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Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
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We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich
36,38,40Mg close to the drip line by means of the deformed quasiparticle random-phase approximation employing
the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above
the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole
strength at Ex < 10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in 40Mg.
We obtained the collective dipole modes at around 8–10 MeV in Mg isotopes, that consist of many two-
quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin
against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes
due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar
octupole excitations are much enhanced in the lower energy region.
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I. INTRODUCTION

Nuclei far from the stability have attracted considerable
interest both experimentally and theoretically. Exploring the
multipole responses in unstable nuclei is in particular of great
interest because they provide information on collective modes
of excitation. In neutron-rich nuclei, the surface structure is
quite different to the stable ones due to the presence of the
loosely bound neutrons. One of the unique structures is the
neutron skin [1,2]. Since the collective excitations are sensitive
to the surface structure, we can expect new kinds of exotic
excitation modes associated with the neutron skin to appear in
neutron-rich nuclei. An example is the soft dipole excitation
[3], or the pygmy dipole resonance (PDR), that is observed not
only in light halo nuclei [4–13], but also in heavier systems
[14–17], where an appreciable E1 strength is observed above
the neutron emission threshold, and it exhausts several percent
of the energy-weighted sum rule (EWSR) value.

The structure of the PDR and its collectivity have been
studied based on the mean-field calculations by many groups.
(See Ref. [18] for extensive lists of references concerning the
theoretical investigation of the PDR.) These studies, however,
are largely restricted to spherical systems. Quite recently, by
means of the deformed quasiparticle random-phase approxi-
mation (QRPA), the low-lying dipole excitation in neutron-rich
Ne isotopes [19] and in neutron-rich Sn isotopes [20] have been
investigated.

Presently, small excitation energies of the first 2+ state and
striking enhancements of B(E2; 0+

1 → 2+
1 ) in 32Mg [21,22]

and 34Mg [23–25] are under lively discussions in connection
with the onset of the quadrupole deformation, breaking of
the N = 20 spherical magic number, pairing correlation, and
continuum coupling effects [26–30]. In order to get a clear
understanding of the nature of quadrupole deformation and
pairing correlations, it is strongly desirable to explore, both
experimentally and theoretically, excitation modes in Mg
isotopes toward a drip line [31–37].

In the present article, we investigate the microscopic
structure of the low-lying dipole excitation in neutron-rich
Mg isotopes close to the drip line, paying special attention to

the deformation effects on them. In a deformed system, the
soft negative-parity excitation modes could emerge associated
with coupling between the dipole and octupole modes of
excitation [38]. To this end, we perform a deformed QRPA
in the matrix formalism on top of the coordinate-space
Skyrme Hartree-Fock-Bogoliubov (HFB) theory developed in
Ref. [39]. The matrix formalism of the QRPA is suitable to
investigate the microscopic structure of the excitation modes.

This article is organized as follows. In the next section, the
deformed Skyrme-HFB + QRPA method is recapitulated. In
Sec. III, we show the results of the deformed QRPA and in-
vestigate microscopic structures of the low-lying dipole states
in 36,38,40Mg. We discuss properties of the coupling among
different modes of excitation unique in deformed neutron-rich
nuclei in Sec. IV. The last section is devoted to a summary.

II. MODEL

A detailed discussion of the deformed Skyrme-HFB +
QRPA can be found in Ref. [39]. Therefore, we just briefly
recall the outline of the calculation scheme.

In order to describe simultaneously the nuclear deformation
and the pairing correlations including the unbound quasiparti-
cle states, we solve the HFB equations [40,41](

hq − λq h̃q

h̃q −(hq − λq)

) (
ϕ

q

1,α(r, σ )

ϕ
q

2,α(r, σ )

)
= Eα

(
ϕ

q

1,α(r, σ )

ϕ
q

2,α(r, σ )

)

(1)

in coordinate space using cylindrical coordinates r =
(ρ, z, φ). We assume axial and reflection symmetries. Here,
q = ν (neutron) or π (proton). For the mean-field Hamiltonian
h, we employ the SkM∗ interaction [42]. Details for expressing
the densities and currents in the cylindrical coordinate repre-
sentation can be found in Ref. [43]. The pairing field is treated
by using the density-dependent contact interaction [44],

vpair(r, r ′) = 1 − Pσ

2

[
t ′0 + t ′3

6
	

γ

0 (r)

]
δ(r − r ′), (2)
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where 	0(r) denotes the isoscalar density of the ground state
and Pσ the spin exchange operator. Assuming time-reversal
symmetry and reflection symmetry with respect to the x-y
plane, we have to solve for positive � and positive z only, �

being the z component of the angular momentum j . We use
the lattice mesh size ρ = z = 0.6 fm and a box boundary
condition at ρmax = 9.9 fm, zmax = 12 fm. The differential
operators are represented by the use of the 11-point formula
of the finite difference method. Because the parity and � are
good quantum numbers in the present calculation scheme, we
have only to diagonalize the HFB Hamiltonian (1) for each �π

sector. The quasiparticle energy is cut off at Eqp,cut = 60 MeV
and the quasiparticle states up to �π = 15/2± are included.

The pairing strength parameter t ′0 is determined so as to
reproduce the experimental pairing gap of 34Mg (exp =
1.7 MeV) obtained by the three-point formula [45]. The
strength t ′0 = −295 MeV fm3 for the mixed-type interaction
(t ′3 = −18.75t ′0) [46] with γ = 1 leads to the pairing gap
〈ν〉 = 1.71 MeV in 34Mg.

Using the quasiparticle basis obtained as a self-consistent
solution of the HFB equations (1), we solve the QRPA equation
in the matrix formulation [47]

∑
γ δ

(
Aαβγ δ Bαβγ δ

−Bαβγ δ −Aαβγ δ

) (
Xi

γ δ

Y i
γ δ

)
= h̄ωi

(
Xi

αβ

Y i
αβ

)
. (3)

The residual interaction in the particle-hole (p-h) channel
appearing in the QRPA matrices A and B is derived from
the Skyrme density functional. We neglect the spin-orbit
interaction term C∇J

t as well as the Coulomb interaction to
reduce the computing time in the QRPA calculation. We also
drop the so-called “J 2” term CT

t both in the HFB and QRPA
calculations. The residual interaction in the particle-particle
(p-p) channel is derived from the pairing functional constructed
with the density-dependent contact interaction (2).

Because the full self-consistency between the static mean-
field calculation and the dynamical calculation is broken
by the above neglected terms, we renormalize the residual
interaction in the p-h channel by an overall factor fph to get
the spurious mode. We cut the two-quasiparticle (2qp) space

TABLE I. Ground state properties of 36,38,40Mg obtained by
the deformed HFB calculation with the SkM∗ interaction and the
mixed-type pairing interaction. Chemical potentials, deformation
parameters, average pairing gaps, root-mean-square radii for neutrons
and protons are listed. The average pairing gaps of protons are zero
in these isotopes.

36Mg 38Mg 40Mg

λν (MeV) −3.24 −2.41 −1.56
λπ (MeV) −21.0 −23.7 −24.4
βν

2 0.31 0.29 0.28
βπ

2 0.39 0.38 0.36
〈〉ν (MeV) 1.71 1.64 1.49√

〈r2〉ν (fm) 3.59 3.67 3.76√
〈r2〉π (fm) 3.18 3.20 3.22

at Eα + Eβ � 60 MeV due to the excessively demanding
computer memory size and computing time for the model
space consistent with that adopted in the HFB calculation;
2Eqp,cut = 120 MeV. Accordingly, we need another factor fpp

for the p-p channel. See Ref. [39] for details of determination
of the normalization factors. In the present calculation, the
dimension of the QRPA matrix (3) for the Kπ = 0− excitation
in 40Mg is about 17 100, and the memory size is 24.4 GB. The
normalization factors are fph = 1.06 and fpp = 1.21.

III. RESULTS OF THE CALCULATION

We summarize in Table I the ground state properties. The
neutron-rich Mg isotopes under investigation are prolately
deformed. This is consistent with the results calculated using
the Skyrme SIII interaction [33]. The Gogny-HFB calculation
using the D1S interaction suggested the shape coexistence
in 38,40Mg [36]. We can see that the neutron skin develops
when approaching the drip line; the difference in neutron and
proton radii

√
〈r2〉ν −

√
〈r2〉π = 0.41 fm in 36Mg changes to

0.54 fm in 40Mg.
Figure 1 shows the response functions for the isovector (IV)

dipole excitation in neutron-rich Mg isotopes. The IV dipole
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FIG. 1. (Color online) Response functions for the isovector (IV) dipole operator (4) in 36,38,40Mg. The dotted, dashed, and solid lines corre-
spond to the Kπ = 0−, Kπ = 1−, and total responses, respectively. For the Kπ = 1− response, the transition strengths for the Kπ = ±1− states
are summed up. The transition strengths are smeared by using � = 2 MeV. The arrows indicate the one-neutron continuum threshold Eth,1n =
|λ| + min Eα and the two-neutron continuum threshold Eth,2n = 2|λ|. In 40Mg, these two continuum-threshold energies are almost degenerated.
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FIG. 2. Energy-weighted sum of the IV dipole strength function
in 40Mg. The horizontal lines show the classical Thomas-Reiche-
Kuhn (TRK) and the RPA sum rule values including the enhancement
factor, m1 = mcl

1 (1 + κ) (κ = 0.33 in 40Mg with the SkM∗ interac-
tion).

operator used in the present calculation is

F̂ IV
1K = e

N

A

∑
i∈π

riY1K (r̂i) − e
Z

A

∑
i∈ν

riY1K (r̂i), (4)

and the response function is calculated as

Sτλ(E) =
∑

i

∑
K

�/2

π

∣∣〈i|F̂ τ
λK |0〉∣∣2

(E − h̄ωi)2 + �2/4
. (5)

The giant dipole resonance (GDR) appearing at 15–25 MeV
shows a deformation splitting for the Kπ = 0− and 1−
excitations. In the lower energy region, we can see a bump
structure above the neutron-emission threshold energy.

Figure 2 shows the partial sum of the energy weighted
strength defined as

W (Ex) =
∑

h̄ωi<Ex

∑
K

h̄ωi

∣∣〈i|F̂ τ
λK |0〉∣∣2

. (6)

For the IV dipole mode in 40Mg, the calculated sum up
to 60 MeV reaches 98.5% of the EWSR value including
the enhancement factor, m1 = mcl

1 (1 + κ) where κ = 0.33.
The IV dipole strength below 10 MeV exhausts about 6.0%
of the classical Thomas-Reiche-Kuhn (TRK) sum rule. In
36Mg and 38Mg, the summed transition strength up to 10 MeV
exhausts about 3.6% and 4.8% of the TRK sum rule,
respectively.

In what follows, the low-energy dipole excitations are
investigated in detail.

A. Low-lying states in 40Mg

Due to the deformation, the strength distribution and
microscopic structure of the Kπ = 0− and 1− excitations are
different. Figures 3(c) and 3(f) show the IV dipole strengths in
the lower energy region for the Kπ = 0− and 1− excitations
in 40Mg.

First, we are going to discuss the structure of the Kπ = 1−
excitations. At h̄ω = 8.22 MeV, we can see a prominent peak
possessing the large transition strength in Fig. 3(f). We made
a detailed analysis of this eigenmode and show in Table II
its microscopic structure. This state is generated by many
2qp excitations. Among the 2qp excitations listed in Table II,

TABLE II. QRPA amplitudes for the Kπ = 1− state in 40Mg at
8.22 MeV. This mode has the isovector (IV) dipole strength B(IV1) =
6.24 × 10−2 e2 fm2, the isoscalar (IS) octupole strength B(IS3) =
1.44 × 103 fm6, and the sum of the backward-going amplitude∑

Y 2
αβ = 5.56 × 10−3. The single-quasiparticle levels are labeled

with the asymptotic quantum numbers [Nn3�]�. Only components
with X2

αβ − Y 2
αβ > 0.02 are listed. Two-quasiparticle excitation en-

ergies are given by Eα + Eβ in MeV and two-quasiparticle dipole
transition matrix elements D1,αβ in e fm, the octupole transition matrix
elements O1,αβ in fm3. In rows (e) and (j), the label ν3/2+ denotes
a nonresonant discretized continuum state of neutron �π = 3/2+

level. The quasiparticle resonance of the hole-like ν[200]1/2 level is
described by three discretized states in the present box size, and the
level in row (b) is the same state as in (g).

α β Eα + Eβ X2
αβ − Y 2

αβ D1,αβ O1,αβ

(MeV) (e fm) (fm3)

(a) ν[202]3/2 ν[321]1/2 8.28 0.289 0.164 −14.8
(b) ν[200]1/2 ν[312]3/2 8.26 0.167 −0.190 10.5
(c) ν[321]3/2 ν[440]1/2 7.49 0.062 0.054 29.7
(d) ν[303]7/2 ν[422]5/2 7.92 0.050 0.059 3.82
(e) ν[310]1/2 ν3/2+ 7.96 0.037 0.159 16.4
(f) ν[200]1/2 ν[312]3/2 9.04 0.034 0.011 −5.05
(g) ν[200]1/2 ν[310]1/2 7.72 0.030 −0.053 −5.72
(h) ν[303]7/2 ν[413]5/2 9.74 0.021 −0.087 10.7
(i) ν[312]5/2 ν[411]3/2 6.91 0.020 0.073 23.4
(j) ν[312]5/2 ν3/2+ 8.97 0.020 0.106 −2.29

the 2qp excitation of (d) and (h) is the particle-particle like
excitation, and that of (g) is the hole-hole like excitation. These
2qp excitations never participate in generating the RPA mode
in the absence of the pairing correlations.

Although many 2qp excitations participate in generating
this Kπ = 1− mode, the excitation energy (8.22 MeV) is not
very different from the unperturbed 2qp excitation energies;
the energy shift from the 2qp excitation having the largest
contribution is only 0.06 MeV. It is quite interesting to
investigate whether this is due to the deformation effect
and/or this is unique in drip-line nuclei. In Ref. [48], the
low-lying dipole mode in 50Ca and 76Ca was investigated in
the framework of the spherical HFB-QRPA using the SkM∗
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FIG. 3. IV dipole transition strengths in 36,38,40Mg for the Kπ =
0− (upper) and 1− (lower) excitations.
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FIG. 4. (Color online) Transition densities of protons and neu-
trons in 40Mg to the Kπ = 0− state at 9.40 MeV (upper) and the
Kπ = 1− state at 8.22 MeV (lower). Solid and dotted lines indicate
positive and negative transition densities, and the contour lines
are plotted at intervals of 3 × 10−4 fm−3. The thick solid lines indicate
the neutron and proton half-density, 0.055 fm−3 and 0.032 fm−3,
respectively.

interaction. The energy difference between the RPA frequency
and the 2qp excitation energy having the largest squared
amplitude is 0.87 MeV and less than 0.01 MeV in 50Ca and
76Ca, respectively. The largest amplitude in the component
generating the dipole state in 50Ca and 76Ca is 0.36 and 0.91.
Thus, the collectivity of the dipole state in 76Ca is weaker.
The systematic calculation including both the spherical and
deformed nuclei from the β-stability line to the drip line is
therefore strongly desired to investigate the uniqueness of the
IV dipole excitation modes in deformed drip-line nuclei. We
plan to attack this subject in the future.

In order to understand the spatial structure of the state at
8.22 MeV, we show in the lower panel of Fig. 4 the transition
density to this state. The transition density has the following
features: Around the surface and the inside of the nucleus,
the protons and neutrons oscillate with coherence. Outside
of the nucleus, the neutrons only oscillate and the oscillation
of the internal core and the neutron outside is out of phase.
This corresponds to the classical picture of an oscillation of
the neutron skin against the isoscalar core along the ρ axis;
the axis perpendicular to the symmetry axis.

We are going to move on to the Kπ = 0− excitations.
Above the threshold energy, we can see several states
possessing enhanced strengths in Fig. 3(c). The states at
4.83 MeV and at 6.20 MeV have large transition strengths.
The state at 4.83 MeV is generated dominantly by the 2qp
excitation of ν[310]1/2 ⊗ ν[440]1/2 (4.75 MeV for the 2qp
excitation energy) with a weight, X2 − Y 2, of 0.88. The
state at 6.20 MeV is generated predominantly by the 2qp
excitation of ν[310]1/2 and the discretized state of �π = 1/2+
(6.26 MeV) with a weight of 0.75 and slightly by the 2qp

TABLE III. Same as Table II but for the Kπ = 0− state at
9.40 MeV. This mode has the IV dipole strength B(IV1) = 7.99 ×
10−2 e2 fm2, the IS octupole strength B(IS3) = 23.8 fm6, and the
sum of the backward-going amplitude

∑
Y 2

αβ = 8.76 × 10−4. In rows
(b), (d), (f), and (i), the labels ν1/2+ and ν3/2+ denote nonresonant
discretized continuum states of the neutron �π = 1/2+ and 3/2+

levels. The quasiparticle resonance of the hole-like ν[330]1/2 level
is described by two discretized states in the present box size, and the
level in row (g) is the same state as in (i).

α β Eα + Eβ X2
αβ − Y 2

αβ D0,αβ O0,αβ

(MeV) (e fm) (fm3)

(a) ν[200]1/2 ν[301]1/2 9.34 0.376 0.058 −3.31
(b) ν[310]1/2 ν1/2+ 9.67 0.151 0.161 −3.35
(c) ν[330]1/2 ν[440]1/2 8.85 0.111 0.256 27.1
(d) ν[321]1/2 ν1/2+ 9.37 0.072 0.011 2.96
(e) ν[321]3/2 ν[411]3/2 8.64 0.056 0.311 9.55
(f) ν[312]3/2 ν3/2+ 9.36 0.052 −0.010 3.52
(g) ν[330]1/2 ν[440]1/2 8.55 0.031 0.237 29.6
(h) ν[312]5/2 ν[413]5/2 10.3 0.027 0.155 7.69
(i) ν[330]1/2 ν1/2+ 10.1 0.024 0.128 6.89

excitations of ν[312]3/2 ⊗ ν[411]3/2 (6.44 MeV) with 0.08
and ν[200]1/2 ⊗ ν[310]1/2 (7.22 MeV) with 0.03.

We can see another prominent peak at 9.40 MeV. The
microscopic structure of this state is summarized in Table III.
This state is generated by many 2qp excitations as well
as the Kπ = 1− state at 8.22 MeV representing the pygmy
dipole mode. The contribution of the qp excitation into
the nonresonant continuum state is larger than the pygmy
Kπ = 1− state. The transition density to this state is shown
in the upper panel of Fig. 4. Although the transition density
represents the pygmy dipole character, an oscillation of the
neutron skin against the isoscalar core along the symmetry
axis, the amplitude is smaller than that of the transition density
to the Kπ = 1− state at 8.22 MeV.

B. Low-ying states in 36Mg and 38Mg

Figures 3(a), 3(b), 3(d), and 3(e) show the transition
strengths for the IV dipole excitation in the lower energy
region in 36Mg and 38Mg. For the Kπ = 0− excitations,
we can see a peak at around 9–10 MeV both in 36Mg and
38Mg. The state at 9.85 MeV in 36Mg is generated by the
superposition of many 2qp excitations; among them the
2qp excitations of ν[200]1/2 ⊗ ν[330]1/2 (8.94 MeV) with
a weight of 0.25, ν[330]1/2 ⊗ ν[211]1/2 (10.3 MeV) with
0.17, and ν[202]5/2 ⊗ ν[312]5/2 (10.3 MeV) with 0.13 have
large contributions. The state at 9.69 MeV in 38Mg is also
generated by many 2qp excitations. The 2qp excitations of
ν[440]1/2 ⊗ ν[321]1/2 (9.85 MeV) with 0.27, ν[330]1/2 ⊗
ν[440]1/2 (8.83 MeV) with 0.15, and ν[200] ⊗ ν[330]1/2
(10.4 MeV) with 0.10 have large contributions. The transition
densities to these states have a similar spatial structure to the
transition density to the Kπ = 0− state at 9.40 MeV in 40Mg.

For the Kπ = 1− excitation, we can see a peak at around
8–9 MeV both in 36Mg and 38Mg. The state at 8.67 MeV
in 36Mg is generated mainly by the 2qp excitations of
ν[202]3/2 ⊗ ν[321]1/2 (8.69 MeV) with a weight of 0.40
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FIG. 5. (Color online) Same as Fig. 4 but for the Kπ = 1− state at
8.67 MeV in 36Mg (upper) and the state at 8.32 MeV in 38Mg (lower).
The neutron and proton half-densities are 0.051 fm−3 and 0.034 fm−3

in 36Mg and 0.053 fm−3 and 0.033 fm−3 in 38Mg.

and ν[211]1/2 ⊗ ν[310]1/2 (8.50 MeV) with 0.37. The state
at 8.32 MeV in 38Mg is generated predominantly by the
2qp excitation of ν[202]3/2 ⊗ ν[321]1/2 (8.33 MeV) with a
weight of 0.69.

Figure 5 shows the transition densities to the Kπ = 1−
states in 36Mg and 38Mg. These states have a structure of the
neutron-skin oscillation against the isoscalar core similarly
to the pygmy state in 40Mg. As approaching the drip line,
the neutron transition density has more spatially extended
structure, and the amplitude is also larger whereas the proton
transition density is unchanged.

IV. COUPLING AMONG DIFFERENT MODES OF
EXCITATION

In a deformed system, the angular momentum is no longer
a good quantum number in the intrinsic frame of reference.
Therefore, we could expect the coupling between the dipole
and octupole modes of excitation in 40Mg as one of the unique
features of the negative-parity excitation modes in a deformed
system.

In what follows, we are going to investigate the octupole
mode of excitation. The transition strengths for the isoscalar
(IS) octupole operator

F̂ IS
3K =

∑
i∈π,ν

r3
i Y3K (r̂i) (7)

contain the strengths of both the spurious mode of the
center-of-mass motion and physical intrinsic excitations in a
deformed system. We cannot remove the spurious component
exactly from the physical states just by multiplying the overall
factors fph and fpp as explained in Sec. II. In order to remove
the spurious component of the c.m. motion from the calculated
RPA amplitude, we proposed a prescription in Ref. [49]. And
we confirmed that subtracting the spurious c.m. motion using
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FIG. 6. Kπ = 0− (left) and 1− (right) transition strengths for the
IV dipole (upper), isoscalar (IS) octupole (middle), and IS dipole
(lower) excitations in 40Mg.

the proposed prescription does not affect the IS octupole
transition strengths presented here because the RPA excitation
energies are rather large.

Figure 6(d) shows the Kπ = 1− IS octupole transition
strengths. The lowest state at 4.68 MeV and the state at
5.79 MeV have enhanced octupole transition strengths of
4980 fm6 and 4990 fm6. The state at 4.68 MeV is gener-
ated dominantly by the 2qp excitation of (i) ν[310]1/2 ⊗
ν[440]1/2 (4.75 MeV) with a weight of 0.83, and the
state at 5.79 MeV is generated by the 2qp excitations
of (ii) ν[310]1/2 ⊗ ν[411]3/2 (5.90 MeV) with 0.61 and
(iii) ν[301]1/2 ⊗ ν[440]1/2 (5.63 MeV) with 0.11. The state
at 4.68 MeV has a similar structure to the Kπ = 0− state at
4.83 MeV. The excitation energies do not change so much
with respect to the unperturbed 2qp excitation energies.
Nevertheless, the transition strengths become large. This
is because the unperturbed transition strengths of the 2qp
excitations of (i) and (ii) are quite large, (i) 858 fm6 and (ii)
2070 fm6, as a consequence of the spatial extension of the
quasiparticle wave functions around the Fermi level.

We can see an appreciable coupling between the dipole
and octupole excitations also for the Kπ = 1− pygmy state
at 8.22 MeV possessing the IS octupole transition strength
of 1440 fm6. The coupling effect can be clearly seen in the
transition density in the laboratory frame in the following.

In the laboratory frame, the total angular momentum is
still a good quantum number even if the system is deformed.
Therefore, one should restore the broken symmetry of rotation
in order to discuss the excitation energies and the transition
strengths quantitatively.

We show in Fig. 7 the transition densities in the laboratory
frame. The angular momentum is approximately projected to
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FIG. 7. (Color online) Transition densities in the laboratory frame
of protons and neutrons in 40Mg to the Kπ = 0− state at 9.40 MeV
(left) and the Kπ = 1− state at 8.22 MeV (right). The L = 1 (upper)
and the L = 3 (lower) components are shown. The transition densities
are multiplied by r2.

the laboratory frame as presented in Ref. [20]. Since the present
paper aims to discuss the qualitative character of the low-lying
dipole modes in deformed drip-line nuclei, this approximate
treatment of the angular momentum projection is sufficient.
The dipole mode has a characteristic feature that the transition
densities of neutrons and protons have the same sign on the
inside of the nucleus, and that the proton contribution vanishes
on the outside of the nucleus while the transition densities of
neutrons have an opposite sign to the interior region.

The transition density to the Kπ = 1− mode has a large
amplitude both in the L = 1 and L = 3 components, which
indicates the significant coupling between the dipole and
octupole modes of excitation in the pygmy Kπ = 1− mode.

Figure 8 shows the partial sum of the energy weighted
strength for the IS octupole excitations. The spurious com-
ponent of the center-of-mass motion is subtracted for the
EWSR values for the Kπ = 0− and 1− excitations. (See
the Appendix for the effect of the c.m. motion on the IS
octupole excitations in a deformed system.) The summed
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FIG. 8. (Color online) Same as Fig. 2 but for the IS octupole
excitations.

octupole transition strengths up to 10 MeV exhausts about
26.6%(27.3%) of the EWSR value for the IS octupole Kπ =
0−(1−) excitation. The individual eigenstates obtained in the
present calculation scheme do not represent the collective
nature. However, concentration of the transition strengths in
the low-energy region would be one of the unique features
in drip-line nuclei. An investigation of this unique feature is
challenging in a more sophisticated framework that is able to
handle the coupling to the continuum in a better way.

An enhancement of the transition strengths in the lower
energy region for the IS compressional dipole excitation in
unstable nuclei was also predicted in Ref. [50]. Since the
pygmy dipole mode discussed above has both an IS and an IV
structure, and the change of the sign of the transition density
in the surface region is typical of a compression mode [51]
as shown in Fig. 7, we can expect the enhancement of the
strength for the IS dipole excitation as well as for the IV
dipole excitation in Mg isotopes.

Figure 9 shows the response functions for the IS compres-
sional dipole mode. The IS dipole operator used in the present
calculation is

F̂ IS
1K =

∑
i∈π,ν

(
r3
i − ηri

)
Y1K (r̂i), (8)

where

η =
{

3〈z2〉 + 〈ρ2〉 (K = 0)

〈z2〉 + 2〈ρ2〉 (K = ±1).
(9)

The correction factor η originally discussed for a spherical
system to subtract the spurious component of the c.m. motion
[51] was extended for a deformed system, and coincides with
η = 5

3 〈r2〉 in the spherical limit [39].
We can see a tremendous enhancement of the transition

strengths above the neutron-emission threshold energy up
to ∼15 MeV, where the IV dipole strengths start to have a
resonance peak. The enhancement of the transition strengths
are found not only for the pygmy modes but also for the
less collective low-lying states possessing large IS octupole
transition strengths as shown in Fig. 6.

In deformed Mg isotopes close to the drip line, we can see
a significant coupling among the IV dipole, IS octupole, and
IS compressional dipole modes. It is thus quite interesting to
investigate systematically in a wide mass region of nuclei,
where we can find the nuclear deformation, not only the
appearance of the pygmy mode but also coupling between
the dipole and octupole excitations and enhancement of the
transition strengths for the IS compressional dipole and IS
octupole excitations in the low-energy region. In neutron-rich
nuclei close to the drip line, the low-lying modes are embedded
into the continuum as shown in Fig. 6. Therefore, it is strongly
desirable to develop the microscopic framework that enables
us to investigate the continuum effects on excitation modes
and collectivity of the low-lying resonance in a quantitative
manner. Developing the QRPA on top of the HFB in the
Gamow basis [52] is one of the ultimate ways, and has been
undertaken [53].

Furthermore, in order to compare with the experimental
results coming from the new generation of RI beam facilities
and to find a better nuclear energy-density functional (EDF),
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FIG. 9. (Color online) Same as Fig. 1 but for
the IS compressional dipole operator (8).

the inclusion of the full two-body interactions into the QRPA
calculation and developing a theoretical framework to restore
the broken symmetry in a language of the nuclear density-
functional theory are desired.

The present work is considered to be a step toward the long-
range plan of the microscopic and quantitative description of
the collective modes of excitation in deformed drip-line nuclei,
and the present results show that it is worthwhile to investigate
the escaping widths of these states and collectivity of the
low-lying resonances in a sophisticated framework employing
various types of the nuclear EDF.

V. SUMMARY

We made a detailed analysis of the low-lying dipole states in
deformed neutron-rich Mg isotopes close to the drip line, 36Mg,
38Mg, and 40Mg, by using the deformed QRPA employing the
Skyrme SkM∗ and the local mixed-type pairing energy-density
functionals.

Above the neutron-emission threshold, we obtained several
eigenstates having large transition strengths for the IV dipole
excitation. Because of the deformation, excitation modes with
different K quantum numbers have different excitation ener-
gies and microscopic structures. We obtained the collective
pygmy-dipole modes at around 9–10 MeV for the Kπ = 0−
excitation and at around 8–9 MeV for the Kπ = 1− excitation.
These pygmy dipole modes are generated by many 2qp
excitations.

Since the pygmy dipole modes obtained in Mg isotopes
have both an IS and an IV structure, it has been found
that the transition strengths for the IS compressional dipole
excitation are tremendously enhanced in the lower-energy
region. Furthermore, because of the mixing of different angular
momenta in a deformed system, we found significant coupling
among the IV dipole, IS octupole, and IS compressional dipole
modes in the low-energy region.
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APPENDIX: SUBTRACTION OF THE CENTER-OF-MASS
MOTION FROM THE ISOSCALAR OCTUPOLE

OPERATOR

Because of the deformation, the Kπ = 0− and 1− octupole
excitations contain the spurious center-of-mass motion. We
deal with this problem by using an operator

M30(r) ≡ r3Y30 − ηrY10 (A1)

=
√

7

16π
(2z3 − 3zρ2 − η′z), (A2)

where η′ = √
12/7η for the Kπ = 0− channel by following the

discussion in Ref. [51]. The correction factor η′ is determined
by the condition of the translational invariance.

The vibrating density associated with the external field

V (r, t) = α(t)M30(r) (A3)

can be expressed to first order in α(t) by

δ	(r, t) = α∇ · (	0∇M30) (A4)

=
√

7

16π
α

{
(−6zρ)

∂

∂ρ
+ (6z2 − η′ − 3ρ2)

∂

∂z

}
	0.

(A5)

Here 	0 is the ground-state density, and the variables t and r
are omitted for simplicity.

The condition of the translational invariance of the system∫
d rδ	rY ∗

10 = 0 (A6)

gives

η′
K=0 = 6〈z2〉 − 3〈ρ2〉. (A7)

A similar procedure is taken for the Kπ = 1− channel by
using an operator

M31 ≡ r3Y31 − ηrY11 (A8)

= −
√

21

64π
(4z2ρ − ρ3 − η′ρ)eiφ, (A9)

where η′ = √
8/7η. It gives

η′
K=1 = 4〈z2〉 − 2〈ρ2〉. (A10)

In the spherical limit, the correction factors both for
the Kπ = 0− and 1− excitations vanish. This is reasonable
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because the octupole excitations decouple to the spurious c.m.
motion in a spherical system.

The EWSR values for the IS octupole excitations (7) are
given by

EWSR(λ = 3,K = 0)

= h̄2

2m
A × 63

16π
(4〈z4〉 + 〈ρ4〉), (A11)

EWSR(λ = 3,K = 1)

= h̄2

2m
A × 21

32π
(16〈z4〉 + 5〈ρ4〉 + 16〈z2ρ2〉), (A12)

EWSR(λ = 3,K = 2)

= h̄2

2m
A × 105

32π
(8〈ρ2z2〉 + 〈ρ4〉), (A13)

EWSR(λ = 3,K = 3)

= h̄2

2m
A × 315

32π
ρ4. (A14)

The EWSR values for the Kπ = 0− and 1− excitations are
corrected as

EWSRcor(λ = 3,K = 0)

= EWSR(λ = 3,K = 0) − h̄2

2m
A × 7

16π
η′2

K=0, (A15)

EWSRcor(λ = 3,K = 1)

= EWSR(λ = 3,K = 1) − h̄2

2m
A × 21

32π
η′2

K=1 (A16)

by subtracting the spurious component of the c.m. motion.
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70, 691 (2007).
[19] K. Yoshida and N. V. Giai, Phys. Rev. C 78, 014305 (2008).
[20] D. Peña Arteaga, E. Khan, and P. Ring, Phys. Rev. C 79, 034311

(2009).
[21] D. Guillemaud-Müller et al., Nucl. Phys. A426, 37 (1984).
[22] T. Motobayashi et al., Phys. Lett. B346, 9 (1995).
[23] K. Yoneda et al., Phys. Lett. B499, 233 (2001).
[24] J. A. Church et al., Phys. Rev. C 72, 054320 (2005).
[25] Z. Elekes et al., Phys. Rev. C 73, 044314 (2006).
[26] A. Poves and J. Retamosa, Phys. Lett. B184, 311 (1987).
[27] E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C

41, 1147 (1990).
[28] N. Fukunishi, T. Otsuka, and T. Sebe, Phys. Lett. B296, 279

(1992).
[29] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev.

C 60, 054315 (1999).
[30] M. Yamagami and N. Van Giai, Phys. Rev. C 69, 034301 (2004).
[31] A. Gade et al., Phys. Rev. Lett. 99, 072502 (2007).
[32] T. Baumann et al., Nature (London) 449, 1022 (2007).

[33] J. Terasaki, H. Flocard, P.-H. Heenen, and P. Bonche, Nucl. Phys.
A621, 706 (1997).

[34] E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Phys. Rev.
C 58, 2033 (1998).

[35] P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski,
J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316
(1999).

[36] R. Rodorı́guez-Guzmán, J. L. Egido, and L. M. Robledo, Nucl.
Phys. A709, 201 (2002).

[37] K. Yoshida, M. Yamagami, and K. Matsuyanagi, Nucl. Phys.
A779, 99 (2006).

[38] T. Inakura, M. Yamagami, K. Matsuyanagi, and S. Mizutori,
Proceedings of the International Symposium on Frontiers of
Collective Motions, Aizu, Japan, 6–9 September 2002 (World
Scientific, 2003), p. 56 [arXiv:nucl-th/0212101].

[39] K. Yoshida and N. V. Giai, Phys. Rev. C 78, 064316 (2008).
[40] A. Bulgac, preprint No. FT-194-1980, Institute of Atomic

Physics, Bucharest, 1980 [arXiv:nucl-th/9907088].
[41] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A422,

103 (1984).
[42] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
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