
PHYSICAL REVIEW C 80, 044332 (2009)

Decoding β-decay systematics: A global statistical model for β− half-lives∗

N. J. Costiris† and E. Mavrommatis‡

Physics Department, Division of Nuclear Physics & Particle Physics, University of Athens, GR-15771 Athens, Greece

K. A. Gernoth§

Institut für Theoretische Physik, Johannes-Kepler-Universität, A-4040 Linz, Austria and
School of Physics & Astronomy, Schuster Building, The University of Manchester, Manchester, M13 9PL, United Kingdom

J. W. Clark‖
McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, Missouri 63130, USA
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Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to
established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies
in which global statistical modeling is pursued within the general framework of machine learning theory, we
implement advances in training algorithms designed to improve generalization, in application to the problem
of reproducing and predicting the half-lives of nuclear ground states that decay 100% by the β− mode. More
specifically, fully connected, multilayer feed-forward artificial neural network models are developed using the
Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The
predictive performance of models emerging from extensive computer experiments is compared with that of
traditional microscopic and phenomenological models as well as with the performance of other learning systems,
including earlier neural network models as well as the support vector machines recently applied to the same
problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line,
and especially those involved in r-process nucleosynthesis. It is found that the new statistical models can match
or even surpass the predictive performance of conventional models for β-decay systematics and accordingly
should provide a valuable additional tool for exploring the expanding nuclear landscape.
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I. INTRODUCTION

This work is devoted to the development of artificial neural
network models that, after being trained with a subset of the
available experimental data on β decay from nuclear ground
states, demonstrate significant reliability in the prediction of
β− half-lives for nuclides absent from the training set. The
work represents an exploratory study of the degree to which the
existing data determine the mapping from proton and neutron
numbers to the corresponding β− half-life.

There is an urgent need among nuclear physicists and
astrophysicists for reliable estimates of β−-decay half-lives of
nuclei far from stability [1,2]. Among nuclear physicists this
need is driven both by the experimental programs of existing
and future radioactive ion beam facilities and by the stresses
placed on established nuclear structure theory as totally new
areas of the nuclear landscape are opened for exploration.
For nuclear astrophysicists, such information is intrinsic to an
understanding of the onset of the nucleosynthesis of heavy
elements above Fe, notably the r process [3–5]. Both the
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element distribution on the r-process path and the time scale
of the r process are highly sensitive to the β−-decay properties
of the neutron-rich nuclei involved.

In the nuclear chart there are spaces for some 6000 nuclides
between the β-stability line and the neutron-drip line. Recent
years have seen significant progress at radioactive ion beam
facilities in laboratory production and study of nuclei in the
r-process path, and this effort will surely accelerate as more
advanced facilities come online [1,2]. Nevertheless, experi-
mental information on the properties of many r-process nuclei
will remain inaccessible for some time to come. Accordingly,
realistic models of nucleosynthesis must at present rely heavily
on theoretical predictions for β-decay lifetimes and other key
quantities.

A number of useful approaches to modeling β−-decay
half-lives have been proposed and applied. These include the
more phenomenological treatments, such as the gross theory
(GT), as well as microscopic approaches based on the shell
model and the proton-neutron quasiparticle random-phase
approximation (pnQRPA) in various versions. More recently,
hybrid macroscopic-microscopic and relativistic models have
come onto the scene. Some of these approaches emphasize
only global applicability, while others seek self-consistency
or comprehensive inclusion of nuclear correlations. Table 1 of
Ref. [6] provides a convenient summary of a number of the
competing models of β-decay systematics.
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In gross theory, developed by Takahashi, Yamada, and
Kondoh [7], gross properties of β− decay over a wide nuclidic
region are predicted by averaging over the final states of
the daughter nucleus. Subsequently, various refinements and
modifications of this treatment have been introduced. The most
current of these is the so-called semigross theory (SGT), in
which the shell effects of only the parent nucleus are taken
into account [8]. However, in the calculations of β−-decay
half-lives within the shell model, the detailed structure of
β strength function is considered. Results exist for lighter
nuclei and nuclei at N = 50, 82, and 126. (See Refs. [9,10]
for recent calculations.) Due to the limits set by the size of the
configuration space, calculations are not possible for heavy
nuclei.

Several groups have carried out extensive pnQRPA studies
including pairing. Efforts along this line by Klapdor and
coworkers [11] began in the framework of the Nilsson
single-particle model, including the Gamow-Teller residual
interaction in Tamm-Dancoff approximation (TDA), with
pairing treated at the BCS level [12]. This approach has
been complemented and refined by Staudt et al. [13] and
Hirsch et al. [14], using pnQRPA with the Gamow-Teller
residual interaction. The later study by Homma et al. [15],
denoted NBCS + pnQRPA, includes a schematic interaction
also for the first-forbidden (ff ) decay. The Klapdor group has
extended the pnQRPA theory to calculate β-decay half-lives in
stellar environments using configurations beyond 1p-1h [16].

The starting point of the β-decay calculations of Möller
and coworkers is the study of nuclear-ground-state masses and
deformations based on the finite-range droplet model (FRDM)
and a folded-Yukawa single-particle potential [17]. The β-
decay half-lives for the allowed Gamow-Teller transitions have
been obtained from a pnQRPA calculation after the addition of
pairing and Gamow-Teller residual interactions, in a procedure
denoted FRDM + pnQRPA [18,19]. In the latest calculations
the effect of the ff decay has been added by using the gross
theory (pnQRPA + ff GT) [20]. Nonrelativistic pnQRPA
calculations that aim at self-consistency include the Hartree-
Fock-Bogoliubov + continuum QRPA (HFB + QRPA) calcu-
lations performed with a Skyrme energy-density functional for
some spherical even-even semimagic nuclides with N = 50,
82, 126 [21]. The extended Thomas-Fermi plus Strutinski
integral method (ETFSI) (an approximation to the HF method
based on a Skyrme-type force plus a δ-function pairing
force) has been elaborated and applied to large-scale pre-
dictions of β− half-lives [22]. Recently, the density func-
tional + continuum QRPA (DF + CQRPA) approximation,
with the spin-isospin effective NN interaction of the finite
Fermi system theory operating in the ph channel, has been
developed for ground-state properties and Gamow-Teller and
ff transitions of nuclei far from the stability line and applied
near closed neutron shells at N = 50, 82, 126 and in the
region “east” of 208Pb [6,23]. In the relativistic framework,
a pnQRPA calculation (pnRQRPA) based on a relativistic
Hartree-Bogoliubov description of nuclear ground states with
the density-dependent effective interaction DD-MEI∗ has been
employed to obtain Gamow-Teller β−-decay half-lives of
neutron-rich nuclei in the N � 50 and N � 82 regions relevant
to the r process [24]. Recently, an extension of the above

framework to include momentum-dependent nucleon self-
energies was applied in the calculation of β-decay half-lives
of neutron-rich nuclei in the Z � 28 and Z � 50 regions [25].

Despite continuing methodological improvements, the pre-
dictive power of these conventional, “theory-thick” models
is rather limited for β−-decay half-lives of nuclei that are
mainly far from stability. The predictions often deviate from
experiment by one or more orders of magnitude and show
considerable sensitivity to quantities that are poorly known.
In this environment, statistical modeling based on advanced
techniques of statistical learning theory or “machine-learning,”
notably artificial neural networks (ANNs) [26,27] and support
vector machines (SVMs) [27–29], offers an interesting and
potentially effective alternative for global modeling of β−-
decay lifetimes. Such approaches have proven their value for
a variety of scientific problems in astronomy, high-energy
physics, and biochemistry that involve function approxima-
tion and pattern classification [30,31]. Statistical modeling
implementing machine-learning algorithms is “theory-thin,”
because it is driven by data with minimal guidance from
mechanistic concepts; thus it is very different from the
“theory-thick” approaches summarized above. Any nuclear
observable X can be viewed as a mapping from the atomic and
neutron numbers Z and N identifying an arbitrary nuclide,
to the corresponding value of the observable (the β half-life,
in the present study). In machine learning, one attempts to
approximate the mapping (Z,N ) → X based only on an
available subset of the data for X, i.e., a body of training data
consisting of known examples of the mapping. One attempts
to infer the mapping, in the sense of Bayesian probability
theory as expounded by Jaynes [32]. Thus, one is asking
the question: “To what extent do the data, and only the
data, determine the mapping (Z,N) → X?” The answer (or
answers) to this question should surely be of fundamental
interest, when confronted with databases as large, complex,
and refined as those existing in nuclear physics.

A learning machine consists of (i) an input interface where,
for example, input variables Z and N are fed to the device
in coded form, (ii) a system of intermediate elements or units
that process the input, and (iii) an output interface where an
estimate of the corresponding observable of interest, say, the
β half-life Tβ appears for decoding. Given an adequate body
of training data (consisting of input “patterns” or vectors and
their appropriate outputs), a suitable learning algorithm is used
to adjust the parameters of the machine, e.g., the weights
of the connections between the processing elements in the
case of a neural network. These parameters are adjusted in
such a way that the learning machine (a) generates responses
at the output interface that closely fit the half-lives of the
training examples and (b) serves as a reliable predictor of the
half-lives of the test nuclei absent from the training set. In
the more mundane language of function approximation, the
learning-machine model provides a means for interpolation or
extrapolation.

Neural-network models have already been constructed
for a range of nuclear properties including atomic masses,
neutron separation energies, ground-state spins and parities,
and branching probabilities for different decay channels, as
well as β−-decay half-lives [30,31,33–36]. Very recently,
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global statistical models of some of these properties have also
been developed based on support vector machines [37–39]. In
time, there has been steady improvement of the quality of these
models, such that the documented performance of the best
examples approaches or even surpasses that of the traditional
“theory-thick” models in predictive reliability. By their nature,
they should not be expected to compete with traditional
phenomenological or microscopic models in generating new
physical insights. However, their prospects for revealing new
regularities are by no means sterile, because the explicit
formula created by the learning algorithm for the physical
observable being modeled is available for analysis.

We present here a new global model for the half-lives
of nuclear ground states that decay 100% by the β− mode,
developed by implementing the most recent advances in
machine-learning algorithms. Section II describes the elements
of the model, the training algorithm employed, steps taken to
improve generalization, the data sets adopted, and the coding
schemes used at input and output interfaces. Performance
measures for assessing the quality of global models of β

lifetimes are reviewed in Sec. III. The results of our large-scale
modeling studies are reported and evaluated in Sec. IV.
Detailed comparisons are made with experiment, with a
selection of the theory-driven GT and pnQRPA global models,
and with previous ANN and SVM models. This assessment
is followed by the presentation of specific predictions for
nuclei that are situated far from the line of stability, focusing
in particular on those involved in r-process nucleosynthesis.
Finally, Sec. V summarizes the conclusions of the present
study and considers the prospects for further improvements in
statistical prediction of half-lives.

II. THE MODEL

A. Network architecture and dynamics

Artificial neural networks, whose structure is inspired by the
anatomy of natural neural systems, consist of interconnected
dynamical units (sometimes called neurons) that are typically
arranged in a distinct layered topology. Also in analogy with
biological neural systems, the function of the network, for
example, pattern recognition, is determined by the connections
between the units. In the work to be reported, we have focused
exclusively on feed-forward networks, in which information
flows unidirectionally from an input layer through one or more
intermediate (hidden) layers to an output layer. Lateral and
feedback connections are absent, but otherwise the network is
fully connected. The activation of hidden units is nonlinear,
whereas the output units transform their inputs linearly. The
architecture of such a network is indicated by the notation

[I − H1 − H2 − · · · − HL − O |W ] , (1)

where I is the number of inputs, Hi is the number of neurons
in the i th hidden layer, O is the number of units in the output
layer, and W is the total number of parameters needed to
complete the specification of the network, consisting of the
weights of the connections and the biases of the units. Figure 1
depicts a typical fully connected network of the class used

FIG. 1. Architecture of a typical fully connected feed-forward
network having an input layer with three units, two hidden layers
each, containing five units, and a single output unit, thus of structure
[3 − 5 − 5 − 1|56].

in our statistical modeling, in this case having architecture
[3 − 5 − 5 − 1|56].

The connection from neuron j to neuron i carries a real-
number weight wij . Thus, if oj is the activity of neuron j , it
provides an input wijoj to neuron i. In addition, each neuron
i is assigned a bias parameter bi , which is summed together
with its input signals from other neurons j to form its total
input ui . This quantity is fed into the activation function ϕi

characterizing the response of neuron i. For the neurons in
hidden layers, this function is taken to have the nonlinear
hyperbolic tangent form

ϕ(u) = 2

1 + exp (−2u)
− 1, (2)

while for the neurons in the output layer the symmetric
saturating linear form

ϕ(u) =
⎧⎨
⎩

−1, u < −1
u, −1 � u � 1,

1, u > 1
(3)

is adopted. The output (or activity) oi of neuron i is given by

oi = ϕ
(
bi +

∑
j
wij oj

)
. (4)

We note that with its sign reversed, a neuron’s bias can be
viewed as a threshold for its activation. Also, it is sometimes
convenient to regard the bias bi as the weight of a connection
to neuron i from a virtual unit v that is always fully “on,”
i.e., ov ≡ 1. The weights wij and biases bi are adjustable
scalar parameters of the untrained network, available for
optimization of the network’s performance in some task,
notably classification and function approximation in the case
of applications to global nuclear modeling. This is usually
done by minimizing some measure of the errors made by the
network in response to inputs corresponding to a set of training
examples or “training patterns.”

The dynamics of the network is exceptionally simple. When
a pattern p is presented at the input, the system computes a
response according to two rules:

(a) The states of all neurons within a given layer, as specified
by the outputs oi of Eq. (4), are updated in parallel, and
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(b) The layers are updated successively, proceeding from the
input to the output layer.

In modeling the systematics of β lifetimes with this ap-
proach, we apply a supervised learning algorithm to optimize
the weights and biases, as described in the subsections to
follow. The patterns p to be learned or predicted, examples
of the mapping from nuclide to lifetime, take the form

{(
Zp

Np

)
, log10 T

p

β,exp

}
, (5)

and thus consist of an association between the atomic and
neutron numbers of the parent nuclide, with the base-10 log of
the experimental half-life T

p

β,exp. It is of course natural to work
with the logarithm of Tβ , because the observed values of Tβ

itself vary over many orders of magnitude.
According to the nature of statistical estimation, realized

here in the application of machine learning techniques to
function approximation, a neural network model is only one
form in which empirical knowledge of a physical phenomenon
of interest (β decay in this case) may be encoded [27]. As
indicated in the introduction, the present work is at some level
an investigation of the degree to which the available data
determine the physical mapping from Z and N to the
corresponding β-decay half-life. Actually, we do not have
knowledge of the exact functional relationship involved. Thus
we should write

log10 Tβ(Z,N ) = g(Z,N ) + ε(Z,N), (6)

where g(Z,N ) is a function that decodes the decay systematics
and ε is a random expectation error—a Gaussian noise term
that represents our ignorance about the dependence of Tβ

on Z and N . From a heuristic perspective beyond strict
mathematical definitions, this ε noise term could reflect
“chaotic” influences on the phenomenon, along with missing
regularities that could be more easily modeled and eventually
included in the estimate of the physical quantity Tβ .

The pragmatic objective of the training process in this
application will be to minimize the sum of squared errors
ep committed by the network model relative to experiment,
for the n patterns p from the available experimental data (D)
that constitute the training set

ED =
n∑

p=1

(ep)2 =
n∑

p=1

(
log10T

p

β,exp − log10T
p

β,calc

)2
. (7)

Here log10T
p

β,calc is the neural-network output for pattern (nu-
clide) p, whereas log10T

p

β,exp is the target output. This quantity
is often referred to as a cost function or objective function and
can obviously be used as a measure of network performance.
In practice, its form will be modified in subsection C2 to
improve the network’s ability to generalize or predict. A
network model is said to generalize well if it performs well for
inputs (nuclides) outside the training set, with the mean-square
error for these “fresh” nuclei providing an appropriate measure
of predictive performance.

B. The training algorithm

In supervised learning, the network is exposed, in succes-
sion, to the input patterns (nuclides) of the training set, and the
errors made by the network are recorded. One pass through
the training set is called an epoch. In batch training, weights
and biases are incremented after each epoch according to a
suitable learning algorithm, with the expectation of improving
subsequent performance on the training set.

Statistical modeling inevitably involves a trade-off between
closely fitting the training data and reliability in interpolation
and extrapolation [27,28]. In the present application, it is not
the goal of network training to achieve an exact reproduction,
by the model, of the known half-lives. This would necessarily
entail fitting the data precisely with a large number of
parameters—which would in general require a complex ANN
with many layers and/or neurons/layer. Obviously, there is no
point in constructing a lookup table of the known β half-lives.
Rather, the goal is to achieve an accurate representation of the
regularities inherent in the training data by means of a network
that is no more complicated than it need be, thereby promoting
good generalization.

We employ a training algorithm within the general class
of back-propagation learning procedures. There are now quite
a number of well-tested procedures in this class, including
steepest-descent, conjugate-gradient, Newton, and Levenberg-
Marquardt training algorithms [26]. All of these approaches
aim to minimize an appropriate cost function with respect to
the network weights and biases. The term back-propagation
refers to the process by which derivatives of network errors
with respect to weights/biases can be computed starting from
the output layer and proceeding backward toward the input. In
general, the Levenberg-Marquardt back-propagation (LMBP)
algorithm will have the fastest convergence in function approx-
imation problems, an advantage that is especially noticeable if
very accurate training is required [40].

In the Newton method, minimization of the cost function is
accomplished through the update rule

wk+1 = wk − H−1
k gk, (8)

where wk is the vector formed from the weights and biases,
Hk is the Hessian matrix (the matrix of second derivatives
of the objective function ED with respect to the weights and
biases) and gk is the gradient of ED at the current epoch k.
As a Newton-based procedure attempting to approximate the
Hessian matrix, the Levenberg-Marquardt algorithm [26,41]
was designed to approach second-order training speed without
having to compute second derivatives. When the cost function
has the form of Eq. (7), the Hessian matrix for nonlinear
networks can be approximated as

H ≈ JTJ, (9)

where J is the Jacobian matrix composed of the first derivatives
of the network errors with respect to the weights/biases. This
generates a W × W matrix, where W is the number of the free
parameters (weights and biases) of the network. The gradient
g can be computed as

g = JTe, (10)
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where e is the vector whose components are the network errors
ep. [As in Eq. (7), the network error for a given input pattern
is the target value of the estimated quantity, minus the value
produced by the network.]

Adopting the Gauss-Newton approximation (9), the
Levenberg-Marquardt algorithm then adjusts the weights
according to the Newton-like updating rule

wk+1 = wk − [
JT

k Jk + µkI
]−1

JT
k ek, (11)

where I is the unit matrix.
The factor µk appearing in the Eq. (11) is an adjustable

parameter that controls the step size so as to quench oscillations
of the cost function near its minimum. When µk is very
small, LMBP coincides with the Newton method executed
with the approximate Hessian matrix. When µk is large
enough, matrix g in Eq. (10) is nearly diagonal and the
algorithm behaves like a steepest-descent method with a
small step size. Steepest-descent algorithms are based on
linear approximation of the cost function, while the Newton
algorithm involves quadratic approximation. Newton’s method
is faster and more accurate near an error minimum. Therefore
the preferred strategy is to shift toward Newton’s method as
quickly as possible. To this end, µk is decreased after each
successful step and is increased only when a tentative step
would raise the cost function. In this way, the cost function
will always be reduced at each iteration of the algorithm.
The algorithm begins with µk set to some small value (e.g.,
µk = 0.01). If a step does not yield a smaller value for the
cost function, the step is repeated with µk multiplied by some
factor θ > 1 (e.g., θ = 10). Eventually the cost function should
decrease. If a step does produce a smaller value for the cost
function, then µk is divided by θ for the next step, so that
the algorithm will approach Gauss-Newton, which should
provide faster convergence. Thus, the Levenberg-Marquardt
algorithm implements a favorable compromise between slow
but guaranteed convergence far from the minimum and a fast
convergence in the neighborhood of the minimum.

The key step in LMBP algorithm is the computation of
the Jacobian matrix. To perform this computation we use
a variation of the classical back-propagation algorithm. In
the standard back-propagation procedure, one computes the
derivatives of the squared errors with respect to the weights and
biases of the network. To create the Jacobian matrix we need to
compute the derivatives of the errors, instead of the derivatives
of their squares, a trivial difference computationally.

C. Improving generalization

To build a viable statistical model, it is imperative to
avoid the phenomenon of overfitting, which, for example,
occurs when, under excessive training, the network simply
“memorizes” the training data and makes a lookup table. Such
a network fails to learn the regularities of the target mapping
that are inherent in the data; the network is therefore deficient
in generalization. We seek to avoid overfitting through a
combination of well-established techniques, namely cross-
validation [27] and Bayesian regularization [42].

1. Cross-validation

Cross-validation is a standard statistical technique based on
dividing the data into three subsets [27]. The first subset is the
learning or training set employed in building the model (i.e.,
in computing the Jacobians and updating the network weights
and biases). The second subset is the validation set, used to
evaluate the performance of the model outside the training set
and guide the choice of model. The error on the validation set
is monitored during the training process. When the network
begins to overfit the data, the error on the validation set will
typically begin to rise. If this continues to occur for a specified
number of iterations, the training is stopped, and the weights
and biases at the minimum of the validation error are reinstated.
The third subset is the test set. The error on the test set is not
used during the training procedure, but it is used to assess
the generalization performance of the model and to compare
different models. While effective in suppressing overfitting,
cross-validation tends to produce networks whose response
is not sufficiently smooth. This is dealt with by performing
Bayesian regularization together with cross-validation.

2. Bayesian regularization

The standard Levenberg-Marquardt algorithm aims to
reduce the sum of squared errors ED , written explicitly in
Eq. (7) for the β-decay problem. However, in the framework
of Bayesian regularization [42], the Levenberg-Marquardt
optimization (back-propagation) algorithm (denoted LMOBP)
minimizes a linear combination of squared errors and squared
network parameters,

F = β̃ED + α̃EW , (12)

where EW is the sum of squares of the network weights (in-
cluding biases). The multipliers α̃ and β̃ are hyperparameters
defined by

α̃k = γk

2EW

and β̃k = n − γk

2ED

, (13)

where

γk = W − 2α̃ · tr (Hk)−1, (14)

is the number of parameters (weights and biases) that are
being effectively used by the network, n is the number of
errors, W is the total number of parameters characterizing the
network model [see Eq. (1)], and H = ∇2F is the Hessian
matrix evaluated for the extended (“regularized”) objective
function (12). The full Hessian computation is again bypassed
using the Gauss-Newton approximation, writing

Hk = β̃k∇2ED + α̃k∇2EW ≈ 2β̃kJT
k Jk + 2α̃kI. (15)

Thus, the Levenberg-Marquardt optimization algorithm up-
dates the weights/biases by means of the rule

wk+1 = wk − [
β̃kJT

k Jk + (µk + α̃k) I
]−1 (

β̃kJT
k ek + α̃kwk

)
.

(16)

A detailed discussion of the use of Bayesian regularization in
combination with the Levenberg-Marquardt algorithm can be
found in Ref. [43].
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FIG. 2. Partitioning of the nuclides of the data set NuSet-B into learning, validation, and test sets, as viewed in the N -Z plane. Stable
nuclides are also indicated.

D. Training mode

Back-propagation learning, as a technique for iterative
updating of network parameters, can be executed in either
the batch or pattern-by-pattern (or “on-line”) mode. In the
on-line mode, a pattern is presented to the network and its
response recorded; the Jacobian matrix is then computed and
the weights/biases updated before the next pattern is presented.
In the batch mode, however, calculation of the Jacobian
and parameter updating is performed only after all training
examples have been presented, i.e., at the end of each epoch.
The model results reported here are based on the batch mode,
the choice being made on the empirical basis of findings from
a substantial number of computer experiments carried out with
both strategies.

E. Data sets

The experimental data used in developing ANN models of
β-decay systematics have been taken from the Nubase2003
evaluation [44] of nuclear and decay properties carried out
by Audi et al. at the Atomic Mass Data Center. Restricting
attention to those cases in which the ground state of the
parent decays 100% through the β− channel, we form a
subset of the β-decay data denoted by NuSet-A, consisting
of 905 nuclides sorted by half-life. The half-lives of nuclides
in this set range from 0.15 × 10−2 s for 35Na to 2.43 × 1023 s
for 113Cd. Of these NuSet-A nuclides, 543 (60%) have been
chosen, at random with a uniform probability, to form the
training set, and 181 (20%) of those remaining have been
similarly chosen to form the validation set. The residual 181
(20%) are reserved for testing the predictive capability of
the models constructed. Such partitioning of the NuSet-A
database (uniform selection) was implemented to ensure that

the distribution over half-lives in the whole set is faithfully
reflected in the learning, validation, and test sets. Figure 2
shows an example of the results of this procedure, as viewed
in the Z − N diagram in the case of NuSet-B defined below.

We also formed a more restricted data set, called NuSet-B,
by eliminating from NuSet-A those nuclei having half-life
greater than 106 s. The half-lives in this subset, which consists
of 838 nuclides, range from 0.15 × 10−2 s for 35Na to 0.20 ×
106 s for 247Pu. Histograms depicting the lifetime distribution
of the NuSet-B nuclides are shown in Fig. 3, having made a
uniform subdivision of the data into learning, validation, and
test sets, consisting respectively of 503 (∼60%), 167 (∼20%),
and 168 (∼20%) examples. Having excluded the few long-
lived examples from NuSet-A (situated to the left of the vertical
line in Fig. 3), one is then dealing with a more homogeneous
collection of nuclides, a property that facilitates the training of
network models. Accordingly, we have focused our efforts on

mssmin hdmo.yrkyrMyrGyrTyrPyr0

50

100

150

 

 

Learning Set Validation Set Test Set
NuSet−B

NuSet−A

FIG. 3. Distribution of half-lives over time scale for NuSet-A
nuclides. NuSet-B nuclides lie to the right of the vertical gray
rectangle.
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NuSet-B. Table VIII gives information on the distribution of
NuSet-B nuclides with respect to the even versus odd character
of Z and N .

When considering the performance of a network model for
examples taken from the whole data set (whether NuSet-A
or NuSet-B), we speak of operation in the Overall Mode.
Similarly, we speak of operation in the Learning, Validation,
and Prediction Modes when studying performance on the
learning, validation, and test sets, respectively.

F. Coding schemes at input and output interfaces

In our initial experiments in the design of ANN models
for β-decay half-life prediction, we employed input coding
schemes that involve only the proton number Z and the neutron
number N . To keep the number of weights to a minimum, we
make use of analog (i.e., floating-point) coding of Z and N

through two dedicated inputs, whose activities represent scaled
values of these variables. The LMOBP algorithm works better
when the network inputs and targets are scaled to the interval
[−1, 1] than (say) the interval [0, 1] [26]. Moreover, the range
of the hyperbolic tangent activation function employed by the
hidden units lies in the interval −1 � ϕ (u) � 1. The ranges
[0, 230] of both Z and N are therefore scaled to fall in this
range to avoid overflow conditions. The base-10 log of the
β− half-life Tβ,calc, as calculated by the network for input
nuclide (Zp,Np), is represented by the activity of a single
analog output unit. For the same reason as indicated for the
input units, the range [0.17609, 8.9771] of the target values
log10T

p

β,exp is scaled again to the interval [−1, 1].
Also in the primary stages of our study of β-half-life

systematics, we have assumed that the half-life of a given
nucleus is properly given by an expression of the form of
Eq. (6). Such an expression echoes the essence of Weizsacker’s
semiempirical mass formula based on the liquid-drop model,
with the binding energy given by a function B(Z,N ) repre-
senting a statistical estimate of the physical quantity, plus an
additive noise term.

Taking Z and N as the only inputs to the inference machine
formed by the neural network has, of course, the logistical
advantage that there is no limitation to the range of prediction
of nuclear properties across the nuclear landscape. If, however,
such quantities as Q values and neutron separation energies
(Sn) were included as inputs, one would have to calculate
these quantities for choices of (Z,N ) at which experimental
values are not available. But this implies a departure from the
“ideal” of determining the physical mapping from (Z,N ) to
the target nuclear property, based only on the existing body
of experimental data for that property. The predictions of
the network model would necessarily be contingent on some
theoretical model to provide the additional values of the input
quantities.

However, estimating a given nuclear property—the log
lifetime of β decay in the present case—as a smooth function
of Z and N has clear limitations. The nuclear data itself sends
strong messages of the importance of pairing, shell effects
(“quantal effects”), associated with the integral nature of Z

and N . The problem of atomic masses provides the classic
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FIG. 4. Plot showing calculated and experimental β−-decay half-
lives for the 28Ni isotopic chain. (Solid dots) Experimental data
points. (Unfilled dots) New and more precise experimental half-lives
recently deduced by Hosmer et al. [45]. Pluses: results generated
by the [2 − 5 − 5 − 5 − 5 − 1|111] ANN model with inputs (Z, N ).
Solid lines trace the calculated values of the overall mode (learning,
validation, and test sets), while dotted lines trace extrapolated values
produced by the model.

example: the liquid-drop formula must be supplemented by
pairing and shell corrections to account for the existence of
different mass surfaces for even-even, odd-A, and odd-odd
nuclei and other effects of the integral/particulate character of
Z and N .

Examination of results from the simple coding scheme
with Z and N alone serving as analog inputs is never-
theless instructive. We have applied the LMBP training
algorithm to develop a network model with architecture
[2 − 5 − 5 − 5 − 5 − 1|111]. As shown in Fig. 4, the model
yields a smooth curve that represents a gross fit of the
experimental data involved. The predictive ability of the model
naturally relies on extrapolation based on this curve. These
results demonstrate the need for a more refined model within
which quantal effects such as pairing and shell structure
are given an opportunity to exert themselves, so the natural
fluctuations are followed in validation and prediction modes,
as well as in the learning (or “fitting”) phase.

A straightforward modification of the input interface of
the network model that can at least partially fulfill this need
is suggested by the extension of the liquid-drop model to
include a pairing-energy term. In addition to the two input
units representing Z and N as floating-point numbers, we
introduce a third input unit representing a discrete parameter
analogous to the pairing constant, namely

δ =
⎧⎨
⎩

+1, for e − e nuclei,
0, for o − mass nuclei,

−1, for o − o nuclei,
(17)

which distinguishes between even-Z-even-N , odd-A, and odd-
Z-odd-N nuclides. This simple refinement has the conceptual
benefit of remaining in the spirit of stand-alone, “theory-thin”
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modeling, driven purely by data rather than data plus physical
intuition and accepted theory.

The only information required is a knowledge of the Z and
N values and (redundantly yet importantly) their even/odd
parities. The expression replacing Eq. (6) as a representation
of the inference process performed by the ANN model is
evidently

log10 Tβ(Z,N ) = g̃(Z,N, δ) + ε̃(Z,N ). (18)

We note that it has proven advantageous in global statistical
models of nuclear mass excess [35] to introduce two binary
input units that encode the even/odd parity of Z and N .

We shall see that residual shell effects that may impact
the behavior of half-lives for both allowed and/or forbidden
transitions can be achieved to some extent through the δ input
defined in Eq. (17).

G. Initialization of network parameters

Proper initialization of the free parameters of the ANN
(its weights and biases) is a very important and highly
nontrivial task. One needs to choose an initial point on the
error surface defined by Eqs. (7) and (12) as close as possible
to its global minimum with respect to these parameters and
such that the output of each neuronal unit lies within the
sensitive region of its activation function φ. We adopt a method
devised by Nguyen and Widrow [46], in which the initial
weights are selected so as to distribute the active region of
each neuron (its “receptive field” neurobiological parlance)
approximately evenly across the input space of the layer
to which that neuron belongs. The Nguyen-Widrow method
has clear advantages over more naive initializations in that
all neurons begin operating with access to good dynamical
range and all regions of the input space receive coverage from
neurons. Consequently, training of the network is accelerated.

III. PERFORMANCE MEASURES

The performance of the models we have been developing
is assessed in terms of several commonly used statistical
measures, namely, the root-mean-square error (σrms), the
mean absolute error (σma), and the normalized-mean-square
error (σnms). For any given data set, these quantities provide
overall measures of the deviation of the calculated values
yi ≡ log10 Tβ,calc of the log-half-life produced by the model
for nuclide i, from the corresponding experimental value
ŷi ≡ log10 Tβ,exp. To understand the network’s response in
more detail, a linear regression analysis (LR) is also carried out
in which the correlation between experimental and calculated
half-life values is evaluated in terms of the correlation
coefficient (R value). Definitions of these quantities follow,
with n standing for the total number of nuclides in each case
(the full data set or one of its subsets: the learning, validation,
or test set).

Root-mean-square error

σrms =
⎡
⎣1

n

n∑
p=1

(yp − ŷp)2

⎤
⎦

1/2

. (19)

Normalized-mean-square error

σnms =
∑n

p=1 (yp − ŷp)2∑n
p=1 (yp − ȳp)2

. (20)

Mean absolute error

σma = 1

n

n∑
p=1

|yp − ŷp|. (21)

Those models having smaller values of σrms and σma, and σnms

closer to unity, are favored.
Linear regression (LR)

yp = aŷp + b. (22)

In linear regression, the slope a and the intercept b are
calculated, as well as the correlation coefficient

R =
∑n

p=1 YpŶp[∑n
p=1 (Yp − 〈Yp〉)2

∑n
p=1 (Ŷp − 〈Ŷp〉)2

]1/2 , (23)

where Yp = yp − 〈y〉 and Ŷp = ŷp − 〈ŷ〉. Values of R greater
than 0.8 indicate strong correlations.

The above indices necessarily provide only gross assess-
ments of the quality of our models. In the literature on global
modeling of β− half-lives, several additional indices, perhaps
more appropriate to the physical context, have been used
to analyze performance. The collaboration led by Klapdor
[11–16] has employed the quality measure

x̄K = 1

n

n∑
p=1

xp, (24)

wherein

xp =
{

Tβ,exp/Tβ,calc, if Tβ,exp � Tβ,calc

Tβ,calc/Tβ,exp, if Tβ,exp < Tβ,calc,
(25)

along with the corresponding standard deviation

σK =
⎡
⎣1

n

n∑
p=1

(xp − x̄K )2

⎤
⎦

1/2

. (26)

Again, the sums run over the appropriate set of nuclides.
Perfect accuracy is attained when x̄K = 1 and σK = 0.

In a more incisive assessment, also pursued by Klapdor and
coworkers, one calculates the percentage m of nuclides having
measured ground-state half-life Tβ,exp within a prescribed
range (e.g., not greater than 106, 60, or 1 s), for which
the half-life generated by the model is within a prescribed
tolerance factor f (in particular, 2, 5, or 10) of the experimental
value.

A measure M similar to x̄K , but defined in terms of log10 Tβ

rather than Tβ , has been used by Möller and collaborators
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Total Error = 2.50 for 252 nuclei with Texp < 1 s.
Total Error = 2.87 for 653 nuclei with Texp < 1000 s.
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FIG. 5. Ratios of calculated to experimental half-life values for
nuclides in the learning (black), validation (gray), and test (white)
sets selected from NuSet-B, plotted versus half-life Tβ,exp. Calculated
values are generated by the standard ANN model of this work with
architecture [3 − 5 − 5 − 5 − 5 − 1|116]. Total error equals 
(10)

[see Eq. (32)].

[19,20]; specifically,

M = 1

n

n∑
p=1

rp, (27)

where rp = yp/ŷp. This quantity gives the average position of
the points in Fig. 5 for the respective data sets. Its associated
standard deviation

σM =
⎡
⎣1

n

n∑
p=1

(rp − M)2

⎤
⎦

1/2

, (28)

is also examined, and the “total” error of the model for the
data set in question is taken to be


 =
⎡
⎣1

n

n∑
p=1

(yp − ŷp)2

⎤
⎦

1/2

, (29)

which is the same as the σrms defined in Eq. (19). Model quality
is also expressed in terms of exponentiated versions of these
last three quantities, namely the mean deviation range

M (10) = 10M, (30)

the mean fluctuation range

σM(10) = 10σM , (31)

and total error range 
(10):


(10) = 10
. (32)

Superior models should have 
,M , and σM near zero
and M (10), σ

(10)
M , and 
(10) near unity. Again, in a closer

analysis of model capabilities, these indices are evaluated
within prescribed half-life domains.

IV. RESULTS AND DISCUSSION

As already indicated, statistical modeling of β−-decay
systematics is more effective when the range of lifetimes con-
sidered is more restricted. Accordingly, the following detailed
presentation and analysis will focus on the properties and per-
formance of the best ANN model developed using the NuSet-B
database, which is restricted to nuclides with β− half-life be-
low 106 s. The quality of this model will be compared, in con-
siderable detail, with that of traditional theoretical global mod-
els cited in the introduction, earlier ANN models, and models
provided by another class of learning machines (SVMs).

After a large number of computer experiments on networks
developed with different architectures, input/output coding
schemes, activation functions, initialization prescriptions, and
training algorithms [47], we have arrived at an ANN model
well suited to approximate reproduction of the observed
β−-decay half-life systematics and prediction of half-lives of
nuclides unfamiliar to the network. The preferred network
is of architecture [3 − 5 − 5 − 5 − 5 − 1|116]. The hyper-
bolic tangent sigmoid is taken as the activation function of
neurons in hidden layers, and a saturated linear function
is adopted in the output layer. In training, the techniques
for improving generalization that were described in Sec. II,
namely Bayesian regularization and cross-validation, were
implemented in combination with the Levenberg-Marquardt
optimization algorithm (LMOBP) and the Nguyen-Widrow
initialization method. The network was taught in batch mode
and the training phase was continued for 696 epochs. Of the
116 degrees of freedom corresponding to the network weights
and biases, 98 survive the training process; this is the value of
the number γk defined in Eq. (14).

A. Comparison with experiment

In this subsection, we evaluate the performance of our ANN
model by direct comparison with the available experimental
data. Table I collects results for the overall quality measures
[Eqs. (19)–(21)] commonly used in statistical analysis as well
as the values of the correlation coefficient R [see Eq. (23)].
We may quote for comparison the root-mean-square errors of
1.08 (learning mode) and 1.82 (prediction mode) obtained in
an earlier ANN model of β-decay systematics [33].

These overall measures are silent with respect to specific
physical merits or shortcomings of the model. However, such
information can be revealed by suitable plots of the results
from applications of the model, as exemplified in Figs. 5–9.

TABLE I. Performance measures for the learning, validation, test,
and whole sets, achieved by the favored ANN model of β−-decay
half-lives, a network with architecture [3 − 5 − 5 − 5 − 5 − 1|116]
trained on nuclides from NuSet-B.

Performance Learning Validation Test Whole
measure set set set set

σrms 0.53 0.60 0.65 0.57
σnms 1.004 0.995 1.012 0.999
σma 0.38 0.41 0.46 0.40
R value 0.964 0.953 0.947 0.958
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FIG. 6. Same as Fig. 5, but ratios of calculated to experimental
half-lives are plotted against the atomic number Z. The dashed lines
indicate the magic numbers.

Figures 5 and 6 present the ratios of calculated to exper-
imental half-life values. The deviations from the measured
values are clearly visible as departures from the solid line
Tβ,calc

/
Tβ,exp = 1. Both figures show that the model response

follows the general trend of the experimental half-lives. The
increased scatter of the points at longer lifetimes is presumably
due to the sparse representation of long-lived β emitters in
the training data. However, shell effects are included in the
right direction as shown in Figs. 6–8. The accuracy of model
output versus distance from stability can be inferred from
Fig. 7. The local isotopic σrms (Fig. 8) and the absolute
deviation of calculated from experimental log10 Tβ values
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FIG. 8. Values of σrms obtained in each isotopic chain with the
favored [3 − 5 − 5 − 5 − 5 − 1|116] network model, respectively,
for the learning, validation, and test sets, and the full NuSet-B
database, plotted against atomic number Z.

(Fig. 7) indicate a balanced behavior of network response
in all β−-decay regions. However, Fig. 7 shows that some
less accurate results are obtained very near the β-stability
line, a feature also present in the traditional models of
Refs. [15,20]. For nuclei with very small or very large mass
values there are no significant deviations. Last, the regression
analysis we have performed, in which linear fits are made
for the learning, validation, and test sets as well as the
full NuSet-B database, serves to demonstrate in a different
way the relatively small discrepancies between calculated
and observed β−-decay half-lives (see Fig. 9). Moreover,
the resultant R values (see Table I) imply that the observed
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FIG. 9. Regression analysis for the (i) learning, (ii) validation, (iii) test sets (prediction mode) and for the (iv) full database (overall mode).
Solid lines represent exact agreement with the data (i.e., log10 Tβ,calc = log10 Tβ,exp), while dashed lines indicate the corresponding best linear
fits. The dataset used is NuSet-B. The units used for Tβ are ms. The corresponding values of the parameters a and b of Eq. (22) and the
correlation coefficient R of [Eq. (23)] are given in each panel.

systematics is smoothly and uniformly mirrored in the model’s
responses.

B. Comparison with RPA and GT global models: a detailed
analysis

In this subsection, the performance of the favored network
model of β− lifetime systematics is compared with that of
prominent theory-thick global models.

Adopting the quality measures [Eqs. (27)–(32)] introduced
by Möller and collaborators, we first compare the performance
of our global ANN model [3 − 5 − 5 − 5 − 5 − 1 |116] with
the global microscopic models based on the proton-neutron
quasiparticle random-phase approximation (pnQRPA), in
particular, the NBCS + pnQRPA model of Homma et al. [15]
and the FRDM + pnQRPA model of Möller et al. [19]. The
efficacy of the ANN model is also compared with that of the
microstatistical semigross theory (SGT) as implemented by
Nakata et al. [8]. Table II lists the ANN values for M (10) and
σ

(10)
M specific to odd-odd, odd-A, and even-even nuclides and

calculated using the whole and test sets. Table III collects the
M (10) and σ

(10)
M values for the three theory-thick models in

the same format. As seen in these tables, both pnQRPA and
SGT models tend to overestimate the β− half-lives of odd-odd
nuclei, while the FRDM calculation tends to underestimate
the shorter half-lives for even-even and odd mass nuclei. The
ANN model, however, tends to overestimate the half-lives
of even-even nuclides, although to a smaller degree; this
shortcoming is due, at least in part, to the relative scarcity
of even-even parents.

Table IV contains values of the performance measures
defined in Eqs. (27)–(32) for three global models of β−-
decay half-life. Here the entries are not separated according

to even-even, odd-A, or odd-odd class membership of the
nuclides involved. Included are results for calculations within
the FRDM + pnQRPA model, updated to a more recent mass
evaluation [20], together with corresponding values for a hy-
brid “micromacroscopic” pnQRPA + ff GT treatment, which
combines the QRPA model of allowed Gamow-Teller β decay
with the gross theory of first-forbidden (ff ) decay [20]. To per-
mit a direct comparison with the ANN model, we also report in
this table the results for ANN performance figures determined
independently of the even-even, odd-A, odd-odd nuclidic
class distinction, focusing attention only on the subdivision
into half-life ranges for both the overall and the prediction
mode. The improved FRDM + pnQRPA model underesti-
mates long half-lives, whereas the pnQRPA + ff GT approach
slightly underestimates half-lives over the full range consid-
ered. The tabulated quality indices indicate that the ANN
responses are in closer agreement with experiment more
frequently than the FRDM + pnQRPA calculations, while the
ANN model and the pnQRPA + ff GT approaches perform
about equally well.

The performance of our ANN model may also be evaluated
in terms of the quality measures x̄K and σK employed by
Klapdor and coworkers and defined in Eqs. (24)–(26). Table V
includes values of these quantities for the network model,
along with values for the pnQRPA calculation of Staudt
et al. [13] and for the NBCS + pnQRPA approach of Homma
et al. [15]. Detailed comparison shows that, judging from
these indices, there is only a modest decline in the quality
of ANN responses in going from the overall mode to the
prediction mode and that the performance of the pnQRPA
model is distinctly better than that of the neural network for
shorter half-lives but worse for longer half-life values. We
note, however, that the pnQRPA model could be regarded
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TABLE II. Analysis of the deviation between calculated and ex-
perimental β−-decay half-lives of the [3 − 5 − 5 − 5 − 5 − 1|116]
standard ANN model in the overall and prediction modes, based on
the quality measures M (10) and σM(10) of Eqs. (30) and (31) used
by Möller and coworkers. The second column denotes the even/odd
character of the parent nucleus in Z and N , while n is the number of
nuclides with experimental half-lives lying in the prescribed range
(first column).

Tβ,exp (s) Class n M (10) σM(10)

(a) ANN model, overall mode
<1 o-o 76 1.04 2.53

odd 125 1.16 2.25
e-e 51 1.87 2.45

<10 o-o 121 1.11 2.96
odd 187 1.10 2.31
e-e 87 1.65 2.56

<100 o-o 158 1.08 3.06
odd 261 1.08 2.45
e-e 110 1.58 2.31

<1000 o-o 191 1.12 3.06
odd 329 1.07 2.73
e-e 133 1.63 2.60

<106 o-o 238 0.93 3.87
odd 437 0.97 3.67
e-e 163 1.25 3.44

(b) ANN model, prediction mode
<1 o-o 11 0.86 1.98

odd 32 1.05 2.40
e-e 7 2.36 3.26

<10 o-o 20 0.86 3.76
odd 42 0.92 2.61
e-e 17 1.80 2.58

<100 o-o 28 0.76 3.20
odd 57 0.97 2.91
e-e 21 1.58 2.98

<1000 o-o 35 0.78 3.13
odd 68 0.84 3.07
e-e 28 1.49 3.04

<106 o-o 46 0.58 4.71
odd 87 0.86 4.07
e-e 35 1.14 4.33

as overparameterized compared to more up-to-date models,
because the strengths of the NN interactions are derived from
a local fitting of the experimental data in each chain. Turning to
the NBCS + pnQRPA calculation, it is evident from Table V
that the ANN model generally exhibits smaller discrepancies
between calculated and observed β−-decay half-lives. For
example, the network model has the ability to reproduce
approximately 50% of experimentally known half-lives shorter
than 106 s within a factor of 2. It should be noted, however, that
the NBCS + pnQRPA model has fewer adjustable parameters
[15].

Viewed as a whole, the analyses presented in Tables II–V
demonstrate that in a clear majority of cases in which the

TABLE III. Same analysis as presented in Table II but instead
assessing the quality of traditional theoretical models, correspond-
ing specifically to (a) the NBCS + pnQRPA calculation of Homma
et al. [15], (b) the FRDM + pnQRPA calculation of Möller and
coworkers [19], and (c) the SGT calculation by Nakata et al.
[8]. These assessments are limited to nuclides with experimental
half-lives below 1000 s.

Tβ,exp (s) Class n M (10) σM(10)

(a) NBCS + pnQRPA calculation [15]
<1 o-o 28 1.75 4.96

odd 31 0.60 2.24
e-e 10 1.15 2.36

<10 o-o 66 1.89 4.60
odd 81 0.92 3.84
e-e 34 1.01 2.93

<100 o-o 85 3.15 10.51
odd 127 1.07 4.29
e-e 52 1.13 3.58

<1000 o-o 93 3.02 10.25
odd 157 1.10 5.55
e-e 63 1.39 6.10

(b) FRDM + pnQRPA calculation [19]
<1 o-o 29 0.59 2.91

odd 35 0.59 2.64
e-e 10 3.84 3.08

<10 o-o 59 0.76 8.83
odd 85 0.78 4.81
e-e 34 2.50 4.13

<100 o-o 88 2.33 49.19
odd 133 1.11 9.45
e-e 54 2.61 4.75

<1000 o-o 115 3.50 72.02
odd 194 2.77 71.50
e-e 71 6.86 58.48

(c) SGT calculation [8]
<1 o-o 38 1.45 2.57

odd 56 1.75 2.32
e-e 19 2.03 2.30

<10 o-o 83 1.94 4.10
odd 110 1.71 2.36
e-e 45 1.58 2.23

<100 o-o 115 2.54 8.86
odd 174 1.95 3.15
e-e 64 1.45 2.40

<1000 o-o 144 3.42 15.21
odd 232 2.36 5.42
e-e 85 1.38 2.81

statistical model of β− half-lives is presented with test nuclides
absent from the training and validation sets, it makes pre-
dictions that are closer to experiment than the corresponding
results from traditional models based on quantum many-body
theory and phenomenology. This is ascribed to some extent
to the larger number of adjustable parameters of the current
model.
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TABLE IV. Comparison of values of quality indices characterizing the “theory-thin” standard neural-network model of the present
work and two “theory-thick” models developed by Möller and coworkers: ANN model in overall (a) and prediction (b) modes, and
(c) FRDM + pnQRPA and (d) pnQRPA + ff GT models of Ref. [20]. The number n of nuclides with experimental half-lives below
the prescribed limit is given in the second column. The quality indices labeling columns 3–8 are defined in Eqs. (27)–(32).

Tβ,exp (s) n M M (10) σM σM(10) 
 
(10)

(a) ANN model, overall mode
<1 252 0.09 1.24 0.39 2.44 0.40 2.50
<10 395 0.08 1.21 0.42 2.60 0.42 2.65
<100 529 0.07 1.17 0.43 2.68 0.43 2.71
<1000 653 0.07 1.18 0.45 2.84 0.46 2.88
<106 838 0.00 1.01 0.57 3.70 0.57 3.70

(b) ANN model, prediction mode
<1 50 0.05 1.12 0.41 2.56 0.41 2.58
<10 79 0.02 1.05 0.48 3.00 0.48 3.01
<100 106 0.00 1.00 0.49 3.08 0.49 3.08
<1000 131 −0.03 0.93 0.50 3.16 0.50 3.17
<106 168 −0.09 0.82 0.64 4.38 0.65 4.44

(c) FRDM + pnQRPA calculation [20]
<1 184 0.03 1.06 0.57 3.72 0.57 3.73
<10 306 0.14 1.38 0.77 5.87 0.78 6.04
<100 431 0.19 1.55 0.94 8.81 0.96 9.21
<1000 546 0.34 2.20 1.28 19.09 1.33 21.17
<106 – – – – – – –

(d) pnQRPA + ff GT calculation [20]
<1 184 −0.08 0.84 0.48 3.04 0.49 3.08
<10 306 −0.03 0.93 0.55 3.52 0.55 3.53
<100 431 −0.04 0.91 0.61 4.10 0.61 4.12
<1000 546 −0.04 0.92 0.68 4.81 0.68 4.82
<106 – – – – – – –

C. Comparison with prior ANN and SVM models

Some exploratory applications of artificial neural net-
works to β-decay systematics were carried out earlier by
the Athens-Manchester-St. Louis collaboration and reported
in Refs. [33,34]. The first of these studies arrived at a
fully connected multilayer feedforward ANN model having
the simple architecture [16 − 10 − 1|181], and the second
produced a similar model with architecture [17 − 10 − 1|191].
Both of these efforts employed binary encoding of Z and N at
the input. They used the same experimental data sets, which are
somewhat smaller in size than those used in the present work.
In both cases, a quite orthodox backpropagation algorithm was
applied (“vanilla backprop”), incorporating a momentum term
to enhance convergence of the learning process [27]. Online
(pattern-by-pattern) rather than batch update of connection
weights was implemented. The principal difference between
the two earlier ANN models is the addition, in the second,
of an analog input unit representing the Q value of the
decay. Tables VI and VII present values for performance
measures of these ANN models operating in the prediction
mode. (We concentrate on this aspect of performance, because
it relates directly to the extrapability of the models.) For the
[16 − 10 − 1|181] network model, Table VI displays results
for the quality measures used by Klapdor and coworkers,
evaluated on the test set. For the [17 − 10 − 1|191] model,

Table VII gives results for the performance measures of Möller
and coworkers, based on the responses of the model to the
same test set. On comparison with the entries for M (10) in
Table II, one sees that the performance of the 17-input network
model is rather similar to that of the present six-layer ANN
model, except for odd-odd nuclides—whose lifetimes are
overestimated by the older network. In the case of the 16-input
model, comparison of the entries for m% in Tables VI and V
provides substantial evidence for the superiority of the new
ANN model developed here, although this is not so clearly
reflected in the respective x̄K values.

The improved performance shown by the new ANN model
relative to the earlier ANN models can be attributed mainly
to the different architecture adopted and the more advanced
training procedure that was implemented. Differences in the
ways input information is provided to the networks also plays
a role, but this aspect of the models is not independent
of architecture. The somewhat larger experimental data sets
involved in the current study are helpful, but this is not a major
factor.

With respect to architecture and input encoding, the new
ANN model has noteworthy strategic advantages over its
predecessors. The number of degrees of freedom (weight and
bias parameters) is reduced considerably in the new model by
the use of analog rather than binary encoding of Z and N .
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TABLE V. Comparison of performance measures characterizing
the standard ANN model of the present work, when operating in the
overall (a) and prediction (b) modes, with corresponding values for
(c) the pnQRPA model of Staudt et al. [13] and (d) the NBCS +
pnQRPA model of Homma et al. [15]. The quality indices m%, x̄K ,
and σK are defined by Eqs. (24)–(26). The third column reports the
percentage, m%, of nuclides having experimental half-lives within
the prescribed range (second column), for which the calculated
half-life lies within a certain tolerance factor (first column) of the
experimental value.

Factor Tβ,exp (s) m% x̄K σK

(a) ANN model, overall mode
<10 <106 92.0 2.46 1.72

<60 96.5 2.21 1.52
<1 97.6 2.10 1.39

<5 <106 82.8 1.99 0.95
<60 90.2 1.88 0.84
<1 93.7 1.88 0.80

<2 <106 53.5 1.41 0.27
<60 60.6 1.41 0.27
<1 61.9 1.41 0.26

(b) ANN model, prediction mode
<10 <106 90.5 2.69 1.85

<60 96.1 2.48 1.64
<1 98.0 2.24 1.30

<5 <106 79.2 2.10 0.97
<60 87.3 2.05 0.91
<1 94.0 2.04 0.89

<2 <106 49.4 1.48 0.28
<60 53.9 1.48 0.27
<1 60.0 1.50 0.27

(c) pnQRPA calculation [13]
<10 <106 72.2 1.85 1.21

<60 96.3 1.67 1.02
<1 99.1 1.44 0.40

<5 <106 69.7 1.68 0.76
<60 94.5 1.56 0.66
<1 99.1 1.44 0.40

<2 <106 56.4 1.37 0.29
<60 82.2 1.36 0.29
<1 90.6 1.35 0.27

(d) NBCS + pnQRPA calculation [15]a

<10 <106 76.7 3.00 –
<60 87.2 2.81 –
<1 95.7 2.64 –

<5 <106 – – –
<60 – – –
<1 – – –

<2 <106 33.8 1.43 –
<60 42.0 1.41 –
<1 50.7 1.43 –

aσK results are not available in Ref. [15].

Despite the numerous hidden layers in the architecture
[3 − 5 − 5 − 5 − 5 − 1|116] of the current model, it has 65
parameters less than the 16-input model and 75 less than the
17-input model. Relative to the 16-input model, the presence of

TABLE VI. Performance measures for the [16 − 10 − 1|181]
ANN model constructed by Mavrommatis et al. [33] and operating
in the prediction mode. The quality indices x̄K and σK , introduced
by Klapdor and coworkers, are defined in Eqs. (24) and (26), respec-
tively, while m% is the percentage of nuclides having experimental
half-lives within the prescribed range (second column), for which
the calculated half-life lies within the tolerance factor (first column)
of the experimental value.

Factor Tβ,exp (s) m% x̄K σK

<10 <106 82.8 2.78 1.83
<60 88.1 2.80 1.83
<1 90.0 2.88 1.88

<5 <106 72.4 2.22 1.07
<60 76.2 2.20 1.01
<1 76.7 2.23 1.02

<2 <106 39.7 1.39 0.29
<60 42.9 1.44 0.32
<1 43.3 1.46 0.32

the additional input δ is advantageous in providing information
on the even/odd character of Z and N . Relative to the
17-input model there is the advantage, conceptual as well as
strategic, that the new model does not rely on Q-value input.
Experimental Q values are not known for all the nuclides of
interest, so the need to call on external theoretical predictions
for input variables is eliminated.

Based on a general principle of machine learning, it is to
be expected that the reduction in complexity achieved in the
current ANN model compared to previous versions will result
in improved predictive performance. For an ANN, reduced
complexity means reduction in the number of weight and
bias parameters. Other things being equal, i.e., if satisfactory
accuracy of fit to the training sample is preserved, a model with
less computational complexity is less susceptible to overfitting
and superior in generalization [27].

TABLE VII. Performance measures for the
[17 − 10 − 1|191] ANN model constructed by Clark
et al. [34] and operating in the prediction mode. The
quality indices M (10) and σM(10) , introduced by Möller and
coworkers, are defined in Eqs. (30) and (31).

Tβ,exp (s) Class M (10) σM(10)

<1 o-o 2.05 2.31
odd 1.08 2.38
e-e 1.79 2.71

<10 o-o 2.26 5.42
odd 1.19 2.44
e-e 1.31 2.30

<100 o-o 1.76 5.19
odd 1.12 3.15
e-e 0.98 2.67

<1000 o-o 2.22 6.25
odd 1.22 5.50
e-e 0.93 4.78
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Modifications and improvements of the training procedure
relative to previous work include implementation of the
LMOBP algorithm (with batch updating), together with the
Nguyen-Widrow method for parameter initialization. To assess
the effect of using the LMOBP instead of simpler learning
algorithms, we performed additional modeling studies in
which we kept all other aspects of the current model devel-
opment in place, but trained with simple back-propagation or
vanilla backprop (incorporating a momentum term) instead
of LMOBP. The following results for the respective error
measures σrms in learning, validation, and prediction are
typical: 1.08, 1.06, and 1.03 (simple back-propagation) and
0.93, 0.85, and 0.85 (vanilla backprop) compared with 0.53,
0.60, and 0.65 (LMOBP).

As mentioned in the Introduction, initial studies of the
classification and regression problems presented by nuclear
systematics have recently been carried out [37–39] using the
relatively new methodology of SVMs. SVMs, which belong to
the class of kernel methods [27], are learning systems that have
a rigorous basis in the statistical learning theory developed
by Vapnick and Chervonenkis [28] (VC theory). There
are similarities to multilayer feed-forward neural networks,
notably in architecture, but there are also important differences
having to do with the prospect of better control over the
trade-off between complexity and generalization ability within
the SVM framework. Importantly, within this framework there
is an automated process for determining the explicit weights
of the network in terms of a set of support vectors optimally
distilled from among the training patterns [48]. The few
remaining parameters are embodied in the inner-product kernel
that allows one to deal efficiently with the high-dimensional
feature space appropriate to the problem to be solved. The
SVM methodology was originally developed for classification
problems but has been extended to function approximation
(regression) [27].

The recent applications of SVMs to global modeling of
nuclear properties, including atomic masses, α-decay chains
of superheavy nuclei, ground-state spins and parities, and β−
lifetimes, demonstrate considerable promise for this approach.
As in the present work, cross-validation is performed, separat-
ing the full database into learning, validation, and test sets. In
the existing studies, the data for a given property is divided into
four non-overlapping subsets containing input-output pairs
for even-even, even-odd, odd-even, and odd-odd classes of
nuclides distinguished by the parity of Z and N .

Table VIII provides values of the conventional σrms perfor-
mance measure (19), both for the SVM model of β−-decay
systematics constructed by Clark et al. [38] and for the
present ANN model. The SVM model demonstrates better
performance based on this comparison, with a few exceptions
involving the even-even nuclides. However, this comparison is
somewhat misleading, because a larger fraction of the data was
used for training, leaving numerically smaller validation and
test sets in the SVM construction. Moreover, the SVM model
of Ref. [38] is actually composed of four SVMs developed
separately to model the data in each of the four combinations of
Z and N parities. This strategy can lead to spurious fluctuations
in the predictions of lifetimes for nuclides of isotopic and
isotonic chains, as seen in detailed inspection of the outputs of

TABLE VIII. Root-mean-square errors (σrms) for (a) the
[3 − 5 − 5 − 5 − 5 − 1|116] standard ANN model of the present
work and (b) the SVM model constructed by Clark et al. [38]. Here
n is the number of nuclides in each of the data (sub-)sets.

Class Learning set Validation set Test set

n σrms n σrms n σrms

(a) ANN model
EE 95 0.52 33 0.52 35 0.64
EO 121 0.55 46 0.77 47 0.57
OE 141 0.46 42 0.53 40 0.66
OO 146 0.56 46 0.52 46 0.71
Total 503 0.53 167 0.58 168 0.65

(b) SVMs calculation, Clark et al. [38]
EE 131 0.55 16 0.57 16 0.62
EO 179 0.41 22 0.42 22 0.51
OE 172 0.41 21 0.47 21 0.47
OO 190 0.52 24 0.4 24 0.52
Total 672 0.47 83 0.46 83 0.53

the SVM model. The results appearing in part (a) of Table VIII
were obtained for the single ANN model we have developed
by training on data from all four (Z,N) parity classes; the
results are broken down into these classes only for convenience
of comparison. Recently, however, ANN models have been
constructed separately for the four parity classes [49], using
the same data sets, architecture, input scheme, and training
procedures as employed for the ANN model highlighted in
the present work. The quality of the combined ANN model
as reflected in the corresponding σrms values is very similar to
that of the composite SVM model of Clark et al.

D. Extrapability of the ANN model

It is of course desirable to have a model that reproduces
experimentally known β− half-lives of nuclei across the known
nuclear landscape. One can certainly achieve that goal with a
sufficiently complex model that involves a sufficient number of
adjustable parameters. However, as we have already stressed,
excess complexity generally implies poor predictive ability and
especially poor extrapability—lack of the ability to extrapolate
away from existing data. Accordingly, a much more important
and challenging goal is to develop a global model, statistical
or otherwise, with minimal complexity consistent with good
generalization properties. The extent to which this goal can
be achieved with machine-learning techniques for different
nuclear properties is yet to be decided. Of course, one can
test the performance of a favored network model on outlying
nuclei (outlying with respect to the valley of stability), nuclei
that are unknown to the network, but have known values for
the property of interest. Adequate performance in such tests
can provide some measure of confidence in predictions made
by the model for nearby nuclei that have not yet been reached
by experiment.

Very recent β− lifetime measurements carried out for
“outlying” nuclides not contained in NuSet-B present us with
an opportunity to make such a test here. These nuclides are
included in the new database NUDAT (version 2.4) [50].
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TABLE IX. Predictions for β-decay half-lives Tβ recently mea-
sured for neutron-rich nuclei, as given by the [3 − 5 − 5 − 5 − 5 −
1|116] standard ANN model and by the pnQRPA + ff GT model of
Möller et al. [20]. The second column lists the experimental half-life
values. The overall error measures σrms of the two models on the test
data are given at the bottom of the table.

Nucleus Tβ (ms)

Experiment ANN model pnQRPA + ff GT
Ref. [50] this work Ref. [20]

36Mg 3.9 ± 1.3 14.5 15.9
37Al 10.7 ± 1.3 15 9.9
38Al 7.6 ± 0.6 7.7 4.7
39Al 7.6 ± 1.6 7.2 4.3
39Si 47.5 ± 2.0 27.7 101.5
40Si 33.0 ± 1.0 48.5 30.6
42Si 12.5 ± 3.5 15.5 43.4
44P 18.5 ± 2.5 12.7 17.2
46S 50 ± 8 39.5 30.8
47Cl 101 ± 6 77.9 51.5
48Ar 475 ± 40 447.6 181.9
49Ar 170 ± 50 130.2 54.9
64V 19 ± 8 23.4 7.6
73Co 41 ± 4 103.6 30.7
115Tc 73+32

−22 84.2 70.7
118Ru 123+48

−35 69.1 211.8
120Rh 136+14

−13 196.2 82.7
121Rh 151+67

−58 90.7 62.3
122Pd 175 ± 16 227.2 951.2
124Pd 38+38

−19 124.2 288.7
163Eu 7.8 ± 5 (s) 7.8 (s) 17.2 (s)
164Eu 4.2 ± 2 (s) 3.3 (s) 8.6 (s)
165Eu 2.3 ± 2 (s) 3.1 (s) 5.7 (s)
199Ir 6+5

−4 (s) 73 (s) 370.6 (s)
σrms 0.31 0.53

Table IX compares the predictions of the current ANN model
and the values given by the pnQRPA + ff GT model of
Ref. [20] with the reported experimental lifetimes for the
24 nuclides involved. The respective rms error measures on
this data set for these models are 0.31 (“theory-thin”) and
0.53 (“theory-thick”). These results increase the degree of
confidence in the extrapability of the ANN model.

Useful information on the extrapability and other features
of the [3 − 5 − 5 − 5 − 5 − 1|116] ANN model developed
in the present work is provided by Figs. 10–15, which track
the half-lives estimated by the model for the nuclides in the
Fe, Ag, Sn, Ni, Cd, and Bi isotopic chains. Similar plots
for relevant isotonic chains at N = 50, 82, and 126 are
provided in Figs. 16–18. Corresponding pnQRPA + ff GT
estimates are included for comparison. Also included are
some results (labeled GT∗) from calculations by Pfeiffer,
Kratz, and Möller [51] based on the early GT of Takahashi
et al. [7], with updated mass values [17,52] (GT∗). There
are no unambiguous criteria that can be used to gauge the
performance of these models. Judging from the observed
behavior of the known nuclei, it should generally be the case
that the more neutron-rich an exotic isotope, the shorter its

65 70 75 80 85 90 95

10
0

10
5

10
10

T
β (

m
s)

MASS NUMBER

26
Fe

 

 
Exp. Data
ANN
ANN pred.
pnQRPA+ffGT
GT*

FIG. 10. Half-lives given by the indicated models for the isotopic
chain of 26Fe, compared with experimental data. ANN refers to the
standard network model developed based on the NuSet-B data and
pnQRPA + ff GT and GT∗ to models of Ref. [20]. ANN points
connected by solid lines are results for nuclides in the learning,
validation, and test sets (NuSet-B); those connected by dotted lines
are predictions for unknown nuclides absent from NuSet-B.

half-life. This expected downward tendency of the isotopic
chains is predicted by all the models. One also expects to
see some even-odd staggering in the points for neighboring
isotopes (isotones), at least for nuclides not far from stability.
The ANN model produces such behavior, but it tends to be
somewhat exaggerated. (Presumably the δ input is exerting too
strong an effect.) Similar behavior, though less pronounced,
appears in the results from continuum-quasiparticle-RPA
(CQRPA) approaches [22] and in the results of other theoretical
calculations [7,20].

Two additional modeling studies have been carried out
to probe the extrapability of statistical models of the type
developed in the present work. In the first of these studies,
another ANN (namely ANN-II) model was created using
exactly the same architecture, coding schemes, and training
procedure as adopted for the “standard” model explored
in detail in previous sections. However, instead of using
experimental data for the training, validation, and test sets,
we made use of the theoretical half-lives generated by the
pnQRPA + ff GT model of Ref. [20]. To deviate minimally
from the construction of the standard model, the same learning
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FIG. 11. Same as in Fig. 10 but for the isotopic chain of 47Ag.
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FIG. 12. Same as in Fig. 10 but for the isotopic chain of 50Sn.

and validation sets were employed for the new model, with
the necessary exclusion of those nuclides having Z < 8 or
N < 11. (We note that the “theory-thick” model of Ref. [20]
was designed for nuclides with Z � 8 and N � 11, and
its predictions were limited accordingly.) Consequently, the
learning set now contains 482 rather than 503 nuclides; and
the validation set, 164 rather than 167. Similarly, the original
test set was reduced from 168 nuclides to 162 by the removal
of light nuclei. A much larger test set of 4538 nuclides is
provided by all the nuclides tabulated by Möller et al. [20] that
have not been included in the modified learning, validation,
and test sets. The new ANN, developed to model theoretical
data, yields σrms values of 0.67 and 0.65, respectively, for the
162-member and 4538-member test sets. This is the same level
of predictive performance as is achieved by the standard ANN
model trained and validated on experimental data. As seen
in Figs. 19–22, performance of the new ANN model along
different isotopic and isotonic chains is also of satisfactory
and/or comparable quality.

In the second of the new modeling studies, we have devel-
oped another ANN model, once again implementing the same
design and procedures as for the standard ANN. However,
for this variant we have selected learning and validation sets
from an experimental database, NuSet-C, created by removing
all nuclides with half-lives less than 0.1 s from the original
database NuSet-B. With the resulting network, we are able to
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FIG. 13. Same as in Fig. 10 but for the isotopic chain of 28Ni.
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FIG. 14. Same as in Fig. 10 but for the isotopic chain of 48Cd.

test extrapability to a new class of nuclides not represented in
the training data—those with very short half-lives. NuSet-C
consists of 749 nuclei, of which 599 (80%) were chosen
at random to form the learning set, with the remaining 150
(20%) used for validation. The primary test set is composed
of the 89 nuclei eliminated from NuSet-B, all with half-lives
below 0.1 s. The rms errors found for the variant ANN model
on the learning, validation, and tests sets are 0.52, 0.65, and
0.60, respectively. These results are very much in line with the
performance achieved by the original model (see Table I) and,
significantly, show no deterioration of predictive quality for
the “new” nuclides belonging to a different lifetime class. The
corresponding σrms values for the pnQRPA + ff GT model
of Ref. [20] are 0.90, 1.02, and 0.42, respectively, allowing
for the necessary deletion of nuclides with Z < 8 or N < 11
from the three sets when evaluating σrms. A complementary
test set is provided by the 24 neutron-rich nuclides listed in
Table IX, for which half-life measurements have been made
very recently. The rms measure over this set is 0.40, which
is to be compared with 0.31 for the original ANN model and
0.53 for the model of Ref. [20]. The extrapability of the ANN
model was also checked by tracking the behavior of calculated
half-lives along isotopic and isotonic chains, with results of
quality similar to that for the original model. Based on these
and the other tests that have been carried out, it would seem
that the ANN model extrapolates satisfactorily, at least for
nearby nuclei in the nuclear landscape.

210 220 230 240 250 260 270 280

10
0

10
5

10
10

T
β (

m
s)

MASS NUMBER

83
Bi

 

 
Exp. Data
ANN
ANN pred.
pnQRPA+ffGT
GT*

FIG. 15. Same as in Fig. 10 but for the isotopic chain of 83Bi.
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FIG. 16. Same as in Fig. 10 but for the r-ladder isotonic chain of
N = 50. Here ANN refers to the standard network model developed
on the basis of the NuSet-B data and pnQRPA + ff GT and GT∗ to
models of Ref. [20]. ANN points connected by solid lines are results
for nuclides in the learning, validation, and test sets (NuSet-B); those
connected by dotted lines are predictions for unknown nuclides absent
from NuSet-B.
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FIG. 17. Same as in Fig. 16 but for the r-ladder istonic chain of
N = 82.
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FIG. 18. Same as in Fig. 16 but for the r-ladder isotonic chain of
N = 126.
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FIG. 19. Half-lives for the isotopic chain of 26Fe, as given by
the pnQRPA + ff GT model of Ref. [20] and by the new ANN
model (namely ANN-II) designed to fit and predict data generated
by this “theory-thick” model rather than the experimental data.
ANN-II points connected by solid lines are results for nuclides in
the corresponding learning, validation, and test sets; those connected
by dotted lines are predictions for nuclides outside these sets.
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FIG. 20. Same as in Fig. 19 but for the isotopic chain of 50Bi.
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FIG. 21. Same as in Fig. 19 but for the isotonic chain of N = 82.
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FIG. 22. Same as in Fig. 19 but for the isotonic chain of N = 126.
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FIG. 23. Half-lives for β−-decaying nuclides that are found on or near a typical r-process path, with neutron separation energies up to
3 MeV. ANN refers to the standard model of this work and pnQRPA + ff GT and GT∗ to models of Ref. [20].

E. The r-process path

Predictions from the ANN model developed here, and
improvements on it, may prove to be useful for quantitative
studies involving r-process nucleosynthesis. The β half-lives
(Tβ) and β-delayed neutron emission probabilities (Pn) of
those isotopes lying in the r-process path are the two key
β-decay parameters that bear on the β-strength function
(Sβ) [5]. Accordingly, an approach having global applicability
for accurate prediction of β half-lives is needed for detailed
dynamical r-process calculations. Moreover, reliable β-half-
life calculations are of special interest for the r-ladder isotones
N = 50, 82, and 126 where solar abundances peak, because
they determine the r-process time scale. As mentioned earlier,
in Figs. 16–18 we plot the half-lives of closed-neutron-shell
nuclei in these significant r-process regions as predicted by our
ANN model, in comparison with corresponding results from
pnQRPA + ff GT and GT∗ calculations [20]. In particular, it
is interesting to compare the various estimates of the half-life
of the doubly magic r-process nucleus 78Ni (Z = 28, N =
50). The result given by the ANN model is consistent with
the recent measurement by Hosmer et al. [45]. In Fig. 23,
half-lives of β−-decaying nuclides that are found near or on
a typical r-process path with neutron separation energy below
3 MeV and derived by means of the standard ANN model
are compared with those from pnQRPA + ff GT and GT∗
calculations [20] and with the experimental data. The results
given by the ANN model are close to the experimental values.

Recent measurements of the half-lives of the heavier r-
process nuclides 202,199,198Ir, 200,199Os, and 196,195,194Re [53]
tend toward lower values than those expected from the
corresponding results from pnQRPA + ff GT calculations
[20]. The half-lives for the five Ir and Os isotopes generated
by the principal ANN model developed here are also lower
than those of Ref. [20]. As seen in Fig. 18, this trend holds
for most N = 126 isotones with A � 200. (However, it may
be noted that for nuclides with A < 200, the ANN model
gives somewhat higher values than reported in Ref. [20].)
By contrast, DF3-QRPA calculations [23,53] produce lower
half-life values than the pnQRPA + ff GT model [20] for
almost the whole r-ladder N = 126 isotonic chain. Indeed,

DF3-QRPA yields predictions closer to experiment than either
the latter model or the ANN model for the newly measured
nuclides indicated above. Further experiments, including
refined spectroscopy, are needed to clarify the situation in
this region.

A more detailed examination of the results of ANN models
in relation to r-process nuclei will be published elsewhere.

V. CONCLUSION AND PROSPECTS

A statistical approach to the global modeling of nuclear
properties has been proposed and implemented for treatment
of the systematics of β− lifetimes of the ground states
of nuclei that decay exclusively in this mode. Specifically,
artificial neural networks (ANNs) of multilayer feedforward
architecture are taught to reproduce the experimentally mea-
sured lifetimes of nuclides from a chosen large data set.
Training of the networks is carried out in such a way that
their intrinsic generalization capabilities can be exploited to
predict lifetimes of nuclides outside the data set used for
learning.

We have been able to develop an ANN model of this kind
that demonstrates very good properties in terms of both the
standard performance measures used in statistical analysis and
more problem-specific quality measures that have been intro-
duced to assess traditional theoretical models for calculating
β− lifetimes on a global scale. In a purely results-oriented
sense (accurate fitting of given data and good prediction for
nuclei not involved in the fitting process), the performance
of this model matches or surpasses that of traditional models
based on nuclear theory and phenomenology. This success
opens the prospect that statistical modeling based on machine
learning can provide a valuable tool in the exploration of
β− half-lives of newly created nuclei beyond the valley of
stability.

Experience gained previously with neural-network mod-
eling of nuclear systematics (especially the modeling of
masses [30,35,36]) strongly suggests that significant further
improvements on the current ANN model of β− systematics
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are possible, as more sophisticated training algorithms and
machine-learning strategies are continuously being developed.
Thus we plan further studies along the same lines with
multilayer feedforward perceptrons, while also exploring the
potential of SVMs.

It is to be stressed that this program can be no sub-
stitute for aggressive pursuit of traditional, “theory-thick”
global modeling, which inevitably provides greater insight
into the underlying physics responsible for values taken
by the targeted nuclear properties. The statistical approach
can best serve in complementary and supportive roles. We
point out that hybrid statistical-theoretical models show
special promise, as demonstrated in Ref. [36]. In that recent
work, a [4 − 6 − 6 − 6 − 1 |169] ANN is used to model the
differences between measured mass-excess values and the
theoretical values given by the finite-range droplet model
(FRDM) of Ref. [17], thereby enabling improved prediction
of masses away from stability.

Finally, as this last remark exemplifies, the prospects for
fruitful application of statistical, machine-learning methods
extend to a wide range of nuclear properties beyond the
systematics of β-decay lifetimes.
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