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A linear relation for charged-particle emissions is presented starting from the microscopic mechanism of the
radioactive decay. It relates the logarithms of the decay half-lives with two variables, called χ ′ and ρ ′, which
depend upon the Q values of the outgoing clusters as well as the masses and charges of the nuclei involved in the
decay. This relation explains well all known cluster decays. It is found to be a generalization of the Geiger-Nuttall
law in α radioactivity, and therefore we call it the universal decay law. Predictions of the most likely emissions
of various clusters are presented by applying the law over the whole nuclear chart. It is seen that the decays
of heavier clusters with nonequal proton and neutron numbers are mostly located in the trans-lead region. The
emissions of clusters with equal protons and neutrons, like 12C and 16O, are possible in some neutron-deficient
nuclei with Z � 54.
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I. INTRODUCTION

Charged-particle emissions are among the most important
decay modes of atomic nuclei. Almost all observed proton-rich
exotic nuclei starting from A ∼ 150 are α radioactive [1].
A substantial number of proton decays have been observed
in proton-drip-line nuclei around the rare earth region [2].
The spontaneous emission of charged fragments heavier than
the α particle (cluster decay) was predicted in Ref. [3] and
later established experimentally in trans-lead mother nuclei
decaying into daughters around the doubly magic nucleus
208Pb [4–7]. Even a second island of cluster radioactivity was
predicted in trans-tin nuclei decaying into daughters close to
the doubly magic nucleus 100Sn [8].

A number of theoretical models have been proposed
to describe the charged-particle decay process [9–19] (see
also Refs. [20–25] for very recent calculations). In general
the decay process, ranging from proton to heavier cluster
radioactive decays, can be described by a two-step mechanism
[26]. The first step refers to the formation of the particle and its
motion on the daughter nuclear surface. In the second step the
cluster, with the formation amplitude and corresponding wave
function thus determined, is assumed to penetrate through
the centrifugal and Coulomb barriers [27–30]. This second
step has been well understood since the pioneering work of
Gamow [27]. In macroscopic models, cluster decay is treated
as the quantum tunneling process of an already preformed
particle [12,13,21–25], where features such as the probability
that the cluster is formed on the nuclear surface are ignored.
In these models, the clusterization process is included in
an effective fashion by introducing quantities adjusted to
reproduce as many measured half-lives as possible. Such
semiclassical models are being successfully applied even at
present, although in some cases microscopic ingredients are
also included [12]. In microscopic theories, the formation
amplitude is evaluated starting from the single-particle degrees

of freedom of the neutrons and protons that eventually become
the cluster. This is generally a formidable task that requires
advanced computing facilities as well as suitable theoretical
schemes to describe the clusterization process [15–18].

On the other hand, this variety of theoretical models may
serve as a guide to our searching for semiclassical relations
in radioactive decay. The first striking correlation in α-decay
systematics was noted by Geiger and Nuttall [31]. This relates
the decay half-lives T1/2 and decay energies Qα as

log10 T1/2 = aQ−1/2
α + b, (1)

where a and b are constants. Nowadays it is understood that
the Q-value dependence in Eq. (1) is a manifestation of the
quantum penetration of the α cluster through the Coulomb
barrier (see, for example, Ref. [32]). But this equation ignores
the probability that the α particle is formed on the nuclear
surface starting from its four constituent nucleons moving
inside the mother nucleus. The linear relation (1) has been
found to hold well for the ground-state to ground-state decays
of even-even nuclei in the same major shell with fixed proton
number. However, the Geiger-Nuttall law in the form of
Eq. (1) has limited the prediction power, since the coefficients
a and b change for the decays of different isotopic series
[33]. Intensive work has been done trying to generalize the
Geiger-Nuttall law for a universal description of all observed
α-decay events [33–38]. For example, in the work of Viola and
Seaborg [33], the a and b coefficients of Eq. (1) are assumed to
be linearly dependent upon the charge number of the daughter
nucleus. But the physical origin of this dependence is not
clear. Empirical linear relations were also found in proton
decay [39–41], heavier cluster decay [29,42–44], and both
α and heavier cluster decay [45–47]. Reviews of existing
empirical relations can be found in Refs. [37,46] and thus will
not be detailed here. In particular, some recent searches for
correlations in radioactive decay start from the macroscopic
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description of the decay process with a concentration on
the Coulomb barrier penetrability [32,34,37,45], which is
physically more sound than mere empirical relations. But in
these macroscopic approaches, one has to assume an effective
interaction between the cluster and the core [32,34]. Besides,
an effective spectroscopic factor (formation amplitude) has to
be introduced [37] which, however, is model dependent and
sensitive to details of the effective interaction.

In a recent Letter [48], we introduced a linear universal
decay law (UDL) starting from the microscopic mechanism of
the charged-particle emission. Our aim was to find a general
framework valid for all clusters that could be used in the
future as a gauge for probing effective formulas. This is an
interesting subject in itself, but perhaps even more important
is that it may help in the ongoing search for new cluster decay
modes from superheavy nuclei [29]. The UDL relates the
half-life of monopole radioactive decay with the Q values
of the outgoing particles as well as the masses and charges
of the nuclei involved in the decay, reflecting quite well the
systematical trend of experimental data. In this paper we will
complete the brief presentation given in Ref. [48] with details
of the construction of the formula and approximations leading
to it. We also present the UDL predictions of the most likely
emissions of various clusters.

In Sec. II is the formalism. In Sec. III, the systematics
of experimental α and cluster decay half-lives are analyzed
and compared with the corresponding calculations. In Sec. IV,
possible observations of new cluster decays are suggested. A
summary and the conclusions are presented in Sec. V.

II. FORMALISM

In a classic paper [26], Thomas derived the expression
of the cluster decay width by evaluating the residues of the
corresponding S matrix in the framework of the R-matrix
theory [49]. The decay half-life thus obtained has the form

T1/2 = h̄ ln 2

�c

= ln 2

ν

∣∣∣∣H+
l (χ, ρ)

RFc(R)

∣∣∣∣
2

, (2)

where �c is the decay width, and ν is the outgoing velocity
of the charged particle carrying an angular momentum l. R

is the distance between the corresponding centers of mass
of the cluster and daughter nucleus, which should be large
enough that the nuclear interaction is negligible. H+

l is the
Coulomb-Hankel function, and its arguments are standard, i.e.,
ρ = µνR/h̄ and the Coulomb parameter is χ = 2ZcZde

2/h̄ν

with µ being the reduced mass of the cluster-daughter
system and Zc and Zd the charge numbers of the cluster
and daughter nucleus, respectively. Equation (2) contains the
two-step mechanism mentioned above. The quantity Fc(R) is
the formation amplitude of the decaying particle at distance
R, which is usually evaluated as the overlap between the
mother wave function and the antisymmetrized tensor product
of the daughter and cluster wave functions. The penetrability
is proportional to |H+

l (χ, ρ)|−2. This equation is the basis of
all microscopical calculations of radioactive decay processes
[16,39]. It is valid for all clusters and for spherical as
well as deformed cases. The ratio Nl = RFc(R)/H+

l (R), and

therefore the half-life itself, is independent of the radius R [16].
In Ref. [50], it is shown that the expression of Eq. (2) coincides
with the quantum-mechanical interpretation of the half-life as
the outgoing flux per unit of time.

In what follows, we will apply the exact expression of
Eq. (2). Our aim is to find a few quantities that determine the
half-life. By expanding in these quantities, we hope to find, at
the lowest order of perturbation, an expression of the half-life
that is as simple as the Geiger-Nuttall law but valid in general,
i.e., for all isotopic series as well as all types of clusters. This
is possible since Eq. (2) itself is valid in general. The number
of variables that we have to look for should be small for cases
of interest, i.e., for the decay of medium and heavier nuclei.
In fact, most interesting is the predicting power with respect
to superheavy nuclei, which are at the center of attention of
present experimental activities. With this in mind, we notice
that the Coulomb-Hankel function can be well approximated
by an analytic formula, which for the l = 0 channel reads [51]

H+
0 (χ, ρ) ≈ (cot β)1/2 exp [χ (β − sin β cos β)] , (3)

where the cluster Q value is Qc = µν2/2 and

cos2 β = ρ

χ
= QcR

e2ZcZd

. (4)

One sees that cos2 β would be a small quantity if ZcZd is
large. In this case, one can expand the last term in a power
series of cos β [with β = arccos(cos β)] as

β − sin β cos β = π

2
− 2 cos β + cos3 β

3
+ cos5 β

20
+ · · · ,

(5)

and for medium and heavier nuclei (the heavier the better),
terms beyond the third order can be neglected. One obtains

log10
|H+

0 (χ, ρ)|2
cot β

≈ 2χ

ln 10

[
π

2
− 2

(
ρ

χ

)1/2

+ 1

3

(
ρ

χ

)3/2
]

,

(6)

and therefore

log10 T1/2 ≈ 2χ

ln 10

[
π

2
− 2

(
ρ

χ

)1/2

+ 1

3

(
ρ

χ

)3/2
]

+ log10

(
cot β ln 2

νR2|Fc(R)|2
)

, (7)

which is dominated by the first two terms. For the radius
R in this equation, one can take the standard value of
R = R0(A1/3

d + A
1/3
c ) with R0 ∼ 1.2 fm [39,48]. Defining the

factors χ ′ and ρ ′ as

χ ′ = h̄

e2
√

2m
χ = ZcZd

√
A
Qc

,

ρ ′ = h̄√
2mR0e2

(ρχ )1/2

=
√
AZcZd

(
A

1/3
d + A

1/3
c

)
, (8)

where A = AdAc/(Ad + Ac) = µ/m and m is the nucleon
mass (within the errors of our treatment we take
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mc2 ≈ 938.9 MeV and h̄c = 197.3 MeV fm), one gets

log10 T1/2 =
√

2Me2π

h̄ ln 10
χ ′ − 4e

√
2MR0

h̄ ln 10
ρ ′

+ log10

(
cot β ln 2

νR2|Fc(R)|2
)

+ o(3),

= aχ ′ + bρ ′ − 2 log10 |Fc(R)| + c, (9)

where a and b are constants and o(3) corresponds to the
remaining small terms in the Coulomb penetration. The terms
o(3) and log10 cot β/(νR2) change rather smoothly for the
decay cases of interest and may be safely approximated as
a constant c.

A straightforward conclusion from Eq. (9) is that log10 T1/2

depends linearly upon χ ′ and ρ ′. Still the strong dependence
of the formation probability upon the cluster size has to be
taken into account by Eq. (9). This seems to be a difficult task,
since the formation probability is strongly dependent upon
the nuclear structure of the nuclei to be analyzed. In other
words, if such a simple linear relation is correct, one has to
be able to demonstrate that the formation amplitude depends
only linearly upon χ ′, ρ ′, or an additional variable. We found
that this is indeed the case by exploiting the property that for a
given cluster, N0 ≡ RFc(R)/H+

0 (χ, ρ) does not depend upon
R. Using the approximations leading to Eq. (9) one readily
obtains the relation

log10

∣∣∣∣R′Fc(R′)
RFc(R)

∣∣∣∣
−2

≈ 4e
√

2M

h̄ ln 10
(
√

R′
0 −

√
R0)ρ ′, (10)

where R′ = R′
0(A1/3

d + A
1/3
c ) is a value of the radius that differs

from R. This equation can also be written as

log10 |RFc(R)| ≈ log10 |R′Fc(R′)|

+ 2e
√

2M

h̄ ln 10
(
√

R′
0 −

√
R0)ρ ′. (11)

Since for a given cluster any nuclear structure would be carried
by the terms RFc(R) and R′Fc(R′) in exactly the same fashion,
Eq. (11) implies that the formation amplitude is indeed linearly
dependent upon ρ ′. Therefore one can write [48]

log10 T1/2 = aZcZd

√
A
Qc

+ b

√
AZcZd

(
A

1/3
d + A

1/3
c

) + c

= aχ ′ + bρ ′ + c. (12)

The coefficients b and c in this relation are different from
that of Eq. (9), since the terms bρ ′ + c have to include the
effects that induce the clusterization in the mother nucleus.
This relation holds for the monopole radioactive decays of
all clusters, and we called it the UDL [48]. The relation can
be easily generalized to include the l �= 0 decay cases by
taking the effects of the centrifugal potential on the barrier
penetrability into account [51].

It can be easily recognized that the UDL includes the
Geiger-Nuttall law as a special case, since ρ ′ remains constant
for a given α-decay chain and χ ′ ∝ Q

−1/2
c . Besides, one basic

assumption behind relation (12) is that one can define a proper
radius R′ that leads to a stable formation amplitude Fc(R′) for

all cluster radioactivities. In the next section we will probe
these conclusions and the approximations leading to them.

III. SYSTEMATICS OF EXPERIMENTAL DATA

In this section, we will analyze the ground-state to ground-
state radioactive decay of even-even nuclei. We take all
α-decay events from emitters with 78 � Z � 108 for which
experimental data are available to us. We take the data from the
latest compilations of Refs. [1,52] and the lists of Refs. [22,53].
For the decay of heavier clusters, we have selected 11 measured
events ranging from 14C to 34Si for which experimental decay
half-lives are known [7]. The branching ratios of the cluster
decays relative to the corresponding α decay are in the range
of 10−9 to 10−16. The partial half-lives of observed cluster
decays are between 1011 and 1028 s.

A. Experimental constraint on the formation amplitude

The formation amplitude Fc(R) reflects the nuclear struc-
ture effect on the cluster decay process. According to Eq. (2),
the formation amplitude Fc(R) can be extracted from experi-
mental data as

log10 |RFc(R)| = −1

2
log10 T

Expt.
1/2

+ 1

2
log10

[
ln 2

ν
|H+

0 (χ, ρ)|2
]

. (13)

By using R0 = 1.2 fm, we evaluated the function
log10 |RFc(R)| corresponding to α clusters to obtain the results
plotted in Fig. 1. One sees that as a function of the charge
number of the emitters, the formation probabilities are located
in the range log10 |RFc(R)| = −1.5 ∼ −0.75 fm−1/2 with
about half of the data below −1.0 fm−1/2. The formation
amplitude is therefore in the range Fc(R) = (0.03 ∼ 0.18)/R
[where R is in fm and Fc(R) in fm−3/2]. One thus confirms
that for a given cluster, the formation amplitude is constant
within an order of magnitude. The stability of the α-decay

FIG. 1. α-decay formation amplitudes log10 |RFc(R)| as a func-
tion of the charge number of the mother nucleus Z.
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FIG. 2. Same as Fig. 1, but for heavier cluster decays.

formation amplitude indicates that the linear relation described
by Eq. (12) is not as unexpected as one might have assumed.

It is seen from Fig. 1 that in a few cases, the formation
amplitudes become small, i.e., with the log10 |RFc(R)| <

−1.4 fm−1/2. These correspond to the α decays of nuclei
194Pb, 208,210Po, 212Rn, and 266Sg (note that the error in the
experimental half-life of this nucleus is still large [1,54]). The
α formation amplitudes may have been significantly reduced
in those four nuclei, which are approaching the Z = 82 and/or
N = 126 shell closures.

Following the same procedure as above, we evaluated
log10 |RFc(R)| for observed heavy clusters, as seen in Fig. 2.
One sees that now log10 |RFc(R)| is in the range −9 to −3,
i.e., Fc(R) = (10−9 − 10−3)/R fm−3/2. Given the variety of
clusters (from 14C to 34Si) involved in the figure, this wide
range of six orders of magnitude is also expected.

We are now in a position to probe the validity of the linear
relation between the logarithm of the formation probability as
a function of ρ ′ as implied by Eq. (11). As seen in Fig. 3,
that relation holds rather well. The majority of available
experimental data corresponds to α decay. Since the formation
amplitude of a given type of cluster is rather constant, one

FIG. 3. (Color online) Formation amplitudes log10 |RFc(R)| for
both α and cluster decays as a function of ρ ′.

sees in the figure an accumulation of black points around
log10 |RF (R)| ≈ −1.2 fm−1/2. This corresponds to α-decay
events. For the other clusters, the formation probabilities
decrease, as expected. The important point that one can make
from the figure is that the predicted linear trend is confirmed.
The linear trend of experimental data ensures that one can
find a radius R′ for which Fc(R′) remains constant for all
radioactivities. The R′ value can be determined through a
fitting procedure.

There is a deviation to this trend at ρ ′ ≈ 460 which
corresponds to the decay of 234U →206 Hg +28 Mg. One may
expect that the formation of 26Ne is more favored in 234U (with
the daughter system of 208Pb). However, the decay emitting
26Ne is hindered by the presence of a much lower Qc value
(i.e., larger χ ′).

B. Systematics with the UDL

The prediction power of the UDL [Eq. (12)] on radioactive
decay of medium and heavier nuclei has already been shown
in our previous Letter [48]. Essentially, only the coefficients b

and c are free parameters not provided by the UDL. Without
loss of generalization, in that paper all coefficients of Eq. (12)
are determined by fitting experimental data. The inclusion of a

as a free parameter takes into account the effect of higher order
terms of the Coulomb penetrability. For example, the constants
a, b, and c corresponding to α decay were determined to
be 0.4065, −0.4311 and −20.7889, respectively [48]. The
standard root mean square (rms) deviation between the UDL
and experimental α-decay half-lives is σ = 0.3436. For the
rms deviation, we take the definition of Ref. [37], i.e.,

σ =
{

1

n − 1

n∑
i

[
log10

(
T Cal.

i

/
T

Expt.
i

)]2

}1/2

, (14)

where n is the number of decay events included in the fit
and T Expt. and T Cal. the experimental and calculated decay
half-lives, respectively. The fitted value for the coefficient a

is close to the value calculated by its definition in Eqs. (9)
and (12), namely, a = e2π

√
2m/(h̄ ln 10) = 0.4314. Even if

we fix the coefficient a at this value, the description power
of the UDL is still encouraging, as illustrated in the upper
plot of Fig. 4. With only two free parameters of b and c, the
UDL can reproduce experimental α-decay half-lives with a
rms deviation of σ = 0.4606.

In some cases, the experimental half-lives are noticeably
underestimated by the UDL, with T

Expt.
1/2 /T Cal. > 4. These

correspond to the α decays of 194,210Pb, 208,210Po, and 212Rn.
This deviation may be related to the fact that the formation
amplitudes in these nuclei, due to the shell closures of N = 126
and Z = 82, are significantly smaller than those in the open
shell region.

In Fig. 4, we plotted calculations with the UDL on α

and heavier cluster decay half-lives and comparisons with
experimental data. In these plots, the coefficient a of the UDL
is taken as its calculated value, while b and c are determined by
fitting to corresponding experiments. In the figure, we plotted
the quantity log10 T1/2 − bρ ′ as a function of χ ′. A similar
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FIG. 4. (Color online) UDL description of α decays (upper panel)
and heavier cluster decays (lower panel) with the coefficient a fixed
at its calculated value. The black points correspond to experimental
data with decay half-lives given in seconds. The lines are given as
aχ ′ + c with c values from the lower part of Table I.

linear trend can be achieved if we plot experimental data as
a function of ρ ′, as seen in Fig. 5, where all α and heavier
cluster decays are considered. For all observed α and heavier
cluster decays, the χ ′ and ρ ′ values are in the wide ranges of
105 < χ ′ < 640 and 60 < ρ ′ < 660. As a result, the functions
log10 T1/2 − bρ ′ and log10 T1/2 − aχ ′ plotted in Figs. 4 and 5

FIG. 5. (Color online) UDL description of both α and heavier
cluster decays as a function of ρ ′. The lines are given as bρ ′ + c with
coefficients (set III) from the lower part of Table I.

TABLE I. Upper: Coefficient sets of Eq. (12) that determined by
fitting to experiments of α decays (I), cluster decays (II), and both α

and cluster decays (III) [48], and the corresponding rms deviations;
Lower: same as the upper part, but with coefficient a fixed to its
calculated value of a = 0.4314.

I II III

a 0.4065 0.3671 0.3949
b −0.4311 −0.3296 −0.3693
c −20.7889 −26.2681 −23.7615
σ 0.3436 0.6080 0.6107

a 0.4314 0.4314 0.4314
b −0.4608 −0.3921 −0.4087
c −21.9453 −32.7044 −25.7725
σ 0.4606 0.7901 0.7631

change over 200 orders of magnitude. But the decay half-lives
are in the range of −8 < log10 T1/2 < 28 (in seconds).

In Table I, the constants a, b, and c that fit the data sets of α

as well as cluster decays are collected. The fitted values with a

as a free and fixed parameter are shown in the upper and lower
parts of the table, respectively. In the table, we also give the
corresponding rms deviations between experiments and UDL
calculations with these coefficient sets.

IV. PREDICTIONS AND DISCUSSIONS

Using the UDL, it is straightforward to evaluate the half-
lives of all cluster emitters throughout the nuclear chart if
reliable values of the binding energies (i.e., of the cluster
Q values) can be obtained. We do this by using the latest
compilation of nuclear masses [52]. With the Q values thus
obtained, we evaluated the decay half-lives of all isotopes
included in that compilation by applying the UDL. We will
first show the case of the decay of α particles and afterward
that of other relevant clusters. For simplicity in what follows,
only results calculated with coefficients from the upper part of
Table I are shown.

Since the half-lives of decaying nuclei that live a very
short or very long time cannot be measured, we will only
consider even-even α emitters with half-lives in the 30 orders
of magnitude range −10 � log10 T1/2 � 20 (in seconds). The
UDL predictions of the corresponding half-lives are shown
in Fig. 6, employing the coefficient set I from the upper part
of Table I. Within the constraints that we imposed, a total
number of 269 even-even α emitters have been found, which
have charge numbers Z � 52. It is seen from the figure that
the most favored α decays are from neutron-deficient nuclei
around the trans-lead and superheavy regions.

Since, as mentioned above, the emitters that we used to
determine the coefficients of the UDL (Table I) have charge
number Z � 78, it would be interesting to probe the law
for nuclei with Z values below that limit. We thus took the
extreme cases of decay from nuclei in the trans-tin region.
The α decay properties of nuclei in this region have been
intensively studied in recent years [55–57]. In Table II, we
compare experimental results on the α decays of Te, Xe, and
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FIG. 6. (Color online) Prediction by the UDL (with the coefficient
set I) of the logarithms of half-lives (in seconds), log10 T1/2, for the
α decays of even-even nuclei.

Ba isotopes and the predictions of the UDL. One sees that in all
cases the experimental values lie between the ones calculated
by using the parameters of sets I and III in Table I, confirming
the prediction power of the UDL.

We will now apply the UDL to evaluating the emissions
of heavy clusters that are good candidates to be observed,
namely, 12,14C, 16,18,20O, 20,22,24Ne, 24,26,28Mg, and 28,30,32,34Si.
Observed cluster radioactivities exhibit much longer partial
half-lives than those of the corresponding α decays. This can
be easily understood if we compare the χ ′ values of the heavier
cluster and α radioactivities, since the logarithm of the half-
life is proportional to χ ′. As a typical example, in Fig. 7
we plotted the χ ′ values of α and 14C decays as a function
of the mass numbers of the mother nuclei. The χ ′ values of
heavier clusters are mostly much higher than those of the
corresponding α decays, indicating that it is more difficult for
the heavier clusters to penetrate through the Coulomb barrier.
Besides, from the figure one sees that nuclei favoring cluster
decays should mostly be located in the trans-lead region.

In Fig. 8, we show the predicted half-lives corresponding to
the most favored cluster radioactivity, namely, 14C decay. Our
calculations show that nuclei such as 220,222,224Ra, 222,224Th,
and 226U can have partial decay half-lives shorter than 1016 s,
among which the 14C decays of 222,224Ra have been observed
[4,7].

TABLE II. Experimental and UDL calculated values (with
coefficient sets I and III) of α-decay half-lives (in seconds) of
even-even nuclei in the trans-tin region. Experimental data are from
Ref. [1], except for the half-life of 110Xe which is from Ref. [55].

Emitter Qα (MeV) log10 T
Expt.

1/2 log10 T Cal.
1/2 (I) log10 T Cal.

1/2 (III)

106Te 4.290 −4.155 −3.446 −4.484
108Te 3.445 0.6320 0.9761 −0.1812
110Xe 3.885 −0.7850 −0.3774 −1.441
112Xe 3.330 2.477 2.951 1.799
114Ba 3.534 1.770 2.861 1.766

FIG. 7. (Color online) χ ′ values for α and 14C radioactivities as
a function of the mass numbers of mother nuclei.

Our calculations also show that nuclei that most probably
emit clusters with nonequal proton and neutron numbers like
14C are concentrated in the trans-lead region. This is consistent
with the expectation from the schematic picture of Fig. 7. For
heavier clusters, the formation probability is even smaller, and
therefore the corresponding decay probability is also smaller.
As another typical example, in Fig. 9 we plotted calculations
for the half-lives of the 24Ne radioactivity. One sees in this
figure that the shortest half-lives correspond to mother nuclei
around Z = 92 and N = 138. In all cases, this half-life is larger
than 1021 s, which is many orders of magnitude larger than the
cases corresponding to the decay of 14C analyzed above.

All heavier-cluster-decaying nuclei decay also by emitting
α particles. In fact, α decay is usually the overwhelming
dominant decay channel, as seen from Fig. 7. Therefore
in planning the detection of a probable cluster decay, one
has to consider carefully the branching ratio of the α-decay
channel relative to the corresponding cluster decay of interest,
i.e., brel. = T α

1/2/T cluster
1/2 . The log10 brel values are negative,

which cannot be too small for the heavier cluster decay to

FIG. 8. (Color online) Same as Fig. 6, but for the 14C cluster
decay and with the coefficient set II.
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FIG. 9. (Color online) Same as Fig. 6, but for 24Ne decay.

be detectable. We can evaluate these branching ratios by
using the UDL. To search for probable cluster emitters, we
select particle decay channels for which neither the half-lives
are too large nor the branching ratios are too small. We
thus use the criteria T1/2 < 1030 s and brel. > 10−18, which
is two orders of magnitude outside present experimental
limits. The corresponding calculations for the emissions of
Nc �= Zc clusters are listed in Table III. To give insight into
the expected precision, we present in Table IV comparisons
between calculations and experiments for the half-lives of the
11 observed heavier cluster decay events of Fig. 4.

The α-decay mode dominates the decays of all the heavier-
cluster emitters listed in Table III. In most cases, the branching
ratio between α decay and all other decay channels (including
β decay) is bα 	 100% [1]. But there are exceptions, in
particular, the nuclei 232Pu, 234Pu, and 238Cm, which have
the α-decay branching ratios of bα = 11%, bα = 6%, and
bα < 10%, respectively [1].

We will now analyze the more rare case of radioactive
decay of Nc = Zc clusters heavier than the α particle. Intense
studies have been made in the prediction of and search for
the emissions of Nc = Zc clusters [56–62]. Experiments have
not pinned down the observation of these clusters yet, although
efforts have been made, particularly in looking for the probable
emission of 12C [60]. We have therefore applied the UDL to
investigate regions in the nuclear chart where such cluster
would likely be formed and emitted. The half-lives of 12C
decays thus calculated are plotted in Fig. 10. The emissions
of other Nc = Zc clusters such as 16O show similar patterns.
It is seen from the figure that Nc = Zc cluster emitters form
two islands, decaying into daughter nuclei around 100Sn and
208Pb. This is consistent with theoretical calculations using the
fission model [8,61].

A first glance at Fig. 10 may suggest that the emissions
of Nc = Zc clusters like 12C should be more favored than
those of other Nc �= Zc isotopes, since the former particle is
usually more tightly bound. Such a picture is also expected if
we compare the χ ′ values for the radioactive decays of other
isotopes. A typical example is given in Fig. 11, where we
plotted the χ ′ values of the 12C and 14C radioactivities. We see

TABLE III. UDL predictions of probable emissions of Nc �= Zc

clusters.

Emitter Mode Qc (MeV) log10 T cluster
1/2 (s) − log10 brel.

220Rn 14C 28.539 17.759 15.573
222Rn 14C 26.451 22.313 16.399
220Ra 14C 31.038 14.776 16.142
222Th 14C 31.653 15.466 17.776
224Th 14C 32.930 13.057 12.657
226Th 14C 30.547 17.454 13.747
228Th 14C 28.222 22.278 14.082
230Th 14C 26.060 27.340 14.605
226U 14C 32.969 14.774 14.993
228U 14C 30.525 19.394 16.308
230U 14C 28.339 24.025 17.331
228Pu 14C 32.968 16.572 16.858
226Th 18O 45.727 18.235 14.529
228Th 18O 42.282 23.933 15.737
230Th 18O 39.193 29.674 16.938
228U 18O 45.959 20.083 16.996
226Ra 20O 40.817 26.217 15.189
230Th 20O 41.795 26.762 14.026
232U 22Ne 57.364 26.532 16.784
232Pu 22Ne 62.343 21.941 17.671
228Th 24Ne 57.414 25.393 17.197
232Th 24Ne 54.497 29.916 11.951
230U 24Ne 61.352 22.171 15.477
234U 24Ne 58.826 25.727 12.542
234Pu 24Ne 62.254 23.382 17.336
232U 26Mg 71.771 27.481 17.732
232Pu 26Mg 78.366 21.852 17.583
234Pu 26Mg 78.313 21.786 15.739
232U 28Mg 74.320 25.201 15.453
234Pu 28Mg 79.154 21.807 15.760
238Pu 28Mg 75.912 25.800 16.154
238Cm 28Mg 80.368 23.023 17.547
238Cm 30Si 95.577 22.601 17.125
236Pu 32Si 91.674 24.941 16.741
238Cm 32Si 97.262 21.513 16.037
240Cm 32Si 97.555 21.020 14.559
238Pu 34Si 90.812 26.753 17.106
240Pu 34Si 91.029 26.322 14.728
240Cm 34Si 95.468 24.290 17.829

that the χ ′ values of the 12C radioactivity are mostly smaller
that those of 14C, indicating that it should be much easier
for the 12C particle to penetrate through the Coulomb barrier,
especially in nuclei close to the proton drip line. However, the
probability of the decay of Nc = Zc clusters become small if
we take into account the fact that the likely emitters are mostly
close to the proton drip line and are dominated by the decay
mode of β+. With the same selection criteria discussed above,
our predictions of probable emissions of Nc = Zc clusters are
listed in Table V. Since in all cases the decay by the emission
of an α particle is much more likely than the corresponding
decay by the emission of heavier clusters, in Table V we only
show emitters that are known to decay α particles [1]. We see
that the mostly likely Nc = Zc cluster emitter is the nucleus
114Ba.
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TABLE IV. Experimental and UDL calculated values (with the
coefficient set II) of cluster decay half-lives (in seconds). The
experimental values are from Ref. [7].

Emitter Mode Qc (MeV) log10 T
Expt.

1/2 log10 T1/2 (II)

222Ra 14C 33.05 11.01 11.07
224Ra 14C 30.54 15.86 15.59
226Ra 14C 28.20 21.24 20.33
228Th 20O 44.72 20.72 21.59
230U 22Ne 61.39 19.22 20.73
230Th 24Ne 57.76 24.61 24.74
232U 24Ne 62.31 20.40 20.68
234U 28Mg 74.11 25.75 25.36
236Pu 28Mg 79.67 21.52 21.02
238Pu 32Si 91.19 25.27 25.39
242Cm 34Si 96.51 23.15 22.87

FIG. 10. (Color online) Same as Fig. 6, but for 12C decay.

FIG. 11. (Color online) χ ′ values for 12C and 14C radioactivities
as a function of the mass numbers of mother nuclei.

TABLE V. UDL predictions of the probable emissions of Nc = Zc

clusters. The α-decay branching ratios bα of the cluster emitters are
from Ref. [1].

Emitter Mode Qc (MeV) log10 T cluster
1/2 (s) − log10 brel. bα (%)

110Xe 12C 15.726 12.863 13.241 64
112Xe 12C 14.283 17.099 14.148 0.9
114Ba 12C 18.984 7.199 4.338 0.9
154Dy 12C 15.557 28.193 14.432 100
158Yb 12C 20.078 19.374 12.888 2.1 × 10−3

160Hf 12C 21.922 17.015 13.640 0.7
162Hf 12C 20.144 21.415 15.362 8 × 10−3

162W 12C 23.831 14.813 14.100 45.2
166W 12C 20.720 22.080 17.505 3.5 × 10−2

166Os 12C 24.495 15.339 15.644 72
168Os 12C 23.274 17.959 17.000 49
166Pt 12C 27.941 10.616 14.039 100
168Pt 12C 26.815 12.619 15.159 100
170Pt 12C 25.799 14.537 16.133 8.6
172Pt 12C 24.836 16.463 17.222 72
172Hg 12C 28.275 11.680 15.146 100
174Hg 12C 27.355 13.311 15.905 100
176Hg 12C 26.454 14.993 16.504 90
180Hg 12C 24.645 18.666 17.879 48
178Pb 12C 29.006 12.013 15.597 100
180Pb 12C 28.052 13.691 16.164 100
184Pb 12C 26.193 17.231 17.600 80
202Ra 12C 29.630 15.569 17.955 100
218Ra 12C 30.436 13.497 17.715 100
220Ra 12C 32.021 10.662 12.027 100
222Ra 12C 29.049 15.957 14.029 100
224Ra 12C 26.375 21.476 15.609 100
226Ra 12C 23.850 27.524 16.496 100
220Th 12C 32.139 12.227 16.852 100
222Th 12C 33.156 10.455 12.765 100
224Th 12C 30.366 15.248 14.848 100
226Th 12C 27.667 20.569 16.863 100
222U 12C 33.897 10.968 16.320 100
224U 12C 34.373 10.132 13.178 100
226U 12C 31.649 14.651 14.869 100
228U 12C 28.969 19.714 16.627 >95
228Pu 12C 32.797 14.327 14.613 100
112Xe 16O 21.000 20.519 17.568 0.9
114Ba 16O 26.422 11.477 8.616 0.9
162Hf 16O 31.657 21.563 15.510 8 × 10−3

166Os 16O 37.132 16.535 16.839 72
168Pt 16O 40.005 14.214 16.754 100
172Hg 16O 41.502 14.053 17.518 100
224Th 16O 46.482 15.321 14.921 100
226Th 16O 42.662 21.196 17.489 100
226U 16O 48.019 15.152 15.371 100
228U 16O 44.331 20.657 17.570 >95
228Pu 16O 49.485 15.095 15.381 100

V. SUMMARY AND CONCLUSIONS

Starting from the exact expression for the half-life of cluster
decaying nuclei [Eq. (2)], we found that this expression is
dependent upon a quantity called cos2 β which for medium
and heavier nuclei is small [Eq. (4)]. For l = 0 (monopole)

044326-8



MICROSCOPIC MECHANISM OF CHARGED-PARTICLE . . . PHYSICAL REVIEW C 80, 044326 (2009)

transitions, we expanded the exact expression to the lowest
order in cos2 β and used the property that the half-life does
not depend upon the matching radius R [Eq. (11)]. We
thus found that the logarithm of the half-life is linearly

dependent upon two parameters, χ ′ = ZcZd

√
A
Qc

and ρ ′ =√
AZcZd (A1/3

d + A
1/3
c ), which depend only upon the Q value

of the outgoing cluster and upon the charges and masses of
the particles involved in the decay [Eq. (8)]. The resulting
linear expression [Eq. (12)] is found to be a generalization
of the Geiger-Nuttall law, and we call it the universal decay
law (UDL). The UDL is valid for all l = 0 transitions. This
monopole linear equation contains three constants, called a,
b, and c. We fitted the experimental half-lives of ground-state
to ground-state α decay and heavier cluster decay processes in
even-even nuclei to obtain the values of the constants given in
Table I. We found that the UDL predicts with great precision
the half-lives of radioactive decays, both α and cluster decays,
and for all isotopic series, as expected since the original exact
expression for the half-life is valid in general. This law may
also help in the ongoing search for new cluster decay modes
from superheavy nuclei.

Using the UDL, we have evaluated the decay half-lives
of various cluster emitters throughout the nuclear chart with
reliable values of binding energies as input. We found that
α decay is favored in neutron-deficient nuclei around the trans-
lead and superheavy regions. The decays of heavier clusters
with nonequal proton and neutron numbers are mostly located
in the trans-lead region. The probability of the decay of clusters
with equal numbers of protons and neutrons is small, since the
likely emitters are mostly close to the proton drip line and are
dominated by the decay mode of β+.

An important conclusion from the UDL is that the cluster
formation amplitude Fc(R) is exponentially dependent upon
the variable ρ ′. The implication of this linear trend on nuclear
structure effects may deserve further investigation in the future.
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