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Event-by-event study of prompt neutrons from 239Pu(n, f )
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Employing a recently developed Monte Carlo model, we study the fission of 240Pu induced by neutrons
with energies from thermal to just below the threshold for second-chance fission. Current measurements of the
mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron
energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the
total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with
measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a
statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular
importance is the the fission spectrum, which plays a key role in determining reactor criticality. We show that
our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller
than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.
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I. INTRODUCTION

The quest for a fundamental theory of fission began with
the 1939 seminal work of Bohr and Wheeler [1], the same year
this phenomenon was discovered by Hahn and Strassmann [2]
and interpreted by Meitner and Frisch [3]. Bohr and Wheeler
used the liquid-drop model to make predictions that were
remarkably realistic given the paucity of available data. The
current theoretical descriptions of fission reflect the complexity
and richness revealed over 70 years of experimental studies,
emphasizing the multidimensional, dynamic, and microscopic
aspects. In particular, a refined version of the liquid-drop
model that includes a finite interaction range and quantum
shell corrections has formed the basis for extensive calcu-
lations of the potential-energy surfaces associated with the
multidimensional shape of fissioning nuclei (see Refs. [4,5]
and references therein). Concurrently, a program is underway
to develop a fully microscopic treatment of fission in terms of a
quantum many-body treatment of protons and neutrons subject
to an adjustable effective (in-medium) interaction [6–8].

Despite the many theoretical advances, there is not yet
a quantitative theory of fission. This is unfortunate because
nuclear fission remains important to society at large due to
its many practical applications, including energy production
and security. For example, reactors and other critical systems
demand that neutron growth be known to about the 0.1%
level for model simulations to be reliable. In such cases,
scattering experiments are insufficiently accurate, requiring
reliance on more inclusive, higher statistics integral critical
assembly experiments.

Furthermore, in the past few years efforts have been
underway to develop systems capable of detecting concealed
nuclear material. These applications place entirely different
demands on fission models by attempting to exploit specific
information carried by particles resulting from fission. Thus
there is a need for a fission description that accounts for
particle correlations and fluctuations on an event-by-event

level. Such a description, employing a model incorporating
the relevant physics with a few key parameters, compared
to the pertinent data through a statistical analysis, presents a
potentially powerful tool for bridging the gap between current
microscopic models and important fission observables and
for improving estimates of the relatively gross fission char-
acteristics important for applications. This type of approach
also provides a means of using readily measured observables
to constrain our understanding of the microscopic details of
fission.

Relatively recently, Lemaire et al. [9] implemented a Monte
Carlo simulation of fission fragment statistical decay by
sequential neutron emission for spontaneous fission of 252Cf
and thermal fission of 235U. That work demonstrated how
fission event simulations, in conjunction with experimental
data on fission neutrons and physics models of fission and
neutron emission, can be used to predict the neutron spectrum
and to validate and improve the underlying physics models.

In the present work, we have implemented a similar Monte
Carlo–based approach and applied it to calculate the sequential
neutron emission for the neutron induced fission of 240Pu.
Specifically, we have adapted the recently developed fission
event generation model FREYA [10] to calculate the production
and decay of fission fragments and used maximum-likelihood
analysis to estimate properties of the emitted fission neutrons
and their correlation coefficients. To our knowledge, such
correlations have not been extracted before for fission neutrons
in a physics-based Monte Carlo simulation. The detailed
statistical analysis presented here is essential for developing a
more quantitative understanding of fission and obtaining better
evaluations of fission data for various applications.

First, in Sec. II, we present the framework for the statistical
analysis employed for obtaining estimates of the model
parameters and the neutron observables, as well as the
correlations between the various quantities of interest. We
then discuss in Sec. III the experimental data used in this
work with a particular emphasis on experimental uncertainties.
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Subsequently, in Sec. IV, we describe the physics ingredients
of the FREYA simulations. Finally, in Sec. V we present
calculated results for the 239Pu(n,f ) neutron spectrum and
other observables for incident neutron energies, En, from 0.5
to 5.5 MeV.

II. STATISTICAL METHOD

Here we briefly describe the statistical method used for
determining model parameters and reaction observables.

There are a number of different techniques for estimating
model parameter values and although their relative merits are
being vigorously debated they often differ very little in their
actual results. Our present analysis is inspired by the general
inverse problem theory developed by Tarantola [11].

We introduce a number of model parameters {αk} (defined
in Sec. IV). Because the theory does not, a priori, specify the
parameter values, we assume that the parameter values are
uniformly distributed over a reasonable interval in parameter
space. For a specified set of parameter values {α(m)

k }, we
generate a large sample of fission events from which we
then extract the particular observables of interest, {Ci}. These
calculated values are then compared with the corresponding
experimental values, {Ei}.

Specifically, for each parameter set {α(m)
k } we calculate the

χ2 deviation of the calculated observables from their measured
values,

χ2
m ≡ χ2

{
α

(m)
k

} ≡
∑

i

(
Ci

{
α

(m)
k

} − Ei

)2

σ 2
i

. (1)

Here {σi} are the uncertainties in the experimental values.
Division by these quantities ensures that well-measured
observables carry more weight than those that are poorly
measured.

The key feature of the method [11] is that a likelihood
is assigned to each particular set m of model parameter
values based on how well the corresponding model calculation
reproduces the experimental results,

wm ≡ w
{
α

(m)
k

} ∝ e− 1
2 χ2{α(m)

k }. (2)

This quantity is then taken as the relative probability that
those parameter values are the “correct” ones. In this manner,
one may define a probability density in the space of model
parameters, P {αk} ≡ w{αk}/W , where W ≡ ∑

m wm is the
sum of all the weights.

Once the probability density of model parameter values
has been obtained, their corresponding statistical distribution
of the observables can readily be calculated. Thus the best
estimate for the model parameter values, {α̃k}, is given by the
likelihood-weighted average,

α̃k ≡≺αk � ≡ 1

W

∑
m

wmα
(m)
k ≈ α0

k . (3)

The last relation indicates that the best estimate is approxi-
mately equal to the most likely value α0

k , i.e., the value having
the largest likelihood. The covariances among the parameter

values are similiarily calculated,

σ̃kk′ ≡≺ (αk − α̃k)(αk′ − α̃k′)� . (4)

The diagonal elements, σ̃kk = σ̃ 2
k , are the usual variances with

σ̃k the standard deviations of the parameter values which
represent the squares of the uncertainties on the values of the
individual model parameter αk . The off-diagonal elements give
the covariances between two model parameters. It is often more
instructive to employ the associated correlation coefficients,
Ckk′ ≡ σ̃kk′/[σ̃kσ̃k′].

An analogous procedure can be carried out to obtain best
estimates for the various calculated quantities, i.e., for the
observables {Ci}. Thus, if C(m)

i ≡ Ci{α(m)
k } denotes the value of

Ci calculated with the particular parameter values {α(m)
k }, then

the best estimate for the observable Ci is given by

C̃i ≡≺Ci �= 1

W

∑
m

wmC(m)
i ≈ Ci

{
α0

k

}
. (5)

The last relation expresses the fact that the best estimate is
approximately equal to the most likely result, i.e., the result
obtained with the most likely parameter values.

Covariances between different observables, {Ci}, are calcu-
lated as

σ̃ij ≡≺ (Ci − C̃i)(Cj − C̃j )� . (6)

The diagonal elements are the squares of the standard devia-
tions, {σ̃i}, of the calculated values {Ci} resulting from uncer-
tainties in the model parameter values. Here Cij ≡ σ̃ij /[σ̃i σ̃j ]
are the correlation coefficients between the observables
Ci and Cj .

In principle, the best estimate for the observables {Ci} is
neither that resulting from using the most likely parameter
values {α0

k } nor that calculated with the best estimate of the
model parameters, {α̃k}. In our applications the distinction
between the different estimates is mostly one of principle be-
cause the different estimates yield practically identical results.
We shall generally adopt the observable values calculated with
the optimal parameter values, {α0

k }, as our estimate while the
associated uncertainties and correlations will be obtained on
the basis of the entire ensemble, as expressed in Eq. (6).

III. EXPERIMENTAL DATA

We discuss here the experimental data used in our study.

A. Mean neutron multiplicity

The mean number of prompt neutrons emitted following
neutron-induced fission of 239Pu has been measured in a
number of experiments [13–17] and was reviewed by Fort
et al. [18]. Figure 1 shows a selection of this data as well
as the associated ENDF/B-VII evaluation [12]. We employ
the ENDF evaluation as an approximate average of the
experimental numbers. The ENDF database does not provide
a corresponding uncertainty on the evaluation itself. However,
the uncertainty in the ν data [13–17] is typically 0.5–1%.
Furthermore, a quadratic fit to the energy dependence of
the ENDF evaluation reproduces ν(En) very well with the
residuals scattered about the fit with a standard deviation
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FIG. 1. (Color online) The evaluated 239Pu ENDF/B-VII data [12]
for the average prompt neutron multiplicity ν as a function of the
incoming neutron energy En, together with the experimental data
from Refs. [13–17].

of approximately 0.5%. Therefore, we have adopted a 0.5%
uncertainty on ν in our analysis.

B. Prompt neutron spectrum

Our statistical analysis will also incorporate the mea-
sured prompt neutron spectrum [19–25] as given in the
EXFOR/CSISRS database. The Aleksandrova [22] and Staples
[25] data (for En <∼ 9 MeV only) are included in the database
without uncertainties. To calculate the χ2 values comparing
model calculations to these data, we have assigned them a
5% uncertainty. This 5% uncertainty is comparable to the
typical uncertainties associated with the other spectral data
above 1 MeV employed in our analysis. While we have likely
underestimated the real uncertainty on these sets, we have
checked that removing the Alexandrova data from our analysis
does not significantly change the results. The various data sets
are shown in Fig. 2. The bulk of the data are obtained for low

incident neutron energies, En <∼ 0.5 MeV. The remaining data
have been taken by Staples et al.. [25] at En = 0.5, 1.5, 2.5,
and 3.5 MeV.

The data in the left panel of Fig. 2 were taken for incident
energies below 0.5 MeV and are not absolutely normalized. To
compare the data sets with each other and with our calculated
spectra, we normalize all data sets to unity (while preserving
the spectral shapes). For this purpose, we fit the observed
energy spectra to a Watt spectrum,

dN

dE
= N0 e−E/a sinh

√
2E/b, (7)

where the normalization N0 is determined by demanding that
the integral over E yield unity. Table I lists, for each data set,
the number of data points, the minimum and maximum neutron
energies observed, the Watt parameters a and b obtained by the
fitting procedure, and the associated minimum χ2 per degree of
freedom. The value of a is ≈ 1 MeV within the uncertainties of
the fits for all but the Aleksandrova sets where a ≈ 0.91 MeV.
The value of b is 0.50–0.56 MeV in all cases.

The data on the neutron spectra cover a wide energy range,
0.1 < E < 14 MeV. In the lowest E range, E <∼ 0.5 MeV, the
neutron yields generally increase with E, reaching a maximum
somewhere between 0.5 and 1 MeV, and decreasing again
above 1 MeV. There is significant disagreement between the
data sets in this energy region. In particular, the data of Belov
et al. [20], Werle et al. [26], and Abramson et al. [23] have
relatively large uncertainties and include points noticeably
higher than the remaining data. Curiously, the peak of the En =
0.5 MeV spectrum from Staples et al. [25] is significantly
narrower than those of the other data sets. At higher outgoing
energies, E >∼ 2 MeV, all the data sets closely follow each
other, except for those from Aleksandrova et al. [22] which
are systematically lower. Indeed, the Aleksandrova sets are
rather poorly represented by the Watt fits, having the largest
χ2 per degree of freedom; see Table I.

Some of the discrepancies between the data sets may be
due to the incompleteness of the individual sets in parts
of the energy range. For example, the Aleksandrova [22]
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FIG. 2. (Color online) The measured prompt neutron energy spectra, normalized to unity, as a function of outgoing neutron energy for low
incident energies from Refs. [19–27] (a) and for a wider range of incident energies from Ref. [25] (b).
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TABLE I. For each data set is listed the number of points N , the minimum and maximum
measured outgoing neutron energies, the fitted Watt parameters a and b, and the associated χ2

per degree of freedom.

Data set N Emin (MeV) Emax (MeV) a (MeV) b (MeV) χ 2/N

Abramson [23] 95 0.55 14.253 1.042 0.5294 2.073
Aleksandrova v.1 [22] 54 1.503 11.128 0.914 0.5033 13.474
Aleksandrova v.2 [22] 19 1.5 11 0.917 0.5033 14.666
Belov [20] 18 0.3 7 0.991 0.5299 0.868
Conde [19] 13 0.3 7.5 0.975 0.5365 1.121
Knitter [21] 183 0.28 13.87 1.030 0.5040 1.529
Nefedov [24] 65 0.139 7.15 1.023 0.5053 0.765
Starostov [27] 65 3.007 11.2 0.995 0.5288 3.890
Werle [26] 79 0.104 9.5 1.035 0.5263 4.244
Staples (0.5 MeV) [25] 68 0.615 16 1.026 0.5005 4.067
Staples (1.5 MeV) [25] 59 1.7 15.2 1.009 0.5050 8.137
Staples (2.5 MeV) [25] 51 2.77 14.4 1.028 0.5025 4.018
Staples (3.5 MeV) [25] 38 4.07 13.8 1.035 0.5025 6.250

and Starostov [27] sets are available only for E above 1.5
and 3 MeV, respectively, so the Watt fits may match the
high-energy tail of the spectrum but cannot represent the
peak region and below. Similarly, sets that cover the region
E < 7 MeV may not give as good fits to the high-energy part
of the spectrum. When En � 1.5 MeV, the minimum outgoing
energy E measured by Staples et al. [25] (shown in the right
panel of Fig. 2) is always greater than En. Thus these data
sets do not provide much information on the softer part of the
spectrum and the back extrapolation by means of the Watt form
is somewhat unreliable because the measured hard spectra do
in fact not fit a Watt shape very well, as reflected by the large
values of χ2 in Table I.

C. Fission fragment energies

Several measurements of the total kinetic energy (TKE)
of the two fission fragments can be found in the literature.
Figure 3 shows the principal measurements of the mean TKE
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FIG. 3. (Color online) The average TKE as a function of the heavy
fragment mass AH from Refs. [28–30].

as a function of the mass number of the heavy fragment, AH ,
which were made by Wagemans et al. [28], Nishio et al. [29],
and Tsuchiya et al. [30]. (The mass number of the heavy
fragment is found by simultaneously measuring the velocities
and energies of both fragments [29]. No experimental uncer-
tainties are given for these results, neither for the mass number
nor for the reported TKE.) The data exhibit a significant dip
near symmetry and fall off steadily for large asymmetries,
resulting in a maximum at AH ≈ 133. The different data
sets generally agree well for large AH but they exhibit a
significant spread near symmetry. Furthermore, Ref. [29] also
provides the full-width at half-maximum (FWHM) of the TKE
distribution at selected values of AH . These also decrease at
large AH , reflecting the fact that the TKE spectrum softens,
presumably because the mutual Coulomb repulsion between
the two nascent fragments decreases with larger asymmetry.

IV. GENERATION OF FISSION EVENTS

We have adapted the recently developed fission model
FREYA [10] for the present purpose of calculating the neutron
spectrum in terms of a set of well-defined model parameters.
Because this is the first practical application of FREYA, we
describe its main physics ingredients below.

The code follows the temporal sequence of individual fis-
sion events from the initial excited fissionable nucleus, 240Pu∗

in the present case, through a scission configuration of the
two nascent fragments, to the subsequent neutron evaporation
from the fully accelerated fragments. The competition between
fission and neutron emission from the fissioning nucleus
(second-chance fission) has not yet been implemented in the
code. Consequently, we restrict our discussion to energies
below 5.5 MeV.

A. Fission mass and charge partition

The fission process is initiated when a neutron with a
specified initial energy En is absorbed by a fissile nucleus
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to form a compound nucleus AZ with a certain excitation
energy. The compound nucleus subsequently splits into a
heavy fragment AHZH and a complementary light fragment
ALZL. In its present early form, FREYA selects the mass and
charge partitions on the basis of existing experimental data.
For the present study, we use fits to the thermal and fast
239Pu(n,f ) fission product mass yields measured by England
and Rider [31] in combination with the charge distributions
obtained by Reisdorf et al. [32].

The fits assume that the mass product yields Y (Ap) exhibit
three distinct fission modes that can be represented in terms of
suitable Gaussians,

Y (Ap) = S1(Ap) + S2(Ap) + SL(Ap). (8)

The first two terms result from asymmetric fission modes
associated with the spherical shell closure at N = 82 and the
deformed shell closure at N = 88, respectively, while the last
term results from a symmetric, so-called superlong, mode that
is relatively insignificant [33]. The specific forms of these
terms are

Si = Ni√
2πσi

[
e−(A−Ā−Di )2/2σ 2

i + e−(A−Ā+Di )2/2σ 2
i

]
(9)

for i = 1, 2 and

SL = NL√
2πσL

e−(A−Ā)2/2σ 2
L . (10)

Here Ā = 1
2 (A0 − ν̄), where A0 = 240 is the mass number of

the fissioning nucleus and ν is the average total multiplicity
of evaporated neutrons. (While there exist more detailed data
for, e.g., 235U(n,f ) that give the yields as a function of both
mass and total kinetic energy, Y (Ap, TKE), for several values
of En [34], such data are not yet available for Pu.)

The values of the parameters in the fits to Y (Ap) are given
in Table II for either thermal or fast fission. The normalization
is chosen such that

∑
A Y (A) = 2 because each event leads

to two products. Consequently we have 2N1 + 2N2 + NL =
2, apart from a negligible correction because Ap is discrete
quantity bounded both from below and above. The symmetric
superlong component contributes only 0.1–0.2% of the yield.

While these fits are to the fission product yields, the FREYA
simulation requires fission fragment yields, i.e., the probability
distribution for obtaining a given mass partition at scission,

TABLE II. The fit parameters of the
three fission modes for thermal and fast
neutron-induced fission on 239Pu.

Parameter Thermal Fast

Ā 118.5 117.5
N1 0.7574 0.7355
D1 20.81 20.96
σ1 5.626 5.711
N2 0.2417 0.2623
D2 14.95 15.14
σ2 2.546 2.627
NL 0.0018 0.0044
σL 1.824 2.511
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FIG. 4. (Color online) The fission product yield as a function of
product mass for thermal fission. The data are from Ref. [31] while
the curves are a five-Gaussian fit to the data.

before neutron evaporation has begun. We take Ā ≈ 1
2A0 but

keep the displacements Di and the widths σi unchanged. We
use the thermal fits for En < 1 MeV and the fast fits for
1 < En < 5.5 MeV, the highest value of En considered here.
The change in the fit parameter values with incident neutron
energy should, of course, be more continuous than we have
implemented here but the change is most important in areas
where the yields are low: the tails of the Gaussians where
fission is most asymmetric and in the case of symmetric fission.
At even higher energies, symmetric fission (the SL component)
grows increasingly important, filling in the dip at symmetry.
The width σ2 also increases, broadening the asymmetric tails.

The resulting fits are compared to the data in Figs. 4 and 5.
The agreement with the tabulated percentage yields is quite
good, especially in the regions where the yields are highest and
that thus contribute the greatest number of events. Equation (8)
does not perfectly describe the tails at high and low fragment
mass. We have also tried a fit with five independent Gaussians,
e.g., allowing Ni,Di , and σi to vary independently on the low
and high sides of A and found that the fit does not significantly
improve as a result. We note also that the width of the SL

component is not as large as found in other actinides where
the yields have been decomposed in a similar fashion [34].

Once the Gaussian fit has been fixed, it is straightforward
to make a statistical selection of the fragment mass number
Af . The mass number of the partner fragment is then readily
determined because we assume AL + AH = A0.

The fragment charge, Zf , is selected subsequently. For this
we follow Ref. [32] and employ a Gaussian form,

PAf
(Zf ) ∝ e−(Zf −Z̄f (Af ))2/2σ 2

Z (11)

with the condition that |Zf − Z̄f (Af )| � 5σZ . The centroid is
determined by requiring that the fragments have, on average,
the same charge-to-mass ratio as the fissioning nucleus,
Z̄f (Af ) = Af Z0/A0. The dispersion is the measured value,
σZ = 0.5 [32]. The charge of the complementary fragment
then follows using ZL + ZH = Z0.
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FIG. 5. (Color online) Same as Fig. 4 but for fast-neutron-induced
fission.

B. Fragment energies

Once the partition of the total mass and charge among the
two fragments has been determined, the Q value associated
with that particular channel follows as the difference between
the mass of the excited compound nucleus, 240Pu∗, and ground-
state masses of the two fragments,

QLH = M(240Pu∗) − ML − MH. (12)

FREYA takes the required nuclear ground-state masses from
the compilation by Audi et al. [35], supplemented by the
calculated masses of Möller et al. [36] where no data are
available. The QLH value for the selected fission channel is
then divided up between the total kinetic energy (TKE) and
the total excitation energy (TXE) of the two fragments. The
specific procedure employed is described below.

First, the average value of TKE is determined on the basis of
the Coulomb potential between the two fragments at scission,

TKE = e2 ZLZH

cL + cH + dLH

. (13)

In the scission configuration, the two nascent fragments are
assumed to have spheroidal shapes and be positioned coaxially
with a tip separation of dLH . The associated major axes are ci =
r0A

1/3
i /[1 − 2

3ε(Zi,Ai)] with r0 = 1.2 fm. We use the values
for the spheroidal deformation parameter ε(Zi,Ai) calculated
in Ref. [36] that includes shell effects. The denominator of
Eq. (13) is thus the distance between the centers of the two
fragments and the above expression represents the monopole-
monopole term of the mutual Coulomb interaction energy.

The tip separations {dLH } are important parameters in the
model because they determine the (average) fragment kinetic
energies and hence, by energy conservation, also the total
fragment excitation that is available for neutron emission. Thus
the neutron emission is quite sensitive to the specified values
of {dLH } and they deserve careful consideration. Furthermore,
because the TKE is closely related to the Coulomb potential at
scission, these parameters contain valuable information about
the scission configurations.
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FIG. 6. (Color online) The measured average TKE as a function
of the mass number of the heavy fragment [28–30] compared to
FREYA calculations with a constant tip separation of d0 = 4.05R fm
and the average distance extracted from Fig. 7.

Figure 6 shows the mean total fragment kinetic energy as
a function of mass number of the heavy fragment as obtained
by using a common tip separation dLH = d0 for all fission
channels. A comparison to the thermal neutron data [28–30]
shows significant discrepancies near symmetry where the
calculated TKE exhibit an enhancement, whereas the data have
a dip.

To account for the dependence of the tip separation on
the mass partition, we took the average of the data sets
shown in Fig. 6 and extracted the average tip separations for
thermal neutrons, dLH (Ethermal), shown in Fig. 7, assuming that
the two fragments have the same charge-to-mass ratio. Near
symmetric fission, dLH is large, 7–8 fm at AH = 120, with a
steep drop to less than 4 fm for AH � 132. Near symmetry,
the plutonium fission fragments are midshell nuclei subject
to strong deformation. Thus the scission configuration will
contain significant deformation energy and a correspondingly
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FIG. 7. (Color online) The tip separation dLH fitted to the TKE
values measured at thermal energies [28–30], with the deformation
radii extracted from the mass model of Ref. [36].
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large distance between centers, resulting in low TKE. At AH =
132, the heavy fragment is close to the doubly magic closed
shell with ZH = 50, NH = 82 and is resistant to distortions
away from its spherical shape. However, the complementary
light fragment is far from a closed shell and is significantly
deformed, having thus a large value of cL that then results in a
small tip separation dLH and a large TKE. The passage of the
heavy fragment mass through the doubly magic region results
in the dip in calculated TKE around AH ∼ 130; see Fig. 6.

The TKE values shown in Fig. 6 were obtained in experi-
ments with very low energy (thermal) neutrons. Unfortunately,
there are no other higher-energy incident neutron data to
determine how TKE(AH ) evolves with energy. Thus, at
incident energies where En > Ethermal, we use tip separations
obtained by scaling dLH (Ethermal),

dLH (En) = s(En)dLH (Ethermal), (14)

and use the common scaling factor s(En) as one of the
adjustable model parameters in our fits to the neutron spectra.
The average neutron multiplicity is very sensitive to this scale
factor that, as we shall show, is greater than but very close to
unity for the entire energy range studied.

As shown in Fig. 6, the extracted average tip separations,
dLH (Ethermal), lead to a very good agreement with the TKE data
except near the AH = 132 closed shell. Because dLH (Ethermal)
is obtained from Eq. (13) for a given AH assuming an average
ZH , it cannot account for the fluctuations in ZH in the
Monte Carlo method, larger near the closed shell where the
deformation depends strongly on ZH and AH . With this means
of fixing dLH (Ethermal), the TKE is no longer overestimated
near symmetry, leading to a better approximation of the
individual fragment kinetic energy as well as the neutron
multiplicity as a function of fragment mass, overestimated
and underestimated, respectively, with dLH = d0, as shown in
Figs. 8 and 9. The variable dLH (En) also correctly produces
the dip in the single fragment kinetic energy shown in Fig. 8.
The small dips in the fragment kinetic energy at A = 110 and
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FIG. 8. (Color online) The average fragment kinetic energy as a
function of fragment mass from Refs. [29,30] compared to FREYA

calculations with a constant tip separation of d0 = 4.05 fm and the
average distance extracted from Fig. 7.
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FIG. 9. (Color online) The average neutron multiplicity as a
function of the fragment mass from Refs. [29,30,37] compared to
FREYA calculations with a constant tip separation of d0 = 4.05 fm
and the average distance extracted from Fig. 7.

130 correspond to the dip at AH ∼ 130 near the closed shell
in Fig. 6.

The overestimate of the total fragment kinetic energy with
dLH = d0 leaves insufficient excitation energy available for
neutron evaporation near symmetry, resulting in the near
absence of neutron emission in Fig. 9 in this case. However,
with dLH (Ethermal) from Fig. 7, there is a peak in the neutron
emission near symmetry, followed by a drop for A > 120,
resulting in the characteristic sawtooth shape of ν(A). The
decrease in KE for these values of A gives small peaks in
the neutron multiplicity at the same values of A. Interestingly
enough, the calculations with both dLH = d0 and dLH (En)
give the same ν even though ν(Af ) is very different in the
two cases. It is easy to see why this is true by looking at
Figs. 4 and 9 together. Symmetric fission does not contribute
significantly to the total yield, Y (Af ). Most of the fragment
yield is around AL ∼ 100, AH ∼ 140. The variable dLH (En)
gives more neutrons for symmetric fission and in regions of
high AH (low AL) with lower yields and fewer neutrons where
Y (Af ) is large to obtain the same ν as dLH = d0 where the
neutrons from symmetric fission are effectively absent.

Once the average total fragment kinetic energy has been
determined, the average combined excitation energy in the
two fragments follows automatically by energy conservation,

QLH − TKE = TXE = E
∗
L + E

∗
H . (15)

The last relation indicates that the total excitation energy is
partitioned between the two fragments. The variation of the
total mean excitation energy with fragment mass is similar to
that of ν(A) in Fig. 9.

FREYA assumes that the excitation energy is partitioned
statistically, as it would be if the two fragments were in
mutual thermal equilibrium. Consequently, TXE is divided
in proportion to the heat capacities of the nascent fragments,

E
∗
i = ãi

ãL + ãH

TXE (16)
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where ãi is the level-density parameter for fragment i. To
take account of the microscopic structure of the individual
fragments as well as any possible energy dependence, FREYA
uses the functional form due to Kawano et al. [38],

ãi(E
∗
i ) = Ai

e0

[
1 + δWi

Ui

(1 − e−γUi )

]
(17)

where Ui = E∗
i − 	i and γ = 0.05 [9]. The pairing energy of

the fragment, 	i , and its shell correction, δWi are tabulated
in Ref. [38] based on the mass formula of Koura et al. [39].
Although FREYA uses the default value e0 = 7.25 MeV [10],
we wish to make this value adjustable, taking

e0 = (7.25 MeV)a (18)

and treating the common factor a as a model parameter. We
note that if the shell corrections are negligible, δW ≈ 0, then
this renormalization is immaterial and the excitation energy
will be shared according to mass, Ē∗

i ∝ Ai .
The relationship between excitation energy E∗

i and the
temperature Ti is given by

E∗
i = ãiT

2
i (19)

so that when the total excitation energy is shared according
to the level-density parameters ãi then the two fragment
temperatures are equal, TL = TH .

While the equal temperature assumption is a reasonably
good first approximation, it may be inadequate for obtaining
a detailed description of prompt neutron emission. Therefore
we redistribute the excitation energies of the fragments,

Ẽ∗
L = xĒ∗

L, Ẽ∗
H = TKE − Ẽ∗

L (20)

and treat x as an adjustable model parameter. The data indicate
that the light fragments acquire more than their “fair share”
of the energy, thus we expect that our statistical analysis will
favor x > 1.

After the mean excitation energies have been assigned,
FREYA considers the effect of thermal fluctuations in the
partitioning of the excitation energy. For this task, FREYA
assumes that the fluctuation in the excitation energy of a
nucleus is σ 2

E = 2Ē∗T , where T is its temperature and
Ē∗ = ãT 2 its mean excitation. Therefore, for each of the two
fragments, we sample a thermal energy fluctuation δE∗

i from a
Gaussian distribution of variance σ 2

i = 2Ẽ∗
i Ti and modify the

fragment excitations accordingly,

E∗
i = Ẽ∗

i + δE∗
i , i = L,H. (21)

Due to energy conservation, there is a compensating opposite
fluctuation in the total kinetic energy, thus

TKE = TKE − δE∗
L − δE∗

H . (22)

With both the excitations and the kinetic energies of the
two fragments fully determined, it is an elementary matter to
calculate the magnitude of their momenta and thus sample
the velocities with which they emerge after having been fully
accelerated by their mutual Coulomb repulsion [10].

C. Neutron evaporation

The primary fission fragments are typically sufficiently
excited to permit the emission of one or more neutrons. For
each of the two fragments, neutron emission is treated by
iterating neutron evaporation from each fragment.

At each step in the evaporation chain, the excited mother
nucleus Ai Zi has a total mass equal to its ground-state mass
plus its excitation energy, M∗

i = M
gs
i + E∗

i . The Q value for
neutron emission from the fragment is then Qn = M∗

i − Mf −
mn, where Mf is the ground-state mass of the daughter nucleus
and mn is the mass of the neutron (for neutron emission we
have Af = Ai − 1 and Zf = Zi). The Q value is equal to the
maximum possible excitation energy of the daughter nucleus,
which occurs if the final relative kinetic energy vanishes.
The temperature in the daughter fragment is then maximal.
Thus, once Qn is known, one may sample the kinetic energy
of the evaporated neutron. FREYA assumes that the angular
distribution is isotropic in the rest frame of the mother nucleus
and uses a standard spectral shape [40],

fn(E) ≡ 1

ν

dν

dE
∝ E e−E/T max

f (23)

which can be sampled very fast [10].
Although relativistic effects are very small, we take them

into account to ensure exact conservation of energy and mo-
mentum, which is convenient for code verification purposes.
We therefore take the sampled energy E to represent the total
kinetic energy in the rest frame of the mother nucleus, i.e., the
kinetic energy of the emitted neutron plus the recoil energy
of the residual daughter nucleus. The excitation energy in the
daughter nucleus is then given by

E∗
d = Qn − E. (24)

The mass of the daughter nucleus is thus M∗
d = M

gs
d + E∗

d . It
is possible to calculate the magnitude of the momenta of the
two final bodies: the excited daughter and the emitted neutron.
Sampling the direction of their relative motion isotropically,
we thus obtain the two final momenta which are subsequently
boosted into the overall reference frame by the appropriate
Lorentz transformation.

This procedure repeated until no further neutron emission is
energetically possible, when E∗

d < Sn, where Sn is the neutron
separation energy for the daughter nucleus, Sn = M(Ad Zd ) −
M(Ad−1Zd ) − mn.

V. RESULTS

We now proceed to discuss our analysis. We first describe
the computational approach and then explain how the model
parameters are determined. The resulting prompt neutron
spectrum is then discussed in detail. Finally, we present some
additional observables of particular relevance.

A. Computational approach

FREYA is used to generate a large sample of fission events
(typically one million events for each parameter set). For each
set m of such randomly selected model parameter values,
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{s(m), a(m), x(m)}, the prompt fission neutron spectrum and ν in
each event m are then compared to the available experimental
data at the given incident neutron energy, En. This allows us to
assign the likelihood for that particular set (see Sec. II) based
on either the χ2

m for comparison with ν only, χ2
ν , or on the total

χ2
m characterizing the comparison with both ν and the spectral

shape fn(E) = ν−1dν/dE, χ2
ν + χ2

spectra,

wm = w{s(m), a(m), x(m)} = e−χ2
m/2. (25)

Because the weight wm depends exponentially on χ2
m, the

likelihood tends to be strongly peaked around the favored set. It
is important that the parameter sample be sufficiently dense in
the peak region to ensure that many sets have non-negligible
weights. We typically sample 2000 different parameter sets
but have verified that the results remain unchanged when a
five times larger sample is explored.

Using this method, we can obtain those values of s, a,
and x that minimize either χ2

ν or χ2
ν + χ2

spectra. We denote the
optimal set by {s0, a0, x0}. We also obtain the corresponding
correlation matrix, as described in Sec. II.

B. Determination of the model parameters

Table III shows the optimal values and the associated
uncertainties for the three model parameters used in our fission
calculations. These values have been obtained by fitting only
to the evaluated ν while ignoring the spectral data. We have
checked that fixing either x or a, or both, in these fits lead to
equivalent results for all values of En.

The correlation coefficients between these model parame-
ters are shown in Table IV. If the parameters are uncorrelated,
Ckk′ = 0. Correlated parameters lead to nonzero correlation
coefficients. If Ckk′ > 0, αk increases as αk′ increases. How-
ever, if Ckk′ < 0, αk increases as αk′ decreases. The correlation
coefficients between s and a, Csa , are relatively large and
positive while those between s and x, Csx , are large and
negative, suggesting strong correlations between these pairs of
parameters. The correlation coefficients between a and x, Cax ,
are close to zero and fluctuate in sign, signaling only a weak
correlation between this pair of parameters. In contrast, when
the spectra are also included in the fits for En � 3.5 MeV, the
correlation coefficients are very close to ±1 in all cases, likely
because the overlap in parameter space that simultaneously
reproduces ν and the spectra is small.

TABLE IV. The correlation coeffi-
cients, see Eq. (4), for the three parameters
s, a, and x fitted to ν alone.

En (MeV) Csa Csx Cax

0.5 0.608 −0.569 0.0156
1.5 0.611 −0.561 0.0042
2.5 0.465 −0.776 0.0212
3.5 0.464 −0.766 0.0441
4.5 0.757 −0.569 −0.0053
5.5 0.693 −0.480 −0.0130

The experimental values for the total average neutron
multiplicity place remarkably stringent constraints on the value
of the model parameter s while more room is left for variations
of a and x. Specifically, changing the tip separation distance
scale factor s by only 1% (keeping a and x fixed) changes ν by
1.8%, far outside the experimental uncertainty. A change in s,
see Eq. (14), results in a change in the average TKE, Eq. (13),
of less than 0.5 MeV. Thus ν is very sensitive to the balance
between the kinetic and excitation energies. On the other hand,
ν is less sensitive to the partition of the excitation energy
between the light and heavy fragments because changing x by
5% (keeping a and s fixed) changes ν by only 0.5%. Finally,
ν is least sensitive to changes in a that modify the fragment
temperature, predominantly affecting the low-energy part of
the neutron spectrum. Changing a by 5% (keeping s and x

fixed) changes ν by only 0.3%.
Table V shows results calculated by fitting to both ν

and the prompt neutron spectra. (We do not show the 4.5
and 5.5 MeV results again because there are no published
spectra at these energies.) When the spectral data are included
in the fit the agreement with these data and the evaluated
ν is poor. If we had confidence in the spectral data, this
would be a formal indication that our model was incorrect
or that uncertainties in ν were underestimated. Inconsistencies
in the spectral data (see Sec. III B) make either conclusion
difficult. Some sets (particularly those of Alexandrova [22],
which make the largest contribution to the spectral χ2) are
inconsistent with other sets, and, in a number of cases,
uncertainties have been conservatively estimated. In addition,
the relative normalization, while determined from fitting to
a Watt spectrum and used only for scaling purposes, may
increase the relative χ2 for some data sets, possibly including

TABLE III. The optimal values of the three model parameters s, a, and x obtained in three-parameter fits to ν alone,
as well as the corresponding mean neutron multiplicities ν, together with the extracted uncertainties. The resulting
values of χ 2

ν and χ 2
spectra per degree of freedom are also given.

En (MeV) s0 a0 x0 ν χ 2
ν χ 2

spectra/N

0.5 1.05449 ± 0.00567 1.10562 ± 0.07987 1.10264 ± 0.05909 2.948 ± 0.015 4.26 × 10−3 28.99
1.5 1.05887 ± 0.00585 1.10426 ± 0.07854 1.10178 ± 0.05736 3.090 ± 0.015 8.46 × 10−4 9.81
2.5 1.06590 ± 0.00858 1.10243 ± 0.07972 1.09969 ± 0.11359 3.242 ± 0.016 1.88 × 10−2 3.40
3.5 1.06886 ± 0.00902 1.10440 ± 0.07903 1.09987 ± 0.11745 3.373 ± 0.017 3.78 × 10−2 5.90
4.5 1.07598 ± 0.00699 1.10246 ± 0.07963 1.09889 ± 0.05829 3.527 ± 0.017 2.55 × 10−2 –
5.5 1.08418 ± 0.00752 1.10409 ± 0.08023 1.09892 ± 0.05758 3.681 ± 0.019 1.50 × 10−2 –
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TABLE V. The optimal values s0, a0, and x0 obtained in three-parameter fits to the spectra and ν. The
corresponding values of ν are also shown. The resulting χ2 values for ν and the spectra are given separately.

En (MeV) s0 a0 x0 ν χ 2
ν χ 2

spectra/N

0.5 1.05705 ± 0.00173 0.96754 ± 0.02236 1.00523 ± 0.00574 2.961 ± 0.007 0.76 13.72
1.5 1.04573 ± 0.00742 0.97291 ± 0.03424 1.18356 ± 0.05142 3.078 ± 0.020 0.43 23.77
2.5 1.05485 ± 0.00602 0.99909 ± 0.04221 1.18587 ± 0.06274 3.239 ± 0.016 0.0066 2.58
3.5 1.05309 ± 0.00657 0.98038 ± 0.03839 1.21052 ± 0.05293 3.364 ± 0.013 0.24 4.61

the Aleksandrova sets that are available only for E > 1.5 MeV.
Indeed, because these sets give the largest contribution to the
total χ2, eliminating them can change the optimal parameter
values, while removing one or more of the other sets has little
to no effect. For these reasons, we did not use the spectral data
to obtain our final evaluation. In addition, as discussed in more
detail later, there are indications from 235U measurements that
more neutrons are emitted from the light fragment than are
from the heavy fragment (x > 1) [29]. The fit at En = 0.5 MeV
shown in Table V is consistent with x = 1, giving νL ≈ νH .

C. The prompt neutron spectrum

A comparison between experimental data and our calcu-
lations of the prompt neutron spectrum is shown in Fig. 10.
The left panel of this figure gives the spectral shape and shows
all experimental data from Refs. [19–27]. Because the shape
varies slowly with incident neutron energy, the calculations
using parameters fit to ν alone and to ν and the spectral data
are practically indistinguishable on a linear scale. The right
panel of Fig. 10 shows only the more recent Staples data from
0.5 to 3.5 MeV [25]. In this panel, the different spectra can be
distinguished because they have been normalized to ν, which
varies modestly with incident neutron energy.

Because FREYA cannot produce sufficient statistics at the
fine energy scale needed by typical spectral evaluations, high-
statistics FREYA runs have been made to emphasize the low-

and high-energy tails of the spectra. To remove statistical noise,
Watt distributions are fit to the low- (E < 2 MeV) and high-
(E > 4 MeV) energy parts of the spectrum for each incident
neutron energy. A fine grid is obtained in the intermediate part
of the spectrum by interpolation.

Figure 11 gives the difference between the present cal-
culations and the evaluations in ENDF/B-VII. Our spectra
are systematically softer, giving lower mean neutron energies.
This difference has important implications for criticality.

In the previous section, we argued that currrently available
spectral data should not be used in the fission likelihood
analysis. To illustrate the impact of these data on spectral
calculations, we show the difference between the fits without
and with the spectral data at En = 0.5 MeV, normalized to ν

on a log-log scale, in Fig. 12. The difference is largest in the
high-energy tail of the spectra where the fit to the spectra and
ν is softer. The ratio of the fits with and without the spectral
data are shown in Fig. 13. Below 2 MeV, the fit with the
spectral data is 1–2% higher but by E ≈ 10 MeV, it is about
60% lower than the spectral description with a fit to ν alone.
At higher energies the calculations grow further apart but the
ratios are statistics limited because, even with 1 to 2 million
events in each sample spectrum, FREYA does not fully populate
the high-energy tail of the emission spectrum.

We can compute the uncertainty in the spectra as well as in
the employed values of the model parameters. Each particular
set of model parameter values, {α(m)

k }, yields a different neutron
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FIG. 10. (Color online) The measured prompt neutron spectra are compared to our fit results. The comparison to the low energy results from
Refs. [19–27] (a) are of the normalized spectral shapes while the results at higher incident neutron energies from Ref. [25] (b) are compared to
the spectral distributions themselves.
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FIG. 11. (Color online) The percentage difference between our
evaluated spectra and that of ENDF-B/VII [12] for all six incident
neutron energies considered.

spectrum (dν/dE)(m) so the resulting ensemble of spectra can
be subjected a statistical analysis at each value of the neutron
energy E, yielding an average value of the neutron spectrum,
dν̃/dE, and an associated dispersion, σ (dν/dE). For En =
0.5 MeV, Fig. 14 shows the ratio between dν̃/dE + σ (dν/dE)
and dν̃/dE. This spectral ratio provides an indication of the
relative uncertainty on the spectrum at each energy. With the
fits to ν alone, the calculated uncertainty is less than 5% for
E < 4 MeV and less than 2% for E < 2 MeV, much smaller
than the spread in the data depicted in Fig. 10. The uncertainty
increases approximately linearly with E for E > 2.5 MeV,
reaching ≈ 40% at 15 MeV. We have also shown the relative
uncertainty with all spectral data included in the fit as well as
that obtained by leaving out the two sets with the largest χ2.
Both of these give small but noisy uncertainties, suggesting
that result is not a true measure of the calculated uncertainty
in this case and that the spectral uncertainty as shown is
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FIG. 12. (Color online) Prompt neutron spectra calculated in
the laboratory frame as a function of outgoing neutron energy for
0.5-MeV incident neutron energies. The solid curve is obtained by
fitting ν alone while the dashed curve is fit to both the spectra and ν.
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FIG. 13. (Color online) The ratio of the spectra obtained by fitting
to ν and the spectral data relative to a fit based on ν alone at En =
0.5 MeV.

rather random. The noisiness of the combined fits is due to
the difficulty of obtaining a combination of parameter values
that simultaneously minimizes χ2

ν and χ2
spectra.

It is instructive to consider the correlations between the
spectral strength at different energies. The evaluation of the
corresponding covariance, see Eq. (6), is complicated by
the fact that the observables considered, specified energies
of emitted neutrons, form a continuum. In practice, it is
convenient to consider discrete energy bins (so the observable
αk represents the mean number of neutrons emitted with
a kinetic energy in the bin k centered at the energy value
Ek). Using Eq. (4), we may then calculate the corresponding
covariance matrix

σ̃ (Ek,Ek′ ) = ≺ (Ek − Ẽk)
(
Ek′ − Ẽk′

)� . (26)

However, it is important to recognize that for continuous
observables, the above matrix function is singular along the
diagonal [41],

σ̃
(
Ek,Ek′

) = σ̃ 2
Ek

δ
(
Ek − Ek′

) + σ̃EkEk′ (27)
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FIG. 14. (Color online) The spectral ratios (see text) for the three
different analyses indicated.
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FIG. 15. (Color online) The correlation coefficients, C(E1, E2),
for the spectral strength of the evaporated neutrons, see Eq. (28), as
obtained from the statistical analysis at En = 0.5 MeV when only ν is
considered in the fits. Figure 16 shows cuts along the three indicated
lines of constant total energy.

where σ̃ 2
Ek

is the variance in the differential yield at the speci-
fied energy Ek , while σ̃EkEk′ expresses the correlation between
the differential yields at two different energies Ek and Ek′ . To
obtain this latter quantity, we must first remove the singular
part. This can be readily accomplished when the observable
has been discretized by simply replacing the diagonal elements
in σ̃ (Ek,Ek′ ) by values obtained by interpolating between the
near-diagonal elements. The resulting correlation coefficient,

C(Ek,Ek′) = σ̃EkEk′ /
[
σ̃Ek

σ̃Ek′
]

(28)

is then regular. It is displayed in Fig. 15 for the ensemble
obtained for En = 0.5 MeV by fitting to ν alone. Figure 16
shows cuts at constant total neutron energy, ET = Ek + Ek′ .
Similar results are found for all other incident energies
considered.
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FIG. 16. (Color online) The spectral correlation coefficients,
C(E1, E2), along the three lines of constant combined energy,
ET = E1 + E2, indicated in Fig. 15, as a function of the energy
difference, 	E = |E1 − E2|.

When the model parameters are varied, the spectral shapes
tend to pivot around E ≈ 2 MeV. Consequently, when both
neutron energies lie on the same side of this value, the
differential changes are in phase and the correlation coefficient
is close to 1. The changes are in opposite directions when the
two energy values are on opposite sides of the pivot energy.
By contrast, when the spectral data are included in the fits, the
correlation coefficients vary widely between +1 and −1 in no
apparent pattern.

When the number of FREYA events included in the ν-only
fits at En = 0.5 MeV is increased by a factor of 5, the fitted
model parameter values change by less than one standard
deviation. When the spectra are also included in the fits, the
resulting change in the fitted parameter values increases χ2

ν

from 0.75 to ≈15 without significantly improving the spectral
fits. Moreover, while the fluctuations in the energy correlation
coefficients decrease somewhat when the larger event samples
are used, they do not disappear.

As is the case for the model parameters, there are uncertain-
ties in the spectral calculations. If the model is qualitatively
wrong, and the right spectral form cannot be obtained by
simply changing the parameter values, then the spectral
uncertainties are not correct. To explore this we performed
several additional variations on the model. In Sec. IV we
saw that a model that employs a constant tip separation d,
independent of the specific binary partition, reproduces neither
the total kinetic energy data nor the neutron yield as a function
of fragment mass. Nevertheless, a constant dLH yields better
agreement with the ν-only fit in Fig. 12 than with the fit that
also includes the spectra. Similarly, making the level-density
parameter independent of energy, ã = A/e0, changes the
spectrum by less than 5% at lower energies (<5 MeV) and
by less than 20% at higher energies. Fundamental microscopic
calculations of fission could provide insight into the sensitivity
of the spectrum to changes in the parameters, leading to better
estimates of the spectral uncertainties.

Critical assemblies, which are designed to determine the
conditions under which a fission chain reaction is stationary,
provide an important quality check on the spectral evaluations.
The key measure of a critical assembly is the neutron
multiplication factor keff (often denoted as the k eigenvalue).
When this quantity is unity, the assembly is exactly critical,
i.e., the net number of neutrons resulting from each neutron-
induced fission event is one on the average. (This number
is the difference between the number of neutrons emitted
during the fission process and those lost to absorption and
escape.) The degree of criticality of a particular assembly
depends on the multiplicity of prompt neutrons, their spectral
shape, and the (n,f ) induced-fission cross section.

Plutonium criticality is especially sensitive to the prompt
neutron spectrum because the 239Pu(n,f ) cross section rises
sharply between En = 1.5 and 2 MeV. As a result, increasing
the relative number of low-energy neutrons tends to decrease
criticality, lowering keff , while increasing the number of
neutrons having higher energy increases criticality.

Figure 17 shows calculations of keff for different plutonium
assemblies. Apart from the spectra, all data used in these
calculations were taken from ENDF/B-VII: [12] (squares) or
ENDL2008 [42] (crosses and diamonds) databases. Overall

044611-12



EVENT-BY-EVENT STUDY OF PROMPT NEUTRONS FROM . . . PHYSICAL REVIEW C 80, 044611 (2009)

JE
Z

E
B

E
L

JE
Z

E
B

E
L-

24
0

T
H

O
R

P
M

F
01

80.98

0.99

1.00

1.01

M
ul

tip
lic

at
io

n 
fa

ct
or

 k
ef

f

Experimental data
ENDF/B-VII  VdMarck (MCNP-4C3*)
ENDL2008.2 (Mercury)
ENDL2008.FREYA (Mercury)

FIG. 17. (Color online) Calculated keff for several 239Pu critical
assemblies obtained using our 239Pu fits (diamonds) for 0.5 � En �
5.5 MeV in the Mercury Monte Carlo. The results are compared
to those employing the standard ENDL2008.2 [42] (crosses) and
ENDF-B/VII [12] (squares) databases.

there is good agreement with the measured values of keff ,
though this new softer spectrum decreases the calculated
values by about 0.003. Because this is approximately 1.5
standard deviations away from the measurement, there may
be an indication that the Pu fission cross section or neutron
multiplicity is low by about a tenth of a percent. There appears
to be room for some adjustment of the experimental data
because the uncertainties in the cross sections are about 1%,
whereas those in ν are about 0.5%.

D. More exclusive observables

Though less important for understanding energy produc-
tion, more exclusive observables play a central role in the de-
velopment of a comprehensive description of fission. Figure 18

shows calculations of fragment kinetic and excitation energies.
Note that the fragment kinetic energies are almost independent
of the incident neutron energy. Indeed, the kinetic energy
appears to decrease slightly with energy, as may be expected
because s increases. This may at first appear surprising but the
Coulomb approximation to the total kinetic energy in Eq. (13)
is independent of the incident neutron energy. These results
are consistent with measurements made with 235U and 238U
targets over a similar incident neutron energy range, 0.5 �
En � 6 MeV [43] and 1.2 � En � 5.8 MeV [44], respectively.
In both cases, the average TKE, TKE, changes less than 1 MeV
over the entire energy range. Reference [44] also shows that,
while the mass-averaged TKE is consistent with near energy
independence, higher-energy incident neutrons typically give
more TKE to masses close to symmetric fission and somewhat
less TKE for AH > 140. The slight increase in TKE close
to symmetric fission of 238U is not unexpected because
the symmetric contribution to Y (A) increases with incident
neutron energy. Because such detailed TKE information is not
available for neutrons on 239Pu, we have therefore chosen to
use a constant scale factor at each energy.

The constancy of the fragment kinetic energy as a function
of En allows the energy of the incident neutron to be converted
into excitation energy. The increase of E∗ with En is fairly
monotonic over all Af , see the right-hand side of Fig. 18.
It appears, however, that the slope of ν(Af ) for Af > 120
increases somewhat faster with En than for Af < 120, as
shown on the left-hand side of Fig. 19. This scenario is
consistent with washing out the sawtooth pattern of ν(Af )
with increasing neutron energy [45]. See Table VI for the
average neutron multiplicity for the light and heavy fragments
as well as the sum. The associated multiplicity dispersions,
σν = [〈ν〉2 − ν2]1/2, are also given. Because ν is used to
determine the model parameter values it may be preferable
to use a different (and more exclusive) observable to check
whether a given model parameter set is preferred over another.
A better choice is the average neutron multiplicity and average
neutron energies from the individual fragments. There are
some limited data on thermal neutron-induced fission of
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FIG. 18. (Color online) The average kinetic energy of the fission fragments (a) and their average excitation (b) as a function of fragment
mass number Af for 0.5 � En � 5.5 MeV.
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FIG. 19. (Color online) The average neutron multiplicity for 0.5 � En � 5.5 MeV (a) and the mean kinetic energy of the evaporated
neutrons (b) for En = 0.5 and 5.5 MeV, as functions of the fission fragment mass number Af .

235U [46] and spontaneous fission of 252Cf [47] that suggest
that the light fragment emits more neutrons than the heavy
fragment, 40% more for 235U [46] and 20% more for 252Cf [47].
Our results for 0.5 MeV, shown in Table VI, give a relative
difference in ν between the light and heavy fragments of about
20% for x ∼ 1.1. Fits to ν and the spectral data rather than ν

alone give νL ≈ νH for En � 0.5 MeV, seemingly excluded
by these measurements if the same is true for Pu.

A more sensitive neutron observable is the kinetic energy
of an evaporated neutron. The right panel in Fig. 19 shows the
average kinetic energies of the emitted neutrons as a function
of fragment mass for the lowest and highest incident energies
studied (0.5 and 5.5 MeV). The average kinetic energy of
the emitted neutrons is almost constant with A except in the
region 110 < A < 140 where it increases. The dip in TKE
occurs in the symmetric region, making more energy available
for neutron emission, resulting in more and faster prompt
neutrons.

In Fig. 20 we show the probability for a given neutron
multiplicity, P (ν), as a function of neutron number for all En.
Along with the probability distribution for emission from both

TABLE VI. The mean combined neutron multiplic-
ities ν as well as the mean multiplicities of neutrons
emitted from either the light or the heavy fragment, νL

and νH , together with the associated dispersions.

En (MeV) ν σν νL σνL
νH σνH

0.5 2.947 1.381 1.604 0.723 1.343 0.676
1.5 3.090 1.400 1.685 0.755 1.405 0.704
2.5 3.244 1.424 1.761 0.783 1.483 0.738
3.5 3.376 1.443 1.828 0.806 1.548 0.767
4.5 3.530 1.466 1.905 0.833 1.624 0.801
5.5 3.683 1.499 1.983 0.863 1.699 0.836

fragments, we also show the distributions for the light and
heavy fragments separately.

Table VII gives the average energies of the neutrons emitted
from the light fragment, the heavy fragment, or from either,
together with the associated variances, for the incident neutron
energies En. The average energies increase with En in all
cases and those coming from the light fragment tend to
be more energetic than those coming from the heavy one,
giving 〈EL〉 > 〈EL+H 〉 > 〈EH 〉. The variances exhibit the
same hierarchy as the average energies but increase more
slowly with incident energy. The overall average energy 〈E〉
is similar to that obtained for thermal neutron-induced fission
of 235U and 252Cf(sf) found in Ref. [9].
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FIG. 20. (Color online) The normalized neutron multiplicity
distribution obtained with FREYA for both fragments (a), the light
fragment (b), and the heavy fragment (c). Results are shown for
0.5 � En � 5.5 MeV.
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TABLE VII. The average energy of neutrons
emitted by either fragment and by the light and
heavy fragments separately, along with the asso-
ciated dispersions, for various incoming neutron
energies (all in MeV).

En 〈EL+H 〉 σL+H
E 〈EL〉 σL

E 〈EH 〉 σH
E

0.5 2.054 1.625 2.313 1.755 1.750 1.418
1.5 2.088 1.654 2.346 1.787 1.785 1.448
2.5 2.113 1.674 2.369 1.809 1.816 1.474
3.5 2.140 1.698 2.397 1.836 1.828 1.496
4.5 2.168 1.721 2.425 1.860 1.873 1.521
5.5 2.198 1.746 2.455 1.883 1.905 1.546

VI. CONCLUSION

Our studies employ the recently developed Monte Carlo
model, FREYA, that simulates fission and the subsequent
neutron and photon emission from the fragments on an
event-by-event basis, maintaining energy and momentum con-
servation at each step in the production and de-excitation of the
fragments. We have introduced three adjustable parameters,
s, a, and x, which modulate the separation between the tips
of the fragments, scale the level-density parameter of the
fragments, and modify the partition of energy between them,
respectively. These three model parameters were varied over
an appropriate range and, for each particular set of values,
FREYA was used to generate a large sample of fission events
from which the resulting properties of the neutron spectra
were extracted. Each set of parameter values was assigned a
likelihood weight based on the χ2 obtained from comparison
with the measured mean multiplicity ν and/or the measured
differential neutron spectrum dν/dE. Mean values and covari-
ances for both input parameters and quantities predicted by the
model were obtained through standard statistical techniques.
This combination of the Monte Carlo fission model with
the likelihood weighting presents a powerful tool for the
evaluation of fission-neutron data.

This procedure was applied to the analysis of neutron-
emission data for neutron-induced fission on 239Pu from
thermal to 5.5 MeV incident energies. Although the approach
taken and the nucleus studied in this work are different, the
results largely corroborate the findings of Lemaire et al. [9] in
emphasizing the importance of the initial conditions (e.g., the
kinetic and excitation energies of the fragments). Furthermore,
our work underscores the effectiveness of the measured ν in
constraining the model parameters, more strongly even than
the differential neutron-spectrum data. In particular, it was
found that the parameter controlling the tip separation between
fragments was by far the most important in reproducing the
experimental ν values. In the end, fits of our model to the ν

data alone (i.e., excluding the differential-spectral data) were
found to be more robust and were used to obtain the best model
parameters.

We plan to apply this method to the prediction of neutron
emission properties in other actinides. However, in those cases
where critical experimental data (such as kinetic energies
and neutron multiplicities and spectra) are not available to
constrain the FREYA calculations, it may be necessary to
invoke supplementary information from various theoretical
models, such as Hartree-Fock-Bogoliubov or macroscopic-
microscopic treatments.
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