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Phase diagram for asymmetric nuclear matter in the multifragmentation model
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We assume that, in equilibrium, nuclear matter at reduced density and moderate finite temperature breaks up into
many fragments. Strong support for this assumption is provided by data accumulated from intermediate-energy
heavy ion collisions. The breakup of hot and expanded nuclear matter according to the rules of equilibrium
statistical mechanics is the multifragmentation model, which gives a first-order phase transition. This is studied
in detail here. Phase-equilibrium lines for different degrees of asymmetry are computed.
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I. INTRODUCTION

Nuclear matter is a hypothetical very large system of
nucleons in which the Coulomb effects of protons are switched
off. Such a system is expected to have features of liquid-gas
phase transition. We consider here the equation of state of
symmetric and asymmetric nuclear matter at temperatures
between 4 and 10 MeV and at less than half of normal
nuclear density. We assume that at equilibrium at finite
temperature (three to tens of MeV) and low average density,
nuclear matter breaks up into fragments, each with normal
nuclear density. Strong support for this assumption comes
from data on heavy ion collisions, but it is also supported
by theoretical modeling. For example, it can be easily shown
(see Sec. IV in Ref. [1]), using a Skyrme type interaction,
that the free energy of uniformly stretched nuclear matter
is very significantly lowered if the matter is allowed to
split into many fragments, each with normal nuclear density.
This is the multifragmentation model. We use this model to
study thermodynamic properties of nuclear matter, particularly
phase-equilibrium lines (the lines of coexistence of liquid
and gas phases) in the p-T plane for both symmetric and
asymmetric matter.

This is an extension of the model described in our earlier
work [2], which considered only one kind of particle. These
particles, however, formed clusters whose properties were
patterned after actual finite nuclei. While we hope that the
present article is self-contained, we will refer to this earlier
work for elucidation of some points. There is a large number
of publications on equation of state and phase transitions in
nuclear matter. Reference [3] comes closest to the spirit of this
paper. While it has quite a few common features with this work,
there are also some differences and we highlight some other
aspects. Phase transition in nuclear matter using mean-field
theory has been studied for many years, and we cannot
attempt to give an adequate bibliography here. We mention
two papers that critically examined asymmetric nuclear matter
and received a great deal of attention in very recent times
[4,5]. Both of these used mean-field theories and overcame
the difficulty of instability through Maxwell construction.
The multifragmentation approach is very different. It is more
directly related to actual observables, but in its present form it
can only be trusted in a low-density regime. However, there is
no need for Maxwell construction.

II. THE FORMULAS

We briefly review the grand canonical model for multi-
fragmentation [6]. Let the number of neutrons and protons in
the dissociating system be N0 and Z0, respectively. At finite
temperature and in subnormal densities, these will break up
into all possible composites each with some neutrons N and
protons Z (mass number A = N + Z). We always use the
subscripted N0, Z0 to refer to the very large system whose
thermodynamic properties are being investigated, whereas
N,Z refer to composites that can be small or large. The
properties of the composites are determined by the basic
two-body interactions. These properties are utilized in the
model, but interactions between composites are neglected
(except through excluded volume effect; see discussion later)
by appealing to the short-range nature of nuclear forces. This
limits the validity of the model to low densities. Here we
will restrict our investigation to densities ρ/ρ0 to 0.5 or less,
where ρ0 is the normal nuclear density. This is the customary
practice [7].

If the neutron chemical potential is µn and the proton
chemical potential is µp, then statistical equilibrium implies
that the chemical potential of a composite with N neutrons
and Z protons is µnN + µpZ. The following are the relevant
equations for us. The average number of composites with N

neutrons and Z is (β = 1/T )

〈nN,Z〉 = eβµnN+βµpZ ωN,Z. (1)

Here ωN,Z is a one-body partition function for the composite
(N,Z). It is a product of two factors; one arising from the
translational motion of the composite and another from the
intrinsic partition function of the composite:

ωN,Z = Vf

h3
(2πmT )3/2A3/2 × zN,Z(int). (2)

Here Vf is the volume available for translational motion; Vf

will be less than V , the volume to which the system has
expanded at breakup (excluded volume correction). We use
Vf = V − V0, where V0 is the normal volume of nucleus with
Z0 protons and N0 neutrons. The quantity zN,Z(int) depends
upon the intrinsic properties of the composites and contains
all the nuclear physics.

We list now the properties of the composites used in this
work. The proton and the neutron are fundamental building
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blocks, thus z1,0(int) = z0,1(int) = 2, where 2 takes care of
the spin degeneracy. For deuteron, triton, 3He, and 4He, we
use zi,j (int) = (2si,j + 1) exp(−βei,j (gr)), where ei,j (gr) is
the ground state energy of the composite and (2si,j + 1) is
the experimental spin degeneracy of the ground state. Because
we are modeling a system in which protons do not carry any
charges, the ground state energy of 3He is taken to be that
of the triton, and the Coulomb energy is subtracted from the
experimental energy of the α particle. These modifications
make insignificant changes. Excited states for these very low
mass nuclei are not included. For mass number a = 5 and
greater, we use the liquid-drop formula. This reads

zi,j (int) = exp

[
−Fi,j

T

]
. (3)

Here Fi,j is the internal free energy of species (i, j ):

Fi,j = −W0a + σ (T )a2/3 + s
(i − j )2

a
− T 2a

ε0
. (4)

The expression includes the volume energy, the temperature-
dependent surface energy, and the symmetry energy. The
values of the parameters are taken from Ref. [8]. The term
T 2a
ε0

represents contribution from excited states, since the
composites are at a nonzero temperature. For nuclei with
A = 5, we include Z = 2 and 3; and for A = 6, we include
Z = 2, 3, and 4. For higher masses, we compute the drip lines
using the liquid-drop formula above and include all isotopes
within these boundaries.

There are two equations that determine µn and µp:

N0 =
∑

NeβµnN+βµpZωN,Z, (5)

Z0 =
∑

ZeβµnN+βµpZωN,Z. (6)

We want to point out the following feature of the grand
canonical model. In all ωN,Z in the sum in the above two
equations, there is one common value for Vf [see Eq. (2)]. We
really solve for N0/Vf and Z0/Vf . The values of µn or µp will
not change if we, say, double N0, Z0, and Vf simultaneously
provided the number of terms in the sum is unaltered. We then
might as well say that when we are solving the grand canonical
equation, we are really solving for an infinite system (because
we know that fluctuations will become unimportant), but this
infinite system can break up into only the kinds of species
that are included in Eqs. (5) and (6). Which composites are
included in the sum is an important physical ingredient in the
model, but intensive quantities such as β,µ depend not on
N0, Z0 but on N0/Vf and Z0/Vf .

The choice of which nuclei are included in the sum of the
right-hand side of Eqs. (5) and (6) needs further elucidation.
We can look upon the sum on N and Z as a sum over A and
a sum over Z. In principle, A goes from 1 to ∞; and for a
given A, Z can go from 0 to A. Here for a given A, we restrict
Z by the drip lines. Comparisons with calculations that do
not impose restrictions by drip lines (as in the Copenhagen
statistical multifragmentation model) showed that restrictions
by drip lines generate imperceptible differences [9]. De and
Samaddar [3] reached a similar conclusion.

Let us now consider the restriction on A. In principle,
this should be ∞, but for practical calculations one needs
to restrict this to a maximum value that we label as Amax.
Earlier calculations with one kind of particles showed that
with Amax = 200, features of the liquid-gas phase transition
are not revealed (see Fig. 14 in Ref. [7]), but a high value
of Amax = 2000 produces a nearly perfect model of phase
transition (elaborated in much greater detail in Refs. [2,3]).

III. SIGNATURES OF PHASE TRANSITION
IN THE MODEL

We now demonstrate that the multifragmentation model
predicts the first-order phase transition. There are three
signatures we will dwell on. Pressure in the model is given by
p = T

∑
nN,Z

Vf
= T

∑
nA/A0

Vf /A0
= Tρf

∑
nA

A0
. We plot our results as

functions of ρ rather than ρf the connection being ρf = ρρ0

ρ0−ρ
.

We have ρ = ρn + ρp. We need an asymmetry parameter. We
use both N0/Z0 and ω = N0−Z0

N0+Z0
.

We show in Fig. 1 the p-ρ curves for N0/Z0 = 1.4, where
the values of Amax are 200, 400, 600, 800, and 1000. The
temperature used is T = 6.5 MeV. For all five choices of
Amax, the pressure against ρ initially rises quite sharply and
then flattens out considerably. The initial stage of the fast rise
of pressure with density is the gas phase. Here the results do
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FIG. 1. Pressure-density curves for N0/Z0 = 1.4 and T =
6.5 MeV, where the values of Amax used are 200, 400, 600, 800, and
1000. Note that in the region of fast pressure rise with density, results
are insensitive to Amax. In the high-density side, pressure appears to
approach a constant value as a function of density as Amax increases.
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not matter whether Amax is 200, 400, or larger. The reason
will become clearer later (it is explained in detail in Ref. [2]).
The flattening that follows depends on Amax, but above a large
enough value of Amax, it will not change. For one kind of
particle, this is reached around 2000 [2]. However, the choice
of Amax = 600 is good enough for at least a semiquantitative
estimate of various thermodynamic properties of nuclear
matter, and we will present results for this value, although
we did some calculations with other choices of Amax also.
The flattening happens slightly beyond ρ/ρ0 = 0.1. We show
results up to ρ/ρ0 = 0.5, arguing that the excluded volume
correction for interactions between composites becomes worse
with increasing density.

The rise of pressure at small density followed by a flattening
of p with increasing density is a signature of a first-order
liquid-gas transition. We have shown results for T = 6.5 MeV.
Beyond a certain temperature, the flatness will disappear,
showing that there is no more phase transition in the domain
ρ/ρ0 � 0.5. Similarly, the flattening of p disappears beyond
some value of N0/Z0. The liquid-drop parameters we are using
give us for large nuclei the drip line at N/Z (and of course
Z/N ) about 2. Hence for larger values of N0/Z0, the system
cannot stay together even at T = 0. Then we will have a system
that has a bound core but always many free nucleons, which
will dominate the thermodynamic properties of the system.
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FIG. 2. A〈nA〉/A0 as a function of the mass number A for
N0/Z0 = 1.0 and T = 6.5 MeV. For the distribution of composites at
ρ/ρ0 = 0.1 (solid line), there are practically no heavy particles, none
above A = 70; this is a pure gas phase. At ρ/ρ0 = 0.3 (dotted line),
there are both light and heavy (A � 500) particles; this is coexistence.
Here and in the rest of the figures, we used Amax = 600.

This is not a system we want to study. Hence in this work, we
constrained ourselves to a system whose N0/Z0 spans 1.0–1.8.
The upper limit is indeed a highly asymmetric system.

Below the density at which the phase transition sets in, the
system is in a pure gas phase. At the phase transition point,
some liquid will be formed, and the fraction of nucleons in
the liquid phase will grow at the expense of the gas particles
as the density increases. This can actually be followed. One
also gets a functional definition of what constitutes the gas
particles. Here our identification is very different from what
was concluded in Ref. [3] but very similar to what was found
in our earlier work with one kind of particle [2].

Lastly, in a one-component model, there is just one µ, which
stays constant throughout the coexistence region. Now there
are two chemical potentials µn and µp. How do they behave?

IV. WHAT CONSTITUTES THE GAS AND WHAT
CONSTITUTES THE LIQUID?

The quantity 〈nA〉 ≡ ∑
N+Z=A〈nN,Z〉 is the average number

of composites with mass number A. The quantity A〈nA〉/A0

gives the fraction of particles tied up in composites with mass
number A. This is plotted in Figs. 2 and 3 for N0/Z0 = 1.0 and
N0/Z0 = 1.8, respectively. First concentrating on Fig. 2 (T =
6.5 MeV), we see that at density ρ/ρ0 = 0.1 the nucleons are
bound in composites �50. These particles constitute the gas
phase. At density ρ/ρ0 = 0.3, some heavy composites with
A ≈ Amax begin to form, and the probability of such heavy

0 100 200 300 400 500 600
A

0

0.03

0.06

0.09

0.12

0.15

ΣA
 

A
/A

0

ρ/ρ0 = 0.38
ρ/ρ0 = 0.1

T = 6.5 MeV

N
0
/Z

0
 = 1.8

〈
〉

n

FIG. 3. Same as Fig. 2, but for N0/Z0 = 1.8; dotted line is for
ρ/ρ0 = 0.38.

044609-3



G. CHAUDHURI AND S. DAS GUPTA PHYSICAL REVIEW C 80, 044609 (2009)

particles (with A between Amax and Amax − 100) begins to
increase (at the expense of the light particles) as the density
increases. This is a clear evidence of coexistence. We thus
consider light particles (A � 70) to be gas and heavier particles
(with A between Amax and Amax − 135) to be liquids. Figure 3
displays similar physics but for N0/Z0 = 1.8: all gas par-
ticles at ρ/ρ0 = 0.1 and a mixture of gas and liquid at
ρ/ρ0 = 0.38.

We note that even the gas phase in the fragmentation model
is quite complicated. It is not just neutrons and protons but
other light nuclei as well. In addition, during coexistence, the
isotopic content of the gas phase changes continuously as the
volume of the container, i.e., density ρ/ρ0 changes. This is
called isospin fractionation and is well-known in the literature.
We will briefly come back to this aspect later.

V. CHEMICAL POTENTIALS

In numerical work involving only one kind of particle [2],
it was demonstrated that in the limit of Amax → ∞, a constant
value of µ will be achieved in the coexistence region. This
value could be obtained by extrapolation. In the present case,
there are two chemical potentials. For N0/Z0 �= 1, µn �= µp.
For N/Z = 1.4 and temperature 6.5 MeV, we show in Fig. 4
the evolution of µn and µp as a function of density. One notices
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FIG. 4. Chemical potential as function of density for N0/Z0 =
1.4 and T = 6.5 MeV. The dotted line is the neutron chemical
potential µn, the dashed line is the proton chemical potential µp ,
and the solid line is µ = N0

A0
µn + Z0

A0
µp .

that both µn and µp change rapidly in the gas phase and then
tend to a constant value. In the limit Amax → ∞, we expect
they will become constants. We also plot in the same figure
µ ≡ N0

N0+Z0
µn + Z0

N0+Z0
µp. The µ so defined has a meaning at

the three limits: −1, 0, and +1 for asymmetry parameter
ω = N0−Z0

N0+Z0
; it is interesting to note that µ tends to a constant

value faster than either µn or µp.

VI. COEXISTENCE LINES

Figure 5 shows that as the temperature increases, phase
coexistence finally disappears (from the region ρ/ρ0 � 0.5).
We have shown this for N0/Z0 = 1.0, but this is also true for
asymmetric systems provided the asymmetry is not too large,
as explained earlier.

We show in Fig. 6 the p-ρ curves at T = 6.5 MeV for
three systems with N0/Z0 = 1, 1.4, and 1.8. We identify as A,
B, and C the points on these curves at which coexistence
sets in. The values of pressure at these points give us p

values for coexistence at this temperature for these N0/Z0

values. This is not strictly correct. The values of p increase
slightly as one moves toward higher density. This is because
with Amax = 600, we have not yet reached asymptotic limits.
However, this is adequate for our purposes. Repeating this
analysis for different temperatures, we obtain coexistence lines
in the T -p plane for nuclear matter with different asymmetries
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FIG. 5. Pressure-density isotherms at T = 6, 6.5, 7.0, 7.25, and
7.5 MeV for N0/Z0 = 1.4 and Amax = 600. Note that the point of the
beginning of coexistence moves up and to the right as the temperature
increases.
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FIG. 6. Pressure-density curves at T = 6.5 MeV for three sys-
tems with (N0/Z0) values equal to 1, 1.4, and 1.8. Points A, B, and
C on the isotherms will give the values of pressure when coexistence
sets in at T = 6.5 MeV for these N0/Z0 values.

(Fig. 7). Notice that while the coexistence lines for differing
asymmetries are different, they are quite similar. As usual,
points to the left and above the coexistence lines are in the
liquid phase, and points to the right and below are in the gas
phase.

The highest point of a coexistence line in the T -p plane
usually identifies critical values Tc, pc [10]. This is not true in
Fig. 7. As we consider higher temperatures, points A, B, and
C (Fig. 6) will move to the right and up. They will reach the
ρ/ρ0 = 0.5 line. These define the end points T , p in Fig. 7.
We do not continue to higher densities, because the simple
approximation of excluded volume as a means of incorporating
interactions between clusters becomes progressively worse. If
we accept the validity of the simple multifragmentation model
in the region ρ/ρ0 � 0.5, we will have to conclude that the
critical point does not exist in the region ρ/ρ0 � 0.5. The
same conclusion can be reached from other published work.
Multifragmentation with one kind of particle was also studied
by Bugaev et al. [11]. This is the same physics problem as
considered in Ref. [2] but treated in a different mathematical
framework, and these authors considered all densities, not just
ρ/ρ0 � 0.5. They found that one can identify a critical point
at T = Tc = 18.0 MeV, ρ/ρ0 = 1, and pc = ∞. At very high
pressure, the model must break down, but this is an additional
confirmation that the simple multifragmentation model in the
domain ρ/ρ0 � 0.5 does not contain the critical point.

5.5 6 6.5 7 7.5
T (MeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

P
re

ss
ur

e 
(M

eV
 f

m
−3

)

N
0
/Z

0
 = 1.0

N
0
/Z

0
 = 1.4

N
0
/Z

0
 = 1.8

A

B

C

FIG. 7. Phase-coexistence lines in the p-T plane for different
values of N0/Z0. As in Fig. 6, points A, B, and C give the value of
pressure where coexistence sets in at T = 6.5 MeV.

VII. ISOTHERMALS IN A TWO-COMPONENT SYSTEM

Figure 6 gives the isothermals for N0/Z0 = 1, 1.4, and 1.8 at
6.5 MeV temperature. Drawing isothermals for fixed N0/Z0 is
physically relevant. We are assuming that we have a very large
system with given numbers N0,Z0 whose volume can change
depending upon the physical conditions it is subjected to. If
we want to study a different asymmetry, we change N0/Z0

accordingly and repeat the calculation. To have a complete
knowledge, calculations should be done for all relevant N0/Z0.
The most asymmetric system we study is N0/Z0 = 1.8. Of
course, since we have no Coulomb force, the system with
N0/Z0 = α has the same thermodynamic properties as the
system with Z0/N0 = α.

It is, however, instructive to consider isothermals of two-
component systems in a more general fashion. In a one-
dimensional system, there is only one density and an isotherm
is a line in the p-ρ plane. Now we have two densities ρn and
ρp, and isothermals become surfaces. Let ρp be the x axis,
ρn the y axis, and p the z axis, the equation of state at a
given temperature is a surface in this space. A projection
of this surface in two dimensions can be made, but for a
quantitative study it is more convenient to present contours
of constant p in the ρp-ρn plane. Such a plot is shown in
Fig. 8. We consider pressure contours in the region bounded
by ρp = 1.8ρn, ρn = 1.8ρp, and (ρn + ρp)/ρ0 � 0.5. The
reasons for choosing these boundaries were explained before.
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FIG. 8. Contours of constant pressure p in the ρn-ρp plane at
T = 6.5 MeV for Amax = 600. The values of the pressure (in
MeV/fm3) are marked against the contours, and some are given in the
box in the upper right corner. The region is bounded by ρn = 1.8ρp ,
ρp = 1.8ρn, and (ρn + ρp)/ρ0 � 0.5. The line ρn = ρp is shown in
the middle.

Roughly speaking, the contours are either largely radial or
circular. Let us first consider an uninteresting gas. We assume it
consists of only neutrons and protons and unlike in the present
problem does not form composites. In such a case, constant
pressure curves would be ρn + ρp = constant, and these
would be straight lines making an angle of π/4 with the x and
y axes. Instead, we see at low ρn and ρp (when one has a gas
phase only) not straight lines but more like concentric circles.
This is because pressure is directly proportional to multiplicity
(Sec. III) and multiplicity is a function of asymmetry. In our
case, composites are present in the gas phase, and the number
of composites depends upon the asymmetry of the system.
This causes constant pressure contours in the gas phase to
bend from straight lines. We skip the details as to why the
lines become like circles. We now try to explain other pressure
contours that are largely radial. For this, refer back to Fig. 6.
We mentioned before that in the limit Amax → ∞, the p-ρ
curves would have zero slopes to the right of points A, B,
and C on the isothermals. In such a case, the constant pressure
contour would move exactly radially inward from the boundary
ρ/ρ0 = 0.5 and would later leave the radial pattern, bend, and
finish at the boundary ρn = 1.8ρp or ρp = 1.8ρn, whichever
is appropriate. Similar behavior is seen in Fig. 8. Thus radial
pressure contours reflect regions of coexistence.
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FIG. 9. Same as in Fig. 8, except that the temperature is 7.5 MeV.
The system is mostly in the gaseous phase, which changes the shape
of the contours here as compared to those in Fig. 8.

As another example, we show in Fig. 9 the pressure contours
at T = 7.5 MeV. Except near the edges of the boundaries, a
pure gas phase is seen.

VIII. ISOSPIN FRACTIONATION

We illustrate isospin fractionation in the multifragmentation
model through an example. Consider multifragmentation of
a neutron-rich system: N0/Z0 = 1.4 and temperature T =
6.5 MeV. At low density, the system is in a pure gas phase.
Following the discussion in Sec. IV, the gas phase consists
of light particles with A � 70 and the liquid phase consists
of particles with A between Amax − 70 and Amax. At higher
density, both gas and liquid phases are seen (Figs. 2 and 3). In
the present example with N0/Z0 = 1.4, we expect that during
coexistence the neutron to proton ratio in the gas phase will
rise above 1.4 and the neutron to proton ratio in the liquid
phase will fall below 1.4. The reason for this is the symmetry
energy which preferentially favors formation of larger clusters
closest to maximum stability (i.e., N = Z). This rise of the
neutron to proton ratio in the gas phase is illustrated in Fig. 10.
Coexistence sets in a little beyond ρ/ρ0 = 0.1. Until that point
is reached, the neutron to proton ratio in the gas phase is at 1.4,
the ratio of the parent system. Then as the density increases
the ratio increases.
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FIG. 10. For T = 6.5 MeV and N0/Z0 = 1.4. The left panel
shows the rise of the ratio of the number of free neutrons to the
number of free protons as a function of density. While the rise is
fast, nothing particularly new happens at the onset of coexistence.
If, however, the gas phase is defined to be all particles with A � 70
(this would be consistent with Figs. 2 and 3), the ratio of neutrons
to protons bound in the gas phase remains that of the parent
system until coexistence sets in (right panel) and then begins to
rise. It behaves like an order parameter if the parent system is
asymmetric.

Figure 10 also shows that even at very low density, the ratio
of unbound single neutrons to unbound single protons rises
very rapidly. But this has nothing to do with what is called
isospin fractionation. In fact, nothing special happens to this
ratio when coexistence sets in. It is only when the gas phase
is considered to include not just single nucleons but also light
particles that isospin fractionation becomes an order parameter
if N0/Z0 �= 1.

In the present example, at ρ/ρ0 = 0.35, the neutron to
proton ratio in the gas phase is 1.485. In the liquid phase, it is
1.375.

Isospin fractionation in mean-field theories is treated in
Refs. [4,5]. Calculations in the lattice gas model can be found
in Ref. [12]. A very pertinent experimental paper [13] discusses
the enhancement of the neutron number to proton number but
without any isospin fractionation.

IX. DISCUSSION

The multifragmentation model, so useful for fitting exper-
imental data in intermediate energy collisions, leads naturally
to a model of phase transition for nuclear matter. In a range
of temperature and density, first-order phase transition occurs.
The gas and the liquid phases can be clearly identified. This is
really remarkable. The model of nuclear multifragmentation
may be unique in this respect. The gas phase consists of light
nuclei with A up to about 70. Besides these gas particles, there
are large blobs of matter (liquid) with mass numbers close to
Amax with Amax → ∞. The model is appropriate at subnormal
nuclear density. Modifications of the simple model are needed
to extend the model to higher density, but this may not be
easy.

Horowitz and Schwenk [14] have made an elegant study of
nuclear matter at very low densities (0.02 fm−3 or less). In our
pertinent range (up to 0.08 fm−3), this is a small density range
at the lowest end. The basic models are similar, so the pressures
are similar in the overlapping range, but there are differences.
In Ref. [14], only neutrons, protons, and α particles are
included, and interactions between them are taken into account
using the virial expansion. In our case, interactions between
composites are not included but all composites are allowed; but
in a very dilute case and at not too low temperatures, heavier
composites may have a very low probability of occurrence,
and so the results would naturally be similar to those in
Ref. [14].

Actual nuclear systems as created in heavy ion collisions
are finite and in addition have Coulomb forces. This makes
identification difficult of signals that are finger prints of the
phase transition. This continues to be the subject of intense
study, and there is a large volume of literature on this topic.
Even though this is outside the scope of the present article, we
make a few pertinent comments.

For arbitrarily large systems, such as studied in this paper,
at coexistence there are light gas particles whose yields fall
with mass number A and ultimately disappear. Then there is
essentially a “desert” (no yield) as a function of A, at the
end of which there is a very large blob. In finite systems,
there is no desert. For these, at coexistence, the yields of very
light particles will fall with A. But instead of falling to zero,
they rise again as the value of A approaches the mass A0 of
the disintegrating system. This is the well-known U shape.
Examples of this can be found at many places, for example,
Fig. 1 in Ref. [7]. The details of the U shape depends upon
the energy of collision. As the collision energy increases, the
temperature will rise, and the yield of the maximum at the
high A side will begin to decrease and finally will disappear.
The temperature at which this happens can be thought of as
the “boiling temperature” of this finite system.

There are other signals that have been thought of and used.
But these are not very directly related to the work reported
here so we omit those aspects.
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