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Constraining the nuclear pairing gap with pairing vibrations
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Pairing interactions with various density dependencies (surface/volume mixing) are constrained with the
two-neutron separation energy in the tin isotopic chain. The response associated with pairing vibrations in very
neutron-rich nuclei is sensitive to the density dependence of the pairing interaction. Using the same pairing
interaction in nuclear matter and in tin nuclei, the optimal range of densities relevant for the pairing channel is
also studied.

DOI: 10.1103/PhysRevC.80.044328 PACS number(s): 21.60.Jz, 21.65.Cd, 25.40.Hs, 25.60.Je

I. INTRODUCTION

Studies on pairing effects in both nuclear matter and finite
nuclei have known intensified interests in the recent years [1].
There are two main approaches for pairing, depending whether
the mean field is based on Gogny finite-range interaction
or on Skyrme interaction. In the first approach, a similar
functional is used in both the particle-hole channel and the
pairing channel, although interactions are not exactly the
same due to the density dependence of the pairing interac-
tion: the density-dependent term of the Gogny interaction
is omitted in the pairing channel due to its spin-isospin
structure not contributing to the T = 1, S = 0 pairing. In
the Skyrme approach, the functionals are meant to differ
in the two channels, as witnessed, for instance, by their
density dependence The use of a different interaction in
the particle-hole channel and in the pairing channel was
justified a decade ago [2]; this is, for instance, the case of
employing the Skyrme interaction in the particle-hole channel
and a zero-range density-dependent interaction in the pairing
channel. We shall focus on the Skyrme approach: in this case
the pairing density functional is difficult to constrain and it
has not been possible to derive an universal pairing interaction
during past decades, using, for instance, the odd-even mass
staggering on finite nuclei (see, e.g., Refs. [3,4]), although this
method has been thoroughly studied [5,6]. This may indicate
the need for another approach, using additional constrains:
should the pairing density functional be extended and are there
additional relevant observables to constrain it? For instance,
an extensive survey of odd-even mass staggering showed that
a larger strength is required in the proton pairing channel than
in the neutron one [7].

Nuclear matter could help in constraining the pairing
functional. This requires, however, to bridge nuclei and
nuclear matter through local-density approximation (LDA)
in the pairing channel: its condition of validity should be
more systematically analyzed. It has been recently shown
that the two paired neutrons are spatially localized in low-
density medium that corresponds to the surface of the
nucleus [8]. The same conclusion is drawn by analyzing the
dineutron configuration in the excited states [9,10] and also
performing calculations in low-density matter in Refs. [11,12],
mainly renewing the possibility of linking in some cases the

nuclear matter and nuclei in the pairing channel through the
LDA.

Concomitantly the pairing functional has been extended to
study the condensation of the Cooper pairs (Bose-Einstein
condensation and Bardeen-Cooper-Schrieffer crossover) in
both symmetric and neutron matter. In nuclear matter the
medium polarization increases the pairing gap at low densities
in symmetric matter, whereas it reduces the gap in neutron
matter, indicating an isospin dependence of the pairing
functional [13]. The application to finite nuclei of extended
pairing density functional have shown the relevance of the
LDA in the pairing channel [14].

The pairing functional studies may thus enter in a new era,
renewing the method to design the pairing interaction: (i) using
an isospin dependence of the pairing interaction, (ii) using
eventually the nuclear matter as an additional constrain for
the pairing interaction, (iii) looking for additional observables
in nuclei than the odd-even mass staggering to constrain
the pairing interaction. Point (i) has been investigated in
Refs. [13–15]. Point (ii) requires the validity of the LDA
in the pairing channel.

In the case of point (iii) an interesting observable is pairing
vibrations, measured through two-particle transfer. It is well
known that the transfer cross section crucially depends on
the pairing interaction at work in the transferred pair [16,17].
However, in the 1970s and 1980s the form factor of the
transition has never been calculated fully microscopically.
The first microscopic calculations has been performed only
recently [18], allowing for a strong link between the pairing
interaction and pairing vibrations. Several calculations fol-
lowed [9,19], showing the renewed interest for such studies.

It is therefore meaningful to use pairing vibrations as a
complementary observable to the masses to constrain the
pairing interaction and study the implications to the nuclear
matter. One purpose of this work is to evaluate if pairing
vibrations could play this role (Sec. III).

The method is to analyze the sensitivity of pairing vibrations
to various pairing interactions that provide the same two-
neutron separation energy in tin isotopes and evaluate the
consequences on the pairing gap in symmetric and neutron
matter. On this purpose it is necessary to determine the range
of density where pairing gaps are strongly sensitive to the
pairing interaction (Sec. II).
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II. DENSITY DEPENDENCE OF THE PAIRING
OBSERVABLES

After many years of study, there is still no unambiguous
universal pairing functional ranging on the whole nuclear
chart, and current efforts are aiming in that direction. The
problem may be due to the method used to constrain it, namely
comparing the pairing gap with odd-even mass differences or
evaluating the separation energies along a given isotopic chain.
It therefore may be useful to consider a more general context:
the evaluation of several pairing interactions constrained by
odd-even mass difference, on nuclear matter on the one side
and on additional observables on the other side, should shed
a renewed light on the problem. To achieve this goal it is first
necessary to determine the range of density that is relevant for
pairing studies.

A. Method to determine the functional

The method is the following: we first consider surface
and various mixed paring interactions. The parameters are
determined so as to describe the two neutron separation energy.
Then pairing vibrations are used to disentangle between
the various pairing interactions (Sec. III). We choose 124Sn
and 136Sn nuclei: these are spherical nuclei where pairing
vibrations are likely to occur [17]. One is stable and the second
has a large neutron excess.

The microscopic calculations for the ground state are based
on the Hartree-Fock-Bogoliubov (HFB) model. The Skyrme
interaction SLy4 [20] is chosen for the particle-hole channel
of the HFB equations. The adopted pairing interaction is the
usual zero-range density-dependent interaction

Vpair = V0

{
1 − η

[
ρ(r)

ρ0

]α}
δ (r1 − r2) , (1)

where η provides the surface/volume character of the interac-
tion. We set α = 1 and ρ0 = 0.16 fm−3. The numerical cutoff
for the microscopic calculations is given by Emax = 60 MeV
(in quasiparticle energies) and jmax = 15/2. For each value of
η, V0 is chosen to fit the known experimental two-neutron
separation energies for even-even 114−134Sn isotopes. The
typical rms value obtained on this observable, compared to
the experimental data, is several hundreds of keV. Surface
and mixed interactions have been considered in this work and
the used values of (η, V0) are listed in Table I. It should be
noted that there is no ideal method to adjust this strength.
Using the pairing gap could also be considered. However,
only even-even nuclei are calculated, and one cannot directly
compare the pairing gap to the experimental odd-even mass
difference. Therefore only the trend of the experimental pairing

TABLE I. Values of η and
V0 of the pairing interaction.

η V0 (MeV fm−1)

0.35 −285
0.65 −390
1 −670
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FIG. 1. (a) Matter densities calculated with the HFB model for
124Sn and 136Sn. The vertical lines indicate the radius corresponding
the density at which all the pairing interactions converge in uniform
matter (see text). (b) Pairing field of 124Sn calculated with a surface
η = 1 (top) and a mixed η = 0.35 (bottom) pairing interaction.

gaps has to be reproduced, as well as their overall magnitude.
Using S2n is just an alternative method and we have checked
that the corresponding average pairing gaps are of the expected
magnitude, typically between 1 and 2 MeV in the Sn isotopes.

As an illustration to visualize the features of the calculated
pairing effects, we display in Fig. 1 the neutron pairing field
for 124Sn corresponding to the surface η = 1 and the mixed
η = 0.35 interactions.

B. Pairing gap in uniform matter

The relation between the pairing gap in uniform matter at
a given density and the pairing field at a given radius in nuclei
has been explored in Ref. [14]. It has been found that in the case
of mixed interactions, the LDA is in good agreement with the
full microscopic HFB calculation (differences less than 15%
on the pairing field). This might be related to the extension of
the Cooper pair that is getting smaller at the surface of nuclei
(about 2 fm) compared to that in the interior (about 5–6 fm)
[8]. Close to the surface, pairing properties shall not be
very different from that of a uniform piece of matter at the
same density. It is then interesting to explore the low-density
properties of the different pairing interactions listed in Table I.

Figure 2 displays the pairing gap in uniform matter for
various pairing interactions. It is observed that the different
interactions leads to very different pairing gap at low density
while around saturation density, there is a density (ρ =
0.11 fm−3) at which the pairing gap and pairing strength
coincide for the three pairing interactions.

From Fig. 2, two conclusions can be drawn: (i) the two-
neutron separation energy used to adjust the parameters of
the pairing interaction is an observable that provides a strong
constraint on the pairing gap localized at the surface of the
nuclei: the pairing gap in nuclear matter has been constrained
for ρ = 0.11 fm−3, which corresponds to R � 5 fm in tin
nuclei, as shown by the 124Sn densities displayed on Fig. 1;
(ii) to better constrain the value of the parameter η, one shall
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FIG. 2. (Color online) Pairing gap versus the density for uniform
matter for different pairing interactions.

find another observable sensitive to the pairing strength at low
density (large radius, experimentally easier to probe). Indeed,
in the very external part of the nuclei the pairing strength differs
significantly from one interaction to another. The pure surface
pairing interaction predicts a pairing gap as high as 8 MeV at
low density while the various mixed pairing interactions are
grouped below 3 MeV (see Fig. 2).

Therefore, one might expect that properties of collective
modes sensitive to the external part of the nuclei could
be changed by the properties of the pairing interaction at
low density. Pair transfer reaction mechanisms like (p, t) or
(α,6He) that are very surface peaked shall also help to extract
the value of the pairing gap in the external part of nuclei or
equivalently at low density.

III. PAIRING VIBRATIONS

As stated above, it may be useful to consider an additional
observable than the separation energy to constrain the pairing
interaction, namely its density dependence. There are only a
few observables that could be relevant to constrain pairing
effects. It has been shown that the first 2+ state in nuclei is
sensitive to the pairing interaction [21]: both its position and
strength depend of the pairing interaction. However, this is
related mainly to the pairing gap value, which is the same
observable extracted from odd-even mass difference. It should
be noted than none of these two observables (the first 2+ state
and the odd-even mass staggering) can be directly linked to
predictions. On the one hand, there is the difficulty to modelize
excited states. On the other hand, the difficulty is to describe
odd nuclei.

Pairing vibrations may be a more adequate observable. They
can be probed, for instance, with two neutrons transfer in nuclei
close to shell closure. We refer to Refs. [16,17] for details on
pairing vibrations. Basically, these modes correspond to the
(collective) filling of subshells, in a transition from an A to
A + 2 nuclei.

With pairing vibrations, pairing effects are probed in three
ways. The first one is the magnitude of the pairing gap �

(average of the pairing field): a large pairing gap implies
strength at larger energies, following the formula E2 � (ε −
λ)2 + �2. This component is also present in the first 2+ state in
the ph response as well as in the odd-even mass staggering. But
in the case of the pairing vibrations, there are two additional
contributions: first, the transition densities generating the
strength are the pairing one, which means that the unperturbed
response as well as the perturbed response are sensitive to
the impact of the pairing on the wave functions. Finally,
the residual interaction, generating the quasiparticle random-
phase approximation (QRPA) response, is also sensitive to
pairing. Therefore using both the unperturbed and the QRPA
response functions, the relative pairing dependence of the wave
functions and the residual interaction can be probed.

Pairing vibrations are therefore expected to be very sensitive
to the pairing interaction. On the other hand, it may also
be difficult to disentangle among the three above-mentioned
effects. However, the first one can be evaluated using the
energies of the unperturbed response, the second one by
studying the pairing transition densities, and the last one by
comparing the unperturbed and the QRPA responses. It should
be noted that a related study will also be performed in Ref. [22].

A. Method: QRPA in the pp channel

The method is described in Refs. [18,21]. Namely the QRPA
equations are solved in coordinate space, using the Green’s
functions formalism. The variation of the generalized density
R′ is expressed in term of three quantities, namely ρ ′, κ ′, and
κ̄ ′, which are written as a column vector:

ρ ′ =

⎛
⎜⎝

ρ ′

κ ′

κ̄ ′

⎞
⎟⎠ , (2)

where ρ ′
ij = 〈0|c†j ci |′〉 is the variation of the particle density,

κ ′
ij = 〈0|cj ci |′〉 and κ̄ ′

ij = 〈0|c†j c†i |′〉 are the fluctuations of the
pairing tensor associated to the pairing vibrations, and |′〉
denotes the change of the ground-state wave function |0 >

due to the external field. In contrast with the RPA where
one needs to know only the change of the ph density (ρ ′),
the variation of the three quantities (2) have to be calculated
in the QRPA. In the three-dimensional space introduced in
Eq. (2), the first dimension represents the particle-hole (ph)
subspace, the second the particle-particle (pp) one, and the
third the hole-hole (hh) one. The response matrix has therefore
nine coupled elements in QRPA, compared to one in the RPA
formalism.

The variation of the HFB Hamiltonian is given by:

H ′ = Vρ ′, (3)

where V is the matrix of the residual interaction expressed in
terms of the second derivatives of the HFB energy functional,
namely:

Vαβ(rσ, r′σ ′) = ∂2E
∂ρβ(r′σ ′)∂ρᾱ(rσ )

, α, β = 1, 2, 3. (4)
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In the above equation the notation ᾱ means that whenever α is
2 or 3 then ᾱ is 3 or 2.

The QRPA Green’s function G can be used for calculating
the strength function associated with the two-particle transfer
from the ground state of a nucleus with A nucleons to the
excited states of a nucleus with A + 2 nucleons. This strength
function is:

S(ω) = − 1

π
Im

∫
F ∗(r)G22(r, r′; ω)F (r′) dr dr′, (5)

where G22 denotes the (pp,pp) component of the Green’s
function and F is the external perturbating field associated
with the addition of two particles.

The residual interaction in the pp,pp channel is the pairing
interaction. However, when solving the Bethe-Salpeter (BS)
equation, the Green’s functions G and the residual interaction
are 3 × 3 matrices, with ph, pp, and hh dimensions [Eq. (4)].
Solving the BS equation couples these dimensions. Therefore,
there is, for instance, an effect of the ph,pp component of the
residual interaction on the pp,pp channel.

In the QRPA calculations the full HFB quasiparticle
spectrum up to 60 MeV is included. These states are used to
construct the unperturbed Green’s function G0. The residual
interaction is derived from the two-body force used in HFB
according to Eq. (4). The contribution given by the velocity-
dependent terms of the Skyrme force to the residual interaction
is calculated in the Landau-Migdal approximation, which is
shown to be accurate [23]. The strength function for the two-
neutron transfer is calculated using Eq. (5). The unperturbed
Green’s function is calculated with an averaging interval equal
to 0.15 MeV. All details can be found in Ref. [18].

The response function is calculated for the pp channel.
All the calculations are performed in a box of size 22.5 fm.
It should be noted that exact continuum treatment is heavy,
especially for nuclei such as Sn isotopes. Moreover the aim
is not to study the impact of the continuum treatment (see
Ref. [18] for such a study). Finally, the Sn isotopes under
study are far from the drip line, and continuum effects are
expected to play a negligible role.

B. Unperturbed response results

The HFB solutions are used in the QRPA scheme to
analyze self-consistently the excitation modes associated to
the pair transfer reactions. Because we study here two-neutron
transfers, we focus on the neutron HFB quasiparticle states
that are used to construct the elementary configurations of the
excited modes. We work with positive-energy quasiparticle
states. Once calculated the quasiparticle spectrum, it is
possible to deduce some properties of the unperturbed response
function.

The quasiparticle states with energy less than 6 MeV and
an occupation probability �80% are presented in Tables II
and III for 124Sn and 136Sn, respectively. Let us discuss the
two cases η = 0.35 and η = 1 (for η = 0.65, results are similar
to those obtained with η = 0.35). For 124Sn, in the case of a
mixed pairing interaction, η = 0.35, all the quasiparticle states
with energy lower than 5 MeV are totally occupied with the

TABLE II. Neutron quasiparticle states
with E � 6 MeV and occupation less than
80%. The nucleus is 124Sn.

η State E (MeV) occ

0.35 h11/2 1.5 0.42
f 7/2 5.8 0.01

0.65 h11/2 1.7 0.42
f 7/2 5.7 0.01

1 h11/2 2.2 0.42
p3/2 5.4 0.003
f 7/2 5.5 0.02
p1/2 5.6 0.002
s1/2 5.7 0.002

exception of a h11/2 state at 1.5 MeV that is 42% occupied. This
is the only low-energy state that can contribute to some extent
to the excitation mode. The states that are completely empty
and can thus contribute more to the excitation are located at
higher energies. The first is an f7/2 state at 5.8 MeV. The
others have larger energies (at least 1 MeV more). One can
thus expect that the unperturbed response profile starts with a
peak at twice 5.8 MeV, i.e., at ∼11.6 MeV (with some small
contribution at 3 MeV). In the case of a surface interaction,
η = 1, again, all the states between 0 and 5 MeV are occupied

TABLE III. Same as in Table II but for 136Sn.

η State E (MeV) occ

0.35 f 7/2 0.8 0.45
p3/2 1.9 0.01
p1/2 2.4 0.006
f 5/2 2.9 0.01
s1/2 3.3 0.0005
d5/2 4.0 0.0002
d3/2 4.1 0.0005
g9/2 5.6 0.0001
g7/2 5.6 0.0001

0.65 f 7/2 0.9 0.43
p3/2 1.9 0.02
p1/2 2.4 0.008
f 5/2 2.9 0.02
s1/2 3.2 0.0004
d5/2 3.9 0.0001
d3/2 3.9 0.0003
g9/2 5.4 0.0001
g7/2 5.5 0.00003

1 f 7/2 1.6 0.32
p3/2 1.7 0.02
p1/2 1.9 0.01
s1/2 1.9 0.0004
d5/2 2.6 0.0003
d3/2 2.6 0.0002
f 5/2 3.0 0.01
g9/2 4.1 0.0002
g7/2 4.1 0.0001
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FIG. 3. Unperturbed response function for 124Sn in the two
neutrons 0+ addition mode. The pure surface mode is shown with
the solid line, the η = 0.65 mode is shown with the dotted line, and
the η = 0.35 mode isshown with the dashed-dotted line.

with the exception of a h11/2 state at 2.2 MeV (42% of
occupation). This time there are several unoccupied states just
above 5 MeV, the lowest energy being at 5.4 MeV (p3/2 state).
Hence, the unperturbed response is expected to have some
structure starting from ∼10.8 MeV with a small contribution
at ∼4.4 MeV.

For the nucleus 136Sn the situation is different: there are
several low-lying unoccupied states. For η = 0.35 the lowest
energy for a completely unoccupied state is 1.9 MeV (p3/2

state). At 0.8 MeV one also finds a f7/2 state with 45% of
occupation. In the case η = 1 the lowest energy for a totally
unoccupied state is 1.7 MeV (p3/2 state) and a f7/2 state is
found at 1.6 MeV with 32% of occupation. The unperturbed
response is expected to start at ∼3.8 and 3.2 MeV for η = 0.35
and 1, respectively. In the former case a small contribution at
∼1.6 MeV is also expected.

To disentangle the various pairing effects, the unperturbed
response in the two neutrons addition mode is first shown
in Fig. 3 for 124Sn. The unperturbed response is built on the
HFB single quasiparticle (QP) spectrum for the three pairing
interactions. It should be noted that the spectrum is shown
above 10 MeV, because there is only the h11/2 subshell that
can welcome two neutrons to make a low-energy state: all
the other configurations belong to the next major shell (see
Table II), explaining this high-energy feature of the spectrum,
as stated above. For all the mixed pairing interaction, the
unperturbed spectrum is similar, showing that both the single
quasiparticle energy and wave functions are close to each
other in that case. However, in the case of the pure surface
pairing, the spectrum is changed. The energies are shifted to
lower values, and the overall strength is increased. The lower
energy shift can be understood by more single-quasiparticle
states located at low energy. This can be explained by a lower
pairing gap and a different energy spectrum found in the
HFB self-consistent procedure. The larger magnitude comes
from the wave functions and will be studied with the QRPA
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FIG. 4. Unperturbed response function for 136Sn in the two
neutrons 0+ addition mode. The pure surface mode is shown with
the solid line, the η = 0.65 mode is shown with the dotted line, and
the η = 0.35 mode shown with the dashed-dotted line.

response. It can already be stated that the QRPA response will
also have more strength at lower energy, due to this peculiar
feature of the unperturbed spectrum for the pure surface pairing
force.

Figure 4 shows the unperturbed response for the two
neutron addition mode in 136Sn. In this case, at the beginning
of an open neutron shell several low-energy configurations can
welcome the two neutrons (see Table III). As in the case of
124Sn, the response exhibits larger strength at low energy in the
specific case of the pure surface pairing interaction compared
to others pairing interaction. This is related to the pairing field
profile as shown on Fig. 1. It should be noted that to clearly
see the effect due to the surface pairing, not only the first 0+
state but also the energy area of a few MeV above should be
explored because the results are different from 0 to 4 MeV on
Fig. 4.

C. Perturbed response results

Figure 5 shows the QRPA response for 124Sn, with a
pure surface and the two mixed interactions. As expected
the residual interaction plays a similar role in all the cases,
gathering strength and shifting it to lower energy. In the
case of 124Sn, a peak around 9 MeV is the strongest for the
surface pairing interaction, to be compared with the one around
10 MeV for the other interactions. Hence it is expected that
the pairing vibration transition strength should be larger in
the case of a pure surface force. However, it is known that
it is difficult to accurately describe the magnitude of these
transitions, especially for absolute cross-section calculations
[24]: one-step or sequential two-step process, triton wave
function, and zero-range or finite-range distorted-wave Born
approximation (DWBA) have to be considered. The main
elements of such a calculation are the optical potentials in
both the entrance and the exit channel: they can be either
phenomenological such as the Becchetti and Greenlees optical
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FIG. 5. QRPA response function for 124Sn in the two neutrons 0+

addition mode. The pure surface mode is shown with the solid line,
the η = 0.65 mode is shown with the dotted line, and the η = 0.35
mode is shown with the dashed-dotted line.

potential [25] or microscopic by using a double folding
approach. The other relevant element is the form factor related
to the reaction, which includes the information on nuclear
structure: it is expected that the relative magnitude of the
angular distributions of two 0+ states remains mainly sensitive
to the form factor, related itself to the pairing transition density
(Eq. (41) of Ref. [17]). It should be noted that in the case
of zero-range DWBA, the pairing transition density directly
provides the form factor.

The pairing transition density is defined as:

κν(r, σ ) = 〈0|c (r, σ̄ ) c(r, σ ) |ν〉, (6)

where c†(r, σ̄ ) = −2σc†(r,−σ ) is its time-reversed
counterpart.

It allows us to calculate the form factor in the zero-range
DWBA approximation. The pairing transition densities of
Fig. 6 show, in the case of 124Sn, a difference, going from
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FIG. 6. Neutron transition density in the two neutrons addition
mode for 124Sn for the first peak located at 9–10 MeV. The pure
surface mode is shown with the solid line, the η = 0.65 mode is
shown with the dotted line, and the η = 0.35 mode is shown with the
dashed-dotted line.
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FIG. 7. QRPA response function for 136Sn in the two neutrons 0+

addition mode. The pure surface mode is shown with the solid line,
the η = 0.65 mode is shown with the dotted line, and the η = 0.35
mode is shown with the dashed-dotted lines.

surface to other modes: the transition density decreases at
the surface. However, the difference is not dramatic and may
be over-ruled by the experimental uncertainties. The larger
strength of the 9 MeV peak in the pure surface pairing
interaction is due to a larger transition density at the surface.

For the 136Sn neutron-rich nucleus, the low-energy spec-
trum displayed on Fig. 7 is dramatically changed from using
surface to other interactions on a several-MeV area. A three-
peak structure appears in the surface case compared to the two
peaks structure of the other cases. The integrated strength is
also larger in the surface case.

Figures 8 and 9 show the corresponding transition densities.
They exhibit very different shapes, comparing results with
the pure surface pairing interaction and the mixed pairing
interaction. Hence 136Sn is a good test case to probe the
pairing interaction through pairing vibrations. For instance, in
the case of the most intense peak, the central part is dominant in
the transition density for the mixed case, whereas the surface
part of the transition density dominates in the pure surface
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FIG. 8. Neutron transition density in the two neutrons addition
mode for 136Sn for the first two peaks of the strength in the case of
the mixed η = 0.65 interaction.
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FIG. 9. Neutron transition density in the two-neutron addition
mode for 136Sn for the first three peaks of the strength in the case of
the pure surface interaction.

interaction. Hence a measurement of the angular distributions
associated with the pairing vibration strength in very neutron
rich-nuclei such as 136Sn seems more decisive to disentangle
between the pairing interactions than with 124Sn. This may
be due to the larger neutron skin in 136Sn, consisting of
low-density neutron-rich matter.

It has been shown in a previous work how the pairing
transition densities allows us to calculate the two neutron form
factor to predict angular distributions for pairing vibrations
[18]. Work along these lines should be undertaken to bring
additional constrains on the pairing interaction. Recently
dynamical approaches related to pairing have been developed,
such as the time-dependent HFB model [19]. They can also
be tested using pairing vibrations, through their calculated

transitions densities, in a similar way than the present
method.

IV. CONCLUSIONS

The impact of various pairing interactions on pairing
vibrations predictions has been analyzed for the first time
using an HFB + QRPA approach. They should provide a good
sensitivity from a pure surface interaction compared to mixed
interactions, especially in the case of very neutron-rich nuclei
such as 136Sn. Moreover nuclear matter gap calculations show
that the low-density range is sensitive to the surface/volume
character of the pairing interaction. In the case of exotic
nuclei, pairing vibrations are also found more sensitive to the
surface/volume type of the pairing interaction than in the case
of stable nuclei. This may be due to the larger extension of the
neutron density in very neutron-rich nuclei.

The same study using an isospin-dependent pairing in-
teraction will be undertaken. The hope is to come one step
closer to a more global pairing interaction, using odd-even
mass staggering, pairing vibrations, and nuclear matter as
constraints. Experimentally, the pairing transition densities
can be tested through the form factor used to calculate
the two-neutron-transfer cross section. This implies to use
a adequate reaction model. Work along these lines will be
undertaken in an near future.
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