the nuclear matter according to
MV (ρ) = MV exp(−αV ρ) with the parameter αV , which leads

to an effective density-dependent two-body interaction. In this
work, we take the two values of αV = 0.11 and 0.18. Now,
we obtain the saturation curves in the following three cases:
(a) with the two-body interaction only, (b) with TBA and TBR
(αV = 0.18), and (c) with TBA and TBF (αV = 0.11).

In cases (a), (b), and (c), the minimum values of saturation
curves are −17.8, −14.5, and −16.4 MeV, respectively,
at kF = 1.53, 1.33, and 1.41 fm−1. Correspondingly, the
calculated values of the incompressibility K at the normal
density are obtained as 106, 259, and 179 MeV, respectively.
As shown later, in case (c), we further add a repulsion given by
the ω-rearrangement effect, which can be taken into account
by using the renormalized s.p. potential Ũ (k,E(k); kF ) =
(1 − K̄)U (k,E(k); kF ) instead of U (k,E(k); kF ). Here, K̄ is
the averaged correlation probability [7]. In cases (a) and (b), the
derived CEG interactions were named CEG07a and CEG07b,
and the interaction (c) supplemented by the ω-rearrangement
effect as CEG07c [7].

B. Folding potential

We construct the nucleus-nucleus optical model potential
(OMP) based on the double-folding model (DFM) with the use
of the complex G-matrix interaction CEG07. The microscopic
nucleus-nucleus potential can be written as a Hartree-Fock
type potential:

UF =
∑

i∈A1,j∈A2

[〈ij |vD|ij 〉 + 〈ij |vEX|ji〉] (6)

= UD + UEX, (7)

where vD and vEX are the direct and exchange parts of the
complex G-matrix interaction. The exchange part is a nonlocal
potential in general. However, by the plane-wave representa-
tion for the NN relative motion [15,16], the exchange part can
be localized. The direct and exchange parts of the localized
potential are then written in the standard form of the DFM
potential as

UD(R) =
∫

ρ1(r1)ρ2(r2)vD(s; ρ,E/A)d r1 d r2, (8)

where s = r2 − r1 + R, and

UEX(R) =
∫

ρ1(r1, r1 + s)ρ2(r2, r2 − s)vEX(s; ρ,E/A)

× exp

[
ik(R) · s

M

]
d r1 d r2. (9)

Here, k(R) is the local momentum for nucleus-nucleus relative
motion defined by

k2(R) = 2mM

h̄2 [Ec.m. − ReUF (R) − VCoul(R)], (10)

where M = A1A2/(A1 + A2), Ec.m. is the center-of-mass
energy, E/A is the incident energy per nucleon, m is the
nucleon mass, and VCoul is the Coulomb potential. A1 and A2

are the mass numbers of the projectile and target, respectively.
The exchange part is calculated self-consistently on the basis
of the local energy approximation (LDA) through Eq. (10).
Here, the Coulomb potential VCoul is also obtained by folding
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the NN Coulomb potential with the proton density distribu-
tions of the projectile and target nuclei. The density matrix
ρ(r, r ′) is approximated in the same manner as in Ref. [17]:

ρ(r, r ′) = 3

keff
F · s

j1
(
keff
F · s

)
ρ
( r + r ′

2

)
, (11)

where keff
F is the effective Fermi momentum [18] defined by

keff
F =

(
(3π2ρ)2/3 + 5Cs[∇ρ2]

3ρ2
+ 5∇2ρ

36ρ

)1/2

, (12)

where we adopt Cs = 1/4 following Ref. [19]. The different
value of Cs = 1/16 was also suggested [19]. So, we tested
the latter value, but no significant difference from the case
with Cs = 1/4 is observed in the present nucleus-nucleus
scattering. The detailed methods for calculating UD (direct
part) and UEX (exchange part) are the same as those given in
Refs. [20] and [11], respectively.

In the present calculations, we employ the so-called frozen
density approximation (FDA) for evaluating the local density.
The prescriptions other than the FDA for evaluating the local
density in AA systems are tested in Sec. III A2. In the FDA,
the density-dependent NN interaction is assumed to feel the
local density defined as the sum of densities of colliding nuclei
evaluated at the midpoint of the interacting nucleon pair, that
is,

ρ = ρ1
(
r1 + 1

2 s
) + ρ2

(
r2 − 1

2 s
)
. (13)

The FDA has been widely used also in the standard DFM
calculations [11,12,19,21,22]. The various prescriptions of the
LDA were discussed in Refs. [19,23–25]. We will discuss in
more detail in Sec. III A2 how one should define the local
density to be used in the LDA for nucleus-nucleus elastic-
scattering systems.

III. RESULTS

Let us apply the CEG07 G-matrix interactions to nucleus-
nucleus (AA) systems through the double-folding model
(DFM). Since the imaginary part of the optical potential
for AA systems represents all excurrent flux escaping from
an elastic scattering channel through all the possible open
reaction channels, it would be difficult to completely simulate
those flux losses by the imaginary part of the G-matrix
interaction originating from the pair-scattering correlations
in the nuclear matter. So, we introduce the renormalization
factor NW phenomenologically for the imaginary part of the
FMP and define the present microscopic optical potential with
the CEG07 interaction as

Uopt(R) = V (R) + iNWW (R). (14)

Here, V and W denote the real and imaginary parts of the
original DFM potential derived from the G-matrix interaction.
We adjust the renormalization factor so as to attain optimum
fits to the experimental data for elastic-scattering cross
sections.

First, we analyze elastic scattering of the 16O + 16O system
in detail as a benchmark system for testing the interaction
model, and then we also analyze the 16O scattering by other

target nuclei as well as the 12C + 12C system. We adopt the
nucleon density of 16O calculated from the internal wave func-
tions generated by the orthogonal condition model (OCM) by
Okabe [26] based on the microscopic α + 12C cluster picture.
For other nuclei, we use the nucleon densities deduced from
the charge densities [27] extracted from electron-scattering
experiments by unfolding the charge form factor of a proton
in the standard way [28].

A. 16O + 16O elastic scattering

In this paper, we use the CEG07 G-matrix interactions
with and without the TBF effect and analyze the elastic
scattering of the 16O + 16O system to see how the TBF effect
plays an important role in AA scattering systems. We choose
elastic scattering of the 16O + 16O system for the following
reasons: 16O is one of the most stable double-magic nuclei
and has no collective-excitation state strongly coupled with
the ground state. This is important for a folding model based
on the complex G matrix, because the imaginary part of
the G matrix is expected to simulate the effect of single-
particle-like excitations of finite nuclear systems through
NN pair-scattering correlations, and the effect of coherent,
collective excitations of a finite nucleus may not be included
in the imaginary part of the G matrix. Therefore, the 16O + 16O
system is an ideal benchmark system for testing the validity of
interaction models; in fact, a number of interaction models,
either purely phenomenological [29–31] or microscopic in
various senses [11,12,21,22], have been tested for decades
on this system as a milestone to be cleared.

1. Importance of three-body force

We now analyze the 16O + 16O elastic scattering at E/A =
70 MeV in full detail, paying special attention to the roles of
the TBF in AA scattering systems.

Figure 1 shows the real and imaginary parts of the calculated
FMP for the 16O + 16O elastic scattering at E/A = 70 MeV
with the use of three types of CEG07 G-matrix interactions:
CEG07a (without the TBF), CEG07b (with the TBF), and
CEG07c (with the TBF). Here, we have used the FDA, defined
by Eq. (13), to define the local density for evaluating the
G matrix in the DFM expressions in Eqs. (8) and (9). Other
prescriptions for defining the local density will be discussed
in Sec. III A2. The effect of the TBF composed of the TBA
and the TBR is clearly seen in the real part of the FMP over
the whole range of internuclear distance, while the effect on
the imaginary part is rather small except at short distances
below 3 fm. The large difference in the real part is found to be
mainly due to the effect of the repulsive part of TBF (TBR).
Whereas the attractive part of the TBF (TBA) is found to play
only a minor role. The minor effect of the TBA will be shown
in Sec. III A3. Here, CEG07c includes the repulsive effect of
the ω-rearrangement diagram (Fig. 1 in Ref. [32]), which is
one of the higher order diagrams in the G-matrix theory. The
TBR strength in CEG07c is taken to be weaker than that in
CEG07b; CEG07c is designed so that the combined effect
of the weaker TBR and the ω-rearrangement contribution is
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FIG. 1. Real and imaginary parts of the FMP for the 16O + 16O
system at E/A = 70 MeV, obtained with the three types of CEG07
interactions.

similar to the effect of the stronger TBR in CEG07b [7]. The
detailed effects of the TBR and ω rearrangement in CEG07c
will be discussed in Sec. III A4. The rms radii and the volume
integral per nucleon pair of the real and imaginary parts of
FMPs calculated with CEG07 are shown in Table I.

TABLE I. The rms radii (Rrms) and the volume integral per
nucleon pair (J/APAT) of the real and imaginary parts of the FMPs
calculated with three types of CEG07.

System E/A CEG07 Rrms J/APAT

(MeV) (fm) (MeV fm3)

Real Imag. Real Imag.

a 4.242 4.577 −253.0 −140.9
16O + 16O 70.0 b 4.409 4.630 −203.6 −142.6

c 4.335 4.596 −199.9 −132.7

a 4.150 4.374 −219.0 −143.4
16O + 12C 93.9 b 4.376 4.419 −167.2 −146.4

c 4.271 4.397 −168.9 −135.2

a 4.625 4.844 −217.2 −138.6
16O + 28Si 93.9 b 4.862 4.888 −164.2 −141.8

c 4.750 4.866 −166.5 −131.1

a 4.891 5.106 −218.0 −137.7
16O + 40Ca 93.9 b 5.129 5.150 −164.7 −141.1

c 5.017 5.127 −167.0 −130.4

a 4.169 4.092 −173.1 −147.3
12C + 12C 135 b 4.571 4.130 −117.7 −151.5

c 4.361 4.119 −127.2 −139.0

0 10 20

10−4

10−2

100

θc.m. (deg)

dσ
/d

σ R
ut

h.

16O + 16O   elastic scattering

E/A = 70 MeV

NW = 0.8

CEG07a (w/o TBF)
CEG07b (with TBF)
CEG07c (with TBF)

FIG. 2. Rutherford ratio of the cross sections for the 16O + 16O
elastic scattering at E/A = 70 MeV calculated by the FMPs with
(CEG07b and CEG07c) and without (CEG07a) the TBF effect, which
are compared with the experimental data from Ref. [33]. The NW

value is fixed to 0.8 for all of the calculations.

We then calculate the 16O + 16O elastic-scattering cross
section at E/A = 70 MeV with the use of three types
of FMPs shown in Fig. 1. In standard DFM analyses of
elastic scattering, it is often the case that the real part of
the calculated FMP is multiplied by the renormalization
factor, whereas a completely phenomenological imaginary
potential is introduced and the parameters together with the
renormalization factor for the real FMP are determined so as
to optimize the fit to the experimental data. In the present DFM,
however, the calculated FMP itself is already complex because
of the use of the complex G matrix. The only parameter in the
present framework is the renormalization factor NW for the
imaginary part defined by Eq. (14).

The results are shown in Fig. 2. Here, we take NW to be 0.8,
so that the solid curve (with the TBF effect) gives an optimum
fit to the data.1 The solid and dashed curves with the TBF
effect well reproduce the experimental data up to backward
angles, whereas the dotted curve with CEG07a (without the
TBF) overshoots the experimental data at middle and backward
angles, reflecting the too deep strength of the real part of the
FMP. We found that no reasonable fit to the data was obtained
by the FMP with CEG07a (without the TBF) no matter how
the imaginary part of the FMP is renormalized by changing
the value of NW , as seen in Fig. 3. When we increase the NW

value so as to reduce the deviation in the large-angle region,
no calculation reproduces the proper slope of the experimental
cross sections at backward angles, and the diffraction pattern

1The CEG07 G-matrix interactions used in this work are slightly
different from those in Refs. [6,7], because of some improvements for
numerical computations and the correction for the minor error found
in the G-matrix code. This is the reason why the present value of
NW = 0.8 in the 16O + 16O scattering at E/A = 70 MeV is different
from the corresponding one NW = 1.0 in Ref. [6].
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FIG. 3. Same as Fig. 2, but for the results of CEG07a with various
renormalization factors for the imaginary part.

in the forward-angle region becomes out of phase with respect
to the experimental data. Thus, the large difference between
the solid and dotted curves in Fig. 2 clearly shows evidence
of the decisive role of the TBF on elastic scattering of the
16O + 16O system.

2. Definitions of local density

Here, we investigate the definitions of local density and
justify the use of the FDA. This is done in the case of
the DFM calculation with CEG07b. In the previous section,
the importance of the TBF effect has been demonstrated by
using the FDA of Eq. (13) to define the local densities in the
calculations of the FMPs. In this section, the validity of the
FDA is confirmed by the comparison with other prescriptions
for defining the local density within the LDA. Let us test
the following various definitions of the local density in the
calculations of the FMP with CEG07b:

ρ = ρ1 + ρ2, (15)

ρ = 1

2
(ρ1 + ρ2), (16)

ρ = √
ρ1ρ2, (17)

ρ =
{

ρ1 + ρ2 . . . (if ρ1 + ρ2 < ρ0),

ρ0 . . . (if ρ1 + ρ2 > ρ0),
(18)

where let us call the definitions given by Eqs. (15) to (18) LDA1
to LDA4, respectively. In Eq. (18), ρ0 denotes the saturation
density in the nuclear matter, that is, ρ0 ≈ 0.17 fm−3. LDA1
corresponds to the FDA mentioned before, in which the local
density so defined can reach about twice the saturation value
ρ ≈ 2ρ0 in the largely overlap region, namely, at the short
distance between the colliding nuclei. On the other hand, in
the other three definitions, LDA2, LDA3, and LDA4, the local
density does not exceed the saturation density ρ0. Let us also
call LDA4 the cutting-density approximation (CDA), which
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FIG. 4. Same as Fig. 1, but for the comparison with various LDA
prescriptions for CEG07b.

modifies the FDA so that ρ does not exceed the saturation
value ρ0.

Figure 4 shows the real and imaginary parts of the calcu-
lated FMP with CEG07b for the 16O + 16O elastic scattering
at E/A = 70 MeV in the cases of adopting the four types of
the local density. The effect of different definitions of the local
density is clearly seen in both the real and imaginary parts of
the FMP over the whole range of internuclear distance. The
FMPs obtained by LDA2 and LDA3 are found to be very deep
compared with those by LDA1 and LDA4. In the former cases,
the local densities are defined by average-type definitions:
either the geometric average (LDA2) or the arithmetic one
(LDA3) of the densities of colliding nuclei, called here
the average-density approximation (ADA). In the ADA, the
interacting nucleon pair feels lower local densities than in
the FDA, which implies that the strength of the G matrix
evaluated at such lower densities becomes stronger than that
evaluated at higher densities in the case of the FDA. In other
words, the Pauli principle as well as the TBF (particularly the
TBR) effect, which are expected to act to reduce the G-matrix
strength at the high-density region, do not play significant roles
in the ADA prescriptions; hence, the ADA leads to deeper
FMPs. On the other hand, the FMP calculated with LDA4
definition gives a deeper potential than the FMP obtained
by the use of LDA1 (namely, the FDA) in the medium- and
short-range regions where ρ1 + ρ2 exceeds ρ0, while around
the nuclear surface region, the FMPs of LDA1 and LDA4 have
almost the same strength and shape because both LDA1 and
LDA4 use the same local density, ρ1 + ρ2, in such a lower
density region. One may notice that the FMP obtained with
LDA4 is weaker than those with the ADAs (LDA2 and LDA3).
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This is partly because the nuclear density in the 16O nucleus
does not reach the saturation value, ρ0, even at the nuclear
center. Another probably more general reason for this is closely
connected to the finite-range nature of the G-matrix interaction
used.

Figure 5 compares the cross sections calculated with the
four kinds of FMPs obtained by different definitions of the
local density. The deep FMPs given by the ADA (LDA2 and
LDA3) do not reproduce the data at all. The FMP with LDA4
also fails to reproduce the data at backward angles, although
the fit to the data at forward angles is not so bad because the
tail part of the FMP with LDA4 has a reasonable strength
and shape similar to those of the FMP with the FDA. We also
confirmed that no reasonable fit to the data was obtained by the
FMPs with LDA2–4 no matter how the imaginary part of the
FMP was renormalized. A comparison between the FDA and
the ADA was also made in Ref. [19] in the FMP calculation for
the α-nucleus elastic scattering with the use of the CDM3Y6
interaction [12] having a phenomenologically parametrized
density dependence, where the FDA turned out to be a better
approximation of the overlap density.

The validity of the FDA is understood qualitatively by
considering that the colliding nuclei can overlap into each other
without the disturbance due to the Pauli principle in such a high
energy as E/A = 70 MeV. Then, the G-matrix interaction in
the high-density region over the normal density, including
the strong TBR, contributes to the folding potential. The
importance of the TBF discussed in the previous subsection
is revealed with the use of the FDA prescription, which
properly evaluates the local density at the high-density region.
This confirms the validity of the folding model method used
to probe the nuclear-matter properties at the high-density
region and, hopefully, to extract the nuclear-matter incom-
pressibility K [11,12,34] from the refractive nucleus-nucleus
scattering.
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FIG. 6. Effects of the three-body attractive force in the saturation
curves obtained by the G-matrix calculation.

3. Strength of three-body attractive force

In this section, we analyze the effect of the TBA force.
CEG07b includes the effect of the TBA in the form of
the Fujita-Miyazawa diagram. Indeed, the TBA is known
to originate from various diagrams, such as the � and
Roper excitations. In this paper, we assume that the TBA
is due only to the Fujita-Miyazawa diagram with the �

resonance, because the � resonance is known to have the
most important contribution to the TBA. On this assumption,
we investigate the effect of the TBA strength on the nuclear
matter properties as well as on the scattering cross section, by
changing the TBA cutoff parameter. In this section, we name
the three types of CEG07b with various TBA parameters as
CEG07b0, CEG07b1, and CEG07b2. CEG07b1 is the original
CEG07b itself. CEG07b0 includes no three-body attractive
force. CEG07b2 has a stronger TBA than CEG07b1; this
TBA is adapted so that the most reasonable saturation curve is
reproduced, as shown in Fig. 6.

Figure 7 compares the calculated cross sections with the
FMPs obtained by the three types of CEG07b. The effect of
the TBA force is clearly seen in the saturation curves as shown
in Fig. 6. However, this effect can be compensated for by
changing the renormalization factor NW for the imaginary
part by about 5%, as shown in Fig. 7. The role of the TBA
effect is not clearly seen for nucleus-nucleus elastic scattering,
although the � resonance (the Fujita-Miyazawa diagram) is
known to be the most important TBA effect and clearly seen
in the saturation curves in Fig. 6.

4. Effect of ω-rearrangement diagram

In this section, we investigate the effect of the ω-
rearrangement diagram for the 16O + 16O elastic scattering. To
investigate the effect of the ω-rearrangement term, two types
of CEG07c with and without the ω-rearrangement term effect
are called CEG07c1 and CEG07c2, respectively. CEG07c1 is
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FIG. 7. Same as Fig. 2, but for comparison with the effect of the
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the original CEG07c itself. Then, we test the three types of
G-matrix interaction: CEG07a, CEG07c1 and CEG07c2. In
the DFM calculations, we parametrize the calculated values of
K̄ in Ref. [7] as a function of ρ:

K̄ = 0.0898 + 0.179ρ. (19)

Figure 8 shows the comparison of the FMPs calculated with
CEG07a, CEG07c1, and CEG07c2 for the 16O + 16O system
at E/A = 70 MeV. The TBF effect is also clearly seen in
the real part of the FMP over the whole range of internuclear

−200

−100

0

0 5 10

−100

−50

0

16O + 16O folding potential

E/A = 70 MeV

CEG07a (w/o TBF)

R (fm)

V
 (

M
eV

)
W

 (
M

eV
)

real part

imaginary part

CEG07c2

CEG07c1

(w/o ω−rearrangement)

(with ω−rearrangement)

FIG. 8. Same as Fig. 1, but for the comparison with the effect of
the ω rearrangement.
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FIG. 9. Same as Fig. 2, but for the comparison with the effect of
the ω rearrangement.

distance by the comparison of CEG07a with CEG07c2, as in
the case of Fig. 1, although the repulsive contribution of the
TBF is slightly smaller than that seen in Fig. 1 when CEG07b
was used. On the other hand, the TBR effect on the imaginary
part of the FMP (the difference between the dotted and dashed
curves) is very small. The effect of the ω rearrangement is
seen in both real and imaginary parts of FMP and reduces the
strength of the FMP by about 10% at R = 0.

Figure 9 compares the cross sections calculated with the
FMPs obtained by CEG07a, CEG07c1, and CEG07c2. Here,
the renormalization factor NW is taken to be the same value 0.8
as that in the calculations with CEG07b shown in Fig. 2. The
effect of the TBF is clearly seen in the large change of cross
sections from the dotted curve to the dashed one. However, the
dashed curve with CEG07c2 cannot give a satisfactory fit to the
experimental data at the middle to backward angles because
of a slightly weaker TBR effect included in this interaction. A
further inclusion of the effect of the ω-rearrangement diagram
almost compensates for the discrepancy between the dashed
curve and the experimental data, as shown by the solid curve
in Fig. 9. This implies that some part of the TBR contribution
can be substituted by another repulsive contribution such as
the ω-rearrangement term. Because our modeling for the TBR
effect is of a phenomenological character, it is difficult to divide
strictly the repulsive effect into the real three-body repulsion
and the other correlation. CEG07c should be considered as one
possible model for the needed repulsive effect. There is little
to choose from between CEG07b and CEG07c in our present
analyses.

5. Comparison with CDM3Y6

The CDM3Y6 interaction [12] is one of the reliable and
successful effective density-dependent NN interactions used
in the DFM. CDM3Y6 has only the real part, and hence it has to
be accompanied by a phenomenological imaginary potential.
However, it would be meaningful to compare it with the real
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part of the FMP obtained by the present complex CEG07
interaction. In this comparison, we assume two models: one
uses the same imaginary potential as that obtained by the FMP
with CEG07b, which we call model A,

Uopt(R) = VCDM3Y6(R) + iNWWCEG07b(R), (20)

and another uses the imaginary potential having the same shape
as that of the real part of the FMP obtained with CDM3Y6,
which we call model B,

Uopt(R) = (1 + iNW )VCDM3Y6(R). (21)

Here, the NW value is taken to reproduce the experimental data
of elastic cross sections in each case.

The CDM3Y6 interaction has three-range Yukawa form
factors. In this paper, we have calculated the DFM potential
based on the LDA prescription as follows:

ρ = ρ1
(
r1 + 1

2 s
) + ρ2

(
r2 − 1

2 s
)
. (22)

However, it is technically difficult to evaluate the local density
at “midpoint” of the interacting nucleon pair in the projectile
and target, as long as we use the interaction having a Yukawa
form factor. For this reason, in this section, the double-folding
calculation is performed in the same manner as in Ref. [22] by
defining the local density as

ρ = ρ1(r1) + ρ2(r2), (23)

only when we calculate the direct part. In other words, the
evaluating point of the local density for the direct part is
calculated at “each point” of the interacting nucleon pair in
this section.

First, we test the difference of the evaluating point of the
local density as defined in Eqs. (22) and (23). Figure 10 shows
the difference of the calculated elastic cross sections with
respect to the evaluating point of the local density in the case
of CEG07b. The NW values for each calculation have been
taken to be the value given in the figure so as to reproduce
the elastic cross section. Both calculations reproduce well
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FIG. 10. Same as Fig. 2, but for the difference with respect to the
evaluating point of the local density in the case of CEG07b.
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FIG. 11. Same as Fig. 1, but for the comparison of CEG07b with
CDM3Y6.

the measured cross section data with the use of about 10%
different renormalization factors for the imaginary part. Thus,
we conclude that one needs not seriously care about the spatial
position of evaluating the local density in this system, as long
as we renormalize the imaginary potential strength.

Next, we compare the FMP calculated with CEG07b and
CDM3Y6, where, in both cases, the local density is evaluated
by the each-point prescription [Eq. (23)] when we calculate the
direct part. The difference of the FMPs derived from CEG07b
and CDM3Y6 is seen at the short- and middle-range parts, as
shown in Fig. 11. The real part of the FMP with CDM3Y6
is deeper than that with CEG07b by about 50 MeV at R = 0.
However, the difference appears only at the most backward
angles in the elastic cross sections, as shown in Fig. 12. The
FMP calculated with CDM3Y6 gives almost the same results in
the cross section (the dotted and dashed curves), irrespective
of the imaginary potential model used. Here, we note that
the complex G-matrix interaction CEG07 derived from the
theoretical framework gives the result similar to or better than
the phenomenological density-dependent effective interaction
CDM3Y6.

B. Analysis of 16O elastic scattering by other target nuclei

In this section, we analyze the elastic scattering of 16O by
the 12C, 28Si, and 40Ca target nuclei at E/A = 93.9 MeV with
the use of CEG07a, CEG07b, and CEG07c interactions.

Figure 13 shows the 16O elastic-scattering cross sections
for the 12C, 28Si, and 40Ca targets at E/A = 93.9 MeV. The
difference between CEG07b and CEG07c is small in all
systems, and both reproduce well the elastic cross sections
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up to the backward angles. The effect of the TBF is clearly
seen in the cross sections, as in the case of the 16O + 16O
scattering shown in Figs. 2 and 9. No reasonable fit to the data
is obtained by the FMP calculation with CEG07a (without
TBF effect), no matter how we change the value of NW , which
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FIG. 13. Rutherford ratio of the cross sections for elastic scatter-
ing of 16O by the 12C, 28Si, and 40Ca targets at E/A = 93.9 MeV,
calculated with the three types of complex G-matrix interactions,
which are compared with the experimental data from Ref. [35]. The
abscissa is the momentum transfer q defined as q = 2k sin θ

2 , where
k is the asymptotic momentum.

is also the same as in the case of the 16O target shown in
Fig. 3. For the 28Si target, the fit to the experimental data is not
necessarily perfect at large angles. This may be related to the
fact that the 28Si nucleus presents a slightly stronger absorption
(NW = 0.9) to the incident 16O nucleus compared with other
target nuclei (NW ≈ 0.75). Since the 28Si nucleus is known
to be a very deformed nucleus that shows a typical rotational
band in the excitation spectrum, it may be reasonable to expect
that additional absorption should be induced dynamically by
collective excitation of the 28Si nucleus in the collision with
16O. This kind of dynamical effect may not be represented
by the imaginary part of the G-matrix interaction evaluated
in the nuclear matter. This would be one of the reasons for
a slightly larger value of the optimum NW for the 28Si target
(NW = 0.9) than that for other targets (NW ≈ 0.75). In fact,
we have confirmed that a better fit up to the backward angles
is obtained by a coupled-channel (CC) calculation based on
the present FMP potential in the case of the 28Si target with
a smaller value of NW . The CC analyses will be reported in
forthcoming publications.

C. 12C + 12C system

In this section, we analyze elastic scattering of the 12C + 12C
system studied at E/A = 135 MeV. The 12C + 12C system is
an interesting system and the most frequently studied light
heavy-ion system.

Figures 14 and 15 show the FMPs and elastic-scattering
cross sections for the 12C + 12C system at E/A = 135 MeV,
respectively. The effect of the TBF is also clearly seen for
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FIG. 14. Real and imaginary parts of the FMP for the 12C + 12C
elastic scattering at E/A = 135 MeV, obtained with the three types
of complex G-matrix interactions.
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the 12C + 12C elastic scattering as in the other systems. The
difference between CEG07b and CEG07c is enhanced at the
inner part of the real potential compared with the 16O + 16O
case at E/A = 70 MeV, and the fit to the experimental data
for the cross sections looks apparently better for CEG07b
than CEG07c (Fig. 15). This could be related to the weaker
absorption (the optimum value of NW = 0.5) for this system
than for the other systems discussed so far, although the origin
of the weaker absorption for this system is not clear at this
stage. It is worth mentioning that a similar trend of weaker
absorption for elastic scattering relevant to the 12C nucleus
was also pointed out in a previous study [37].

D. Energy dependence

The energy dependence of the G-matrix interaction is
automatically given in the G-matrix calculation. In fact, the
energy dependence of CEG07 is found to be very reliable at
least in the energy range of E/A = 70 ∼ 135 MeV as shown
in preceding sections. Of course, the energy dependence of
the FMP is also generated by the space-exchange terms in the
folding procedure. It is difficult to judge which of the two
origins plays an important role.

In this section, we test the energy dependence of the inter-
actions for the 16O + 16O elastic scattering at various energies.
In the previous section, we saw that the difference between
CEG07b and CEG07c becomes enhanced (particularly in
the real FMP) at higher energies (E/A = 135 MeV) for the
12C + 12C case. Therefore, we expect that the difference may
become more important at higher energies. Figure 16 shows
the 16O + 16O elastic-scattering cross sections at E/A =
100, 200, 300, and 400 MeV. Here, we have fixed the NW

value to unity for simplicity because of the lack of experimental
data. At E/A = 100 MeV, the role of the TBF is clearly seen,
while the difference between CEG07b and CEG07c cannot be
seen, same as what we saw in the previous sections. However,
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FIG. 16. Rutherford ratio of the cross sections for the 16O + 16O
elastic scattering at E/A = 100, 200, 300, and 400 MeV calculated
with the three types of complex G-matrix interactions. The NW value
is fixed to 1.0 for all the calculations.

at E/A = 200 MeV, the difference of three types of CEG07
becomes small. When we go to higher energies, E/A = 300
and 400 MeV, an interesting result appears. It is easy to
distinguish among the cross sections obtained with the three
types of CEG07 at these energies. Especially, the difference
between CEG07b and CEG07c is clearly seen in the cross
sections at E/A = 400 MeV, although this difference could
not be distinguished at E/A = 70 ∼ 135 MeV shown in the
previous sections. The large difference is caused by the large
difference of the FMPs obtained with the three types of CEG07
interaction, as shown in Fig. 17. The real parts of FMP with
CEG07b and CEG07c have a difference of about 100 MeV at
R = 0, and this large difference can no longer be compensated
for by only changing the renormalization factor NW for the
imaginary potential. Here, we note that the real part of all
FMPs becomes repulsive (V > 0). The detailed survey for this
repulsive nature will be reported in forthcoming publications.

It should be noted that the real origin of the TBR is not yet
established. In our modeling, the TBR effect is represented
as a density-dependent two-body force, which is of no energy
dependence. As is well known, G matrices become similar
to the free-space T matrices with the increase of energy,
which is ensured qualitatively in the G-matrix formalism.
Then, a possible conjecture is that the TBR contributions
disappear in such an energy region, because a scattering pair
has almost no overlap with the third nucleon inside the nuclear
medium. If so, it might be likely that CEG07a reproduces
the experimental data rather than CEG07b/c in the case of
high-energy scattering. It can be said that experimental studies
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of such an energy dependence will provide a way to resolve
the origin of the TBR-like effect.

On the other hand, we have also applied the FMP with
CEG07 to the 16O + 16O elastic scattering at the energy region
lower than E/A = 70 MeV. In this paper, we show the typical
case of E/A ≈ 22 MeV(Elab = 350 MeV), where the nuclear
rainbow phenomenon is clearly seen. At this energy, we have
adopted the each-point prescription [Eq. (23)] for evaluating
the local density in the direct part, because it is found to be a
better approximation at energies lower than the midpoint one
[Eq. (22)], although their difference is small at higher energies,
as we saw in Fig. 10. The upper panel of Fig. 18 shows the
results. Although the forward-angle data are well reproduced
in the same quality as for the higher energy cases, the calculated
cross sections do not reproduce the experimental data at this
energy around the middle and backward angles. In this case,
we need to strengthen the imaginary parts of the FMPs by
setting the value of NW to be 1.8 to obtain an overall optimum
fit to the data. We have also tested the FMP with CEG07 to
the 16O + 16O elastic scattering at E/A ≈ 15, 30, and 44 MeV
(Elab = 250, 480, and 704 MeV), but all the calculated cross
sections do not reproduce the data at backward angles.

Figure 19 shows the real and imaginary parts of the FMPs
with CEG07 at E/A ≈ 22 MeV(Elab = 350 MeV). The real
parts of the FMPs with CEG07b and CEG07c are very similar
to the Kondō-A potential [29], which is one of the best
phenomenological optical potentials determined to reproduce
the rainbow scattering at this energy. They are also close to the
renormalized FMP with DDM3Y, which also reproduces the
rainbow scattering, given in Fig. 3 of Ref. [21]. This suggests
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FIG. 18. Rutherford ratio of cross sections for the 16O + 16O
elastic scattering at E/A ≈ 22 MeV (Elab = 350 MeV). Upper: cross
sections calculated with the complex FMP with CEG07a, CEG07b,
and CEG07c. The NW value is fixed to 1.8. Lower: cross sections
calculated with the real part of the FMP and the phenomenological
imaginary potential. The experimental data are from Refs. [38,39].

that the failure of the present FMP calculation at the backward
angles may be due to a defect of the imaginary part. To confirm
this, we have replaced the imaginary part of the FMP by the
following phenomenological one Wphenom. as

Uopt(R) = VCEG07(R) + iWphenom.(R), (24)

where

Wphenom.(R) = −W0f (x0) + 4Wd
df (xd)

dxd
,

f (x) = 1

1 + exp (x)
,

x0,d = (R − R0,d)/a0,d,

and the imaginary-potential parameters are optimized so as
to reproduce the experimental data. Here, we have used an
automatic potential search code ALPS [40] to search for the
best-fit values of the parameters, and they are shown in Table II.

TABLE II. Parameters for the phenomenological imaginary
potential, used in the lower panel of Fig. 18.

W0 R0 a0 Wd Rd ad

CEG07a 30.93 5.667 0.6958 14.54 4.539 0.2102
CEG07b 25.13 5.844 0.6505 12.02 4.736 0.2561
CEG07c 26.54 5.684 0.6698 9.335 4.650 0.2476
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elastic scattering at E/A ≈ 22 MeV(Elab = 350 MeV). For the
imaginary part, the three kinds of thin curves are the FMPs with the
three types of the complex G-matrix interactions and the bold curves
are the phenomenological imaginary potentials, associated with the
corresponding real FMP shown in the upper panel.

Here, we note that unlike most of the previous folding-model
analyses [11,12,19,21,25,34], no renormalization is made on
the real part. In this constraint, the calculated cross sections
by the FMPs with CEG07b and CEG07c reproduce well the
experimental data up to the most backward angles including
the Airy diffraction followed by the nuclear-rainbow bump
and the rapid falloff toward the backward angles, as shown in
the lower panel of Fig. 18. On the other hand, the calculation
with CEG07a does not reproduce the typical nuclear-rainbow
structure in this angular region. This implies that the effect
of the TBF is also clearly seen in this system, although the
phenomenological imaginary potential is used, and that the
present folding model still gives a proper account of the real
part of the FMP in this low-energy region.

Here, let us pay attention to the imaginary parts of the
potential used in Fig. 18. In the lower panel of Fig. 19, we
compared the imaginary part of the FMPs obtained by CEG07
with the phenomenological imaginary potentials used in the
lower panel of Fig. 18. The thin curves are the FMPs calculated
with CEG07 (not being renormalized) and the bold curves are
the phenomenological imaginary potentials. It is understood
that the large difference of the calculated cross sections at
large angles shown in the upper and lower panels of Fig. 18
is mainly caused by the difference of the imaginary part. The
imaginary part of the FMP around the tail part is smaller
than the phenomenological one; thus, we needed to strengthen
the imaginary part of the FMP with NW = 1.8 to reproduce
the experimental data. On the other hand, the strength of the

imaginary part of the FMP at the inner part is larger than the
phenomenological one. This would be closely related to
the fact that in the G-matrix calculation of deriving CEG07,
the Pauli-exclusive principle was evaluated by the standard
single-Fermi sphere prescription. This prescription is valid for
the calculation of the FMP for NA systems. However, for AA

systems, this prescription may not necessarily be suited for a
proper account of the Pauli-forbidden region, particularly for
the high-density region of low-energy collisions; and, in such
situations, it would be more realistic to use the double-Fermi
spheres to account for the Pauli-forbidden region as was done
in Refs. [41–43], in particular at the lower energy region, which
is one of the important future works.

IV. SUMMARY

In summary, we first analyzed the elastic scattering of
the 16O + 16O system at E/A = 70 MeV with the use of
CEG07a, CEG07b, and CEG07c interactions, where the latter
two include the effect of the TBF (TBA + TBR). The effect of
the TBF is seen clearly in the real potential, where the potential
is pushed upward remarkably by the TBR contribution in the
high-density region owing to the prescription of the frozen-
density approximation (FDA). Then, the DFM with CEG07b
and CEG07c including the TBR effect nicely reproduces the
observed 16O + 16O elastic-scattering cross sections over the
whole angular region. On the other hand, the DFM with
CEG07a derived only from the two-body interaction gives
no reasonable fit to the data no matter how the value of NW is
changed.

In addition, we have tested the validity of the FDA for the
local density approximation (LDA) prescription to confirm
the conclusion that the effect of the TBF has an important
role for AA systems. The four types of LDA prescriptions are
tested: the FDA, the averaged density approximation (ADA)
(geometric average or arithmetic one), and the cutting density
approximation (CDA). The ADA gives a too deep potential
compared with the FDA, which leads to no reasonable fit
to the experimental data. The CDA also leads to a too deep
potential compared with the FDA at the inner region, and the
calculated potential does not reproduce the data at backward
angles. The validity of the FDA confirms that the folding
model method using the complex G-matrix interaction with the
TBF evaluated up to the high-density region (ρ ≈ ρ0) is quite
useful in probing the high-density nuclear-matter properties
and, hopefully, to extract the nuclear-matter incompressibility
K [11,12,34] from the analyses of nucleus-nucleus scattering.

The effect of the �-resonance TBA that is described by the
Fujita-Miyazawa diagram has been tested. The TBA effect is
clearly seen in the saturation curves and has an important role
in satisfying the saturation point. However, the effect can be
compensated for by changing the renormalization factor NW

for the imaginary part by about 5% for the 16O + 16O elastic
scattering at E/A = 70 MeV. It is understood that the TBR-
like effect of the TBF has a decisive role in nucleus-nucleus
elastic scattering.

The effect of the ω-rearrangement term has also been tested
for the same system. CEG07c was designed to include a
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weaker TBR effect than the CEG07b, so the experimental
data are reproduced well with the additional inclusion of
the repulsive effect originating from the ω-rearrangement
term. When the ω-rearrangement term effect is switched off
from CEG07c, the effect appears in the cross sections at
the backward angles. It should be considered that CEG07c
is one of the possible models for the TBR-like repulsive
effect.

Then, the FMPs calculated with CEG07b are compared
with one of the CDM3Y interactions. The complex G-matrix
interaction CEG07 derived from the theoretical framework
gives a result that is similar to or better than that of
the phenomenological density-dependent effective interaction
CDM3Y6, although CEG07b and CDM3Y6 show a substantial
difference in the calculated real potential.

We also apply the folding model potential calculated
with CEG07a–CEG07c in the framework of the FDA for
other systems: the 16O + 12C, 16O + 28Si, and 16O + 40Ca
systems at E/A = 93.9 MeV and the 12C + 12C system at
E/A = 135 MeV. All the cross sections can be reproduced
by the calculated FMPs with CEG07b and CEG07c (with the
TBF). The FMP calculated with CEG07a (without the TBF)
cannot reproduce the data as in the case of the 16O + 16O
system. CEG07a gives a too deep FMP to reproduce the
data. The effect of the TBF is also clearly seen at FMPs
and elastic cross sections for these systems as in the case
of the 16O + 16O at E/A = 70 MeV. Then, we demonstrated
the energy dependence of CEG07 for the 16O + 16O system
at various energies. The difference between CEG07b and
CEG07c is clearly seen in the cross sections at E/A = 300
and 400 MeV, although this difference is not clearly seen at
the lower energies.

In conclusion, we have made an important step toward
establishing a microscopic model to construct reliable complex
OMP by the DFM with CEG07 for AA systems.
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APPENDIX

In this appendix, we give the parameters of the CEG07b
interaction fitted as a function of ρ to be used in the DFM
calculation. The CEG07 interactions are parametrized by the
three-range Gaussian form defined by

vST (s, ρ,E/A) =
3∑

k=1

4∑
i=1

vST
ik (E/A)ρi−1 exp

(
− s2

λ2
k

)
,

(A1)
vST is the strength for each spin-isospin component (S = 0 or
1 and T = 0 or 1) of the G-matrix interaction. Here, λ1, λ2,
and λ3 are fixed to be 0.5, 0.9, and 2.5, respectively. The pa-
rameters vST

ik (E/A) for CEG07b at E/A = 70, 80, 100, 120,
and 140 MeV are given in Tables III–VII. Here, we note that
these parameters are fitted to the numerical data of calculated
G-matrix interactions up to kF = 1.8 fm−1(ρ ≈ 0.39 fm−3).
In this paper, the direct (vD) and exchange (vEX) parts of the
G-matrix interaction are written as

vD,EX = 1
16 (±v00 + 3v01 + 3v10 ± v11), (A2)

where the upper and lower parts of the double-sign symbols
correspond to the direct (D) and exchange (EX) parts,
respectively.
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