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2TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
3ECT*, Strada delle Tabarelle 286, I-38050 Villazzano (Trento), Italy

4National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University,
East Lansing, Michigan 48824, USA
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We study 1S0 pairing gaps in neutron and nuclear matter as well as T = 1 pairing in finite nuclei on the basis of
microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and
normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend
only weakly on approximation schemes for the normal self-energy, required in present energy-density functional
calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation
scheme.
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I. INTRODUCTION

Medium-mass and heavy nuclei can be studied sys-
tematically through nuclear energy-density-functional (EDF)
calculations [1]. Within a single-reference implementation,
the minimization of the energy-density functional leads to
solving Hartree-Fock-Bogoliubov (HFB) equations [2]. How-
ever, nuclear energy functionals accounting for correlated
single-particle motions and superfluidity employed so far are
of (semi)empirical character [1]. It is a central goal to construct
non-empirical energy-density functionals connected to two-
and many-nucleon interactions in free space [3] in view of the
challenges posed by exotic nuclei with an unusually large ratio
of neutrons over protons. The development of low-momentum
interactions based on renormalization group (RG) methods
[4,5] opens up such a possibility, as they enable technically
simpler many-body approaches [6–8].

Such a long-term project to connect the nuclear EDF to
underlying nuclear interactions has recently been initiated,
first focusing on the part of the energy functional that drives
pairing properties of nuclei [9–11]. A difficulty is that a
quantitative description of superfluidity in nuclear systems is a
delicate task that a priori requires the treatment of complicated
many-body processes. In fact, an on-going discussion concerns
the impact of medium polarization effects, beyond the direct
term of the nucleon-nucleon (NN) interaction, on pairing
properties of finite nuclei. In Refs. [12,13], two-thirds of
the observed neutron pairing gap was accounted for in 120Sn
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by using the Argonne v14 NN potential [14] as the pairing
interaction and combining this with the semiempirical Skyrme
functional SLy4 in the particle-hole channel. Adding induced
interactions and self-energy effects due to the exchange of col-
lective fluctuations between nucleons moving in time-reversed
states, the missing one-third was recovered [12,13,15,16]. In
Refs. [10,11], however, neutron and proton pairing gaps were
found to be consistent with experimental data over a large range
of semimagic nuclei when low-momentum NN interactions
Vlow k were used as pairing interaction, combined with the
same Skyrme functional in the particle-hole channel. In this
case, one therefore expects that neglected many-body forces
and polarization effects result in a small net contribution to
pairing gaps in (known) finite nuclei.1

Before addressing the contribution of many-body forces and
collective fluctuations to pairing gaps, the aim of the present
work is to understand the qualitative and quantitative mismatch
between the two sets of results published in Refs. [10,11] and
Refs. [12,13], respectively, which both employ a free-space
NN interaction as the pairing force and the semiempirical
Skyrme functional SLy4 in the particle-hole channel. The only
difference between the two calculations resides in the intrinsic
resolution scale (in the RG sense [4,5]) of the Argonne v14

and Vlow k NN interactions, which both reproduce the relevant
low-energy scattering phase shifts [17]. Starting from this
observation, one is led to focus on the coupling of the pairing
interaction to the normal self-energy, in particular when the
latter is approximated by a momentum-independent effective
mass as is the case for present EDF calculations. Settling this
issue requires fully microscopic calculations, where both the
normal and anomalous self-energies are computed consistently

1Of course, the neglected contributions do not have to be individu-
ally small.

0556-2813/2009/80(4)/044321(13) 044321-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.044321
mailto:hebeler@triumf.ca
mailto:thomas.duguet@cea.fr
mailto:tlesinsk@utk.edu
mailto:schwenk@triumf.ca


K. HEBELER, T. DUGUET, T. LESINSKI, AND A. SCHWENK PHYSICAL REVIEW C 80, 044321 (2009)

from the NN interaction. To date, this is only possible for
infinite nuclear matter (INM) (see, for example, Ref. [18]).
Of course, the results obtained in INM cannot be extrapolated
straightforwardly to finite nuclei. Nevertheless, calculations
of pairing gaps in INM provide a baseline for the schemes
used in finite nuclei in Refs. [10–13] and allow us to probe
the sensitivity of pairing gaps to approximations of the normal
self-energy.

We stress that our goal is not to perform the most involved
calculations of pairing gaps in INM, for example, including
induced interaction and associated self-energy effects [19–22].
Rather, we work at lowest order in the many-body expansion,
with special attention to (i) the consistency between the normal
and anomalous self-energies when using either a hard or low-
momentum NN interaction and (ii) the effects of neglecting the
momentum dependence of the effective mass and quasiparticle
strength when solving the gap equation.

This paper is organized as follows. In Sec. II, the many-body
frameworks used to expand the normal self-energy and pairing
gap are set up for NN interactions characterized by either a
low- or high-momentum resolution scale (in the RG sense
[4,5]). Procedures to average the momentum dependence of
the normal self-energy are discussed. Section III presents
results for the effective masses and pairing gaps in pure
neutron matter and symmetric nuclear matter. The impact of
the momentum averaging of the normal self-energy on pairing
gaps is analyzed. In Sec. IV, we discuss the consequences of
our findings in INM on the computation of neutron and proton
gaps in semimagic nuclei. We conclude and give an outlook in
Sec. V.

II. MANY-BODY FRAMEWORK

A. Hamiltonian

The basic ingredient to microscopic calculations is the
Hamiltonian that incorporates two- and many-nucleon inter-
actions constrained by scattering experiments and few-body
properties. In the present work, we neglect many-nucleon
interactions, although it is important to characterize their
impact on pairing properties [23]. Many-body forces may
change the value of the gap, especially toward higher density,
but are not expected to alter the conclusions of this paper.

The setup of a meaningful expansion scheme for nuclear
many-body calculations depends on the choice of NN interac-
tion [6–8]. We consider two schemes that are currently used in
low-energy nuclear structure and reaction calculations. First,
we work in a scheme which attempts to model the short-range
parts of nuclear forces explicitly and is thus characterized by a
large intrinsic resolution scale �hard. This will be referred to as
a “hard” NN interaction. Second, we consider low-momentum
interactions with lower intrinsic resolution scale �soft, which
we refer to as “soft” NN interactions.

For both cases, we generate the interaction matrix elements
starting from the Argonne v18 potential [24] by solving
the symmetrized RG equation [5,17] with an exponential
regulator f (k,�) = exp[−(k/�)2nexp ] with nexp = 7. The hard
interaction is obtained by evolving to �hard = 6.0 fm−1.
Using such a cutoff scale instead of the initial Argonne v18

potential allows one to reduce the numerical complexity of the
calculations while maintaining the features of a hard potential.
The soft interaction Vlow k is obtained by further evolving the
RG equation to a typical scale �soft = 1.8 fm−1 [4,5].

B. Expansion scheme

Starting from hard interactions, the short-range parts must
be summed before the interaction can be used in many-
body calculations. The traditional approach is based on the
Brueckner G matrix [25] and on the reorganization of binding-
or self-energy expansion schemes in terms of the number of
hole lines entering the retained diagrams [26,27]. In addition,
there are calculations for nuclear matter and finite nuclei
based on a self-consistent in-medium T matrix, which sums
particle-particle as well as hole-hole ladders (see, for example,
Ref. [28]). However, both expansions in terms of the G or
T matrix are non-perturbative for hard interactions, because
they do not decouple low and high momenta [6,8].

Starting from low-momentum interactions [4,5], the high-
momentum modes are decoupled. This offers the possibility
to use a perturbative expansion, as was shown explicitly for
the particle-particle-channel contributions to the energy [6]. It
remains to be checked that the expansion is perturbative in the
particle-hole channels.

It is thus crucial to realize that the many-body expansion
scheme differs depending on the intrinsic resolution scale char-
acterizing the Hamiltonian. A trivial, but essential, implication
is that only the complete resummation expressed in terms of
the full Hamiltonian provides results that are independent of
the expansion scheme, whereas results computed at a given
order in the relevant expansion may differ depending on the
scheme used. This underlines the necessity to specify the
scheme employed and to perform consistent calculations, such
as computing normal and superfluid self-energies at the same
order in the relevant expansion scheme. In addition, because
of the necessity to rearrange the expansion scheme depending
on the resolution scale �, results obtained through truncated
calculations cannot be expected to be cutoff independent.

Table I compares the sets of diagrams taken into account
to compute the normal and anomalous self-energies to first
and second order in the two expansion schemes considered. In
both cases, the first-order anomalous diagram is characterized
by the use of the direct NN interaction as the (particle-
particle-irreducible) kernel entering the gap equation. The
first-order normal self-energy is provided by the Hartree-Fock
(HF) diagram when starting from soft interactions, whereas
it leads to the Brueckner-Hartree-Fock (BHF) approximation
when employing hard potentials. The second-order diagrams
correspond to a non-collective treatment of screening and
vertex corrections as is done in Ref. [22].

The goal of this paper is to study 1S0 pairing gaps in nuclear
matter and finite nuclei at lowest order in the two expansion
schemes, giving special attention to the consistency of the
pairing interaction and normal self-energy contributions. In
particular, we focus on the effects of the normal self-energy and
effective-mass approximation schemes on the pairing gaps.
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TABLE I. Expansion schemes for soft and hard interactions to
first and second order. The dashed lines denote the free-space NN
interaction, and the wiggly lines the G matrix. Diagrams with more
than one anomalous propagator are not shown.

Soft NN interaction (low �) Hard NN interaction (large �)

Σ(1)
soft = Σ(1)

hard =

∆(1)
soft = ∆(1)

hard =

Σ(2)
soft = + + Σ(2)

hard = +

∆(2)
soft = + ∆(2)

hard = +

C. Normal self-energy

At lowest order, the normal self-energy takes the form

�
(1)τ
soft (p1) =

∑
p2,τ ′,σ ′

nτ ′
(p2)〈k|V ττ ′ |k〉, (1)

�
(1)τ
hard(p1, ω) =

∑
p2,τ ′,σ ′

nτ ′
(p2)〈k|Gττ ′

(P,ω + ετ ′
(p2))|k〉,

(2)

with the notation p ≡ |p| and where the occupation function
nτ (p) ≡ θ (kτ

F − |p|) is taken as a step function. The relative
and center-of-mass momenta are defined by k ≡ (p1 − p2)/2
and P ≡ p1 + p2, respectively. The index τ characterizes the
single-particle isospin projection. Using normal-state Fermi-
Dirac distribution functions rather than BCS-like occupation
numbers is a satisfactory approximation in INM around
saturation density where the pairing gap �τ is small compared
to the Fermi energy ετ

F ≡ (kτ
F )2/(2m) [29].

The Brueckner G matrix is calculated through a partial-
wave expansion (in units of h̄ = c = 1)

〈k′|Gττ ′
ll′SJ (P,ω)|k〉

= 〈k′|V ττ ′
ll′SJ |k〉 + 2

π

∫
q2dq

∑
l̃

〈k′|V ττ ′
l̃lSJ

|q〉

× 〈Qττ ′
(P, q)〉

ω − 〈εττ ′(P, q)〉 + iδ
〈q|Gττ ′

l̃l′SJ
(P,ω)|k〉, (3)

where the angular-averaged Pauli-blocking operator and two-
particle-state energies are defined as

〈Qττ ′
(P, k)〉 ≡ 1

2

∫
d cos θPk[1 − nτ (p1)][1 − nτ ′

(p2)],

〈εττ ′
(P, k)〉 ≡ 1

2

∫
d cos θPk[ετ (p1) + ετ ′

(p2)].

The on-shell single-particle energy ετ (p) entering Eqs. (2)
and (3) is obtained through

ετ (p) ≡ p2

2m
+ Re�(1)τ

� (p, ετ (p)). (4)

Equations (2)–(4) are solved self-consistently when using hard
interactions. For soft interactions, the system reduces to the
direct evaluation of Eqs. (1) and (4) thanks to the energy
independence of �

(1)τ
soft .

We note that these equations are valid for asymmetric
nuclear matter, although we restrict ourselves to pure neutron
matter (PNM) and symmetric nuclear matter (SNM) in the
present work. Because we focus on neutron-neutron pairing,
only neutron self-energies, τ = n, are eventually needed. Thus,
the short-hand notations ε(p) ≡ εn(p), �HF(p) ≡ �

(1)n
soft (p),

and �BHF(p,ω) ≡ �
(1)n
hard(p,ω) are used, along with corre-

sponding notations for effective masses, quasiparticle strength,
pairing gaps, and Fermi momenta introduced below.

D. Effective-mass approximation

1. Definitions

A focus of the present work is to study effective-mass
approximation schemes on pairing gaps. The momentum-
dependent effective mass m∗

τ (p, kτ ′
F ) is defined by

dετ (p)

dp
≡ p

m∗
τ

(
p, kτ ′

F

) , (5)

where kτ ′
F denotes the dependence on both Fermi momenta.

This total effective mass can be separated into the product of
the k-mass and the e-mass defined by [30]

m∗
τ,k

(
p, kτ ′

F

)
m

≡
[

1 + m

p

∂Re�τ
�(p,ω)

∂p

∣∣∣∣
ω=ετ (p)

]−1

, (6)

m∗
τ,e

(
p, kτ ′

F

)
m

≡ 1 − ∂Re�τ
�(p,ω)

∂ω

∣∣∣∣
ω=ετ (p)

. (7)

The k-mass relates to the spatial non-locality of the normal
self-energy, whereas the e-mass characterizes the dynamical
correlations associated with the energy dependence. The
e-mass can also be expressed in terms of the quasiparticle
strength or Z-factor,

Zτ

(
p, kτ ′

F

) ≡ m

m∗
τ,e

(
p, kτ ′

F

) , (8)

which quantifies the quasiparticle part of the one-body Green’s
function and occurs in the pole approximation discussed in the
following.

2. Momentum-independent approximation

At this point, the introduction of the effective mass is
essentially a matter of definition. The real purpose is usually
to neglect its momentum dependence in order to recover a
(density-dependent) quadratic dispersion relation for ετ (p).
In the present work, it is motivated by the need to make the
connection with the Skyrme functional whose self-energy can
at best be related to a momentum-independent approximation
of the microscopically obtained effective mass.

Hence we have to reduce the momentum dependence of
m∗

τ (p, kτ ′
F ) and Zτ (p, kτ ′

F ) to a dependence on kτ
F . Obviously
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there are different ways to do so. To probe the sensitivity
of observables to the particular scheme used, we consider
two approximations. The first, which we denote as the point-
evaluation (pe) approximation, is standard and consists of
taking the value at the Fermi momentum, with Xτ = m∗

τ or
Zτ ,

Xpe
(
kτ ′
F

) ≡ Xτ

(
p = kτ

F , kτ ′
F

)
. (9)

The second method proceeds through an averaging (av) of the
momentum dependence over the Fermi surface,

Xav
(
kτ ′
F

) ≡
∫

f (q,�) q2dqXτ

(
q, kτ ′

F

)
ūτ

q v̄τ
q∫

f (q,�) q2dq ūτ
q v̄τ

q

, (10)

where ūτ
q v̄τ

q ≡ �̄/(2
√

(ξ τ
0 (q))2 + �̄2) denotes the BCS pair

occupation function, which is peaked at the Fermi surface.
The free single-particle spectrum ξ τ

0 (p) = (p2 − kτ
F

2)/(2m)
and a typical width of �̄ = 2.0 MeV are used for simplicity in
Eq. (10).

E. Anomalous self-energy

After discussing the computation of the normal part of the
self-energy together with its effective-mass approximation,
we now turn to the anomalous self-energy that leads to
pairing gaps. We are interested in neutron-neutron pairing at
subsaturation densities kF ≈ 0.8–1.4 fm−1 in PNM and SNM.
Neutron superfluidity in this density range in INM is in the 1S0

channel [17,31]. In this work, the pairing kernel is restricted
to the direct NN interaction, and therefore we keep only the
1S0 partial wave as the pairing interaction.

The gap equation is solved within the pole approximation,
which provides a good approximation to the solution of the
full off-shell gap equation when the momentum dependence
of the effective mass and of the Z-factor is taken into account
[32]. Furthermore, and as already mentioned, the normal self-
energy and quasiparticle strength are computed in the normal
state, which is valid for the density range considered, where
�/εF � 1. In summary, the neutron anomalous self-energy

and thus the gap �(p) is the solution of [33]

�(p) = − 1

π

∫
dqq2

〈p|V nn
1S0

|q〉 Z(q) �(q)√
ξ̃ 2(q) + �2(q)

, (11)

with

ξ̃ (p)

≡ p2

2m
− µ + 1

2
[Re��(p, ε(p)) + Re��(p, 2µ − ε(p))],

and the chemical potential is defined by µ ≡ ε(kF ), so
that it includes the normal self-energy shift with respect to
the free Fermi energy. The chemical potential can also be
calculated self-consistently to account for the effect of pairing
correlations, but we have checked that this has very little effect
in the density range of interest.

It is important to realize that for Z(q) �= 1, the physical gap
�̂(p = kF ) in the excitation spectrum of the system is given
by [34]

�̂(p) ≡ Z(p) �(p). (12)

Linearizing additionally ��(p,ω) in energy around µ leads
to the BCS-type equation

�̂i(p) = − 1

π

∫
dq q2

Zi(p) 〈p|V nn
1S0

|q〉 Zi(q) �̂i(q)√
ξ 2
i (q) + �̂2

i (q)
, (13)

where ξi(p) = εi(p) − µ.
The index i in Eq. (13) labels different cases considered

in this paper regarding the choice of single-particle energy
and quasiparticle strength. We define three classes depending
on whether one starts from a soft or a hard NN interaction,
see Table II. For each class, one goal is to compare the
gaps obtained from strictly solving Eq. (13) to those obtained
using further approximations, for example, neglecting the
momentum dependence of the effective mass and of the
Z-factor. The third class (�1

hard) defined in Table II is not
consistent in the sense that we only keep the k-mass of the
total BHF effective mass and neglect all e-mass and Z-factor

TABLE II. Three classes of calculations: (i) first order in a soft NN interaction,
(ii) first order in a hard NN interaction, (iii) first order in a hard NN interaction
but neglecting all effects related to the energy dependence of the normal self-
energy. Each class contains a calculation of reference retaining the full momentum
dependence of the normal self-energy (i = 1) and the pe/av schemes (i = 2, 3).

(i) �1
soft:

ξ1(p) = εHF(p) − µ Z1(p) = 1

ξ2/3(p) = (p2 − k2
F )/(2m∗HF

pe/av(kF )) Z2/3(p) = 1

(ii) �Z
hard:

ξ1(p) = εBHF(p) − µ Z1(p) = ZBHF(p)

ξ2/3(p) = (p2 − k2
F )/(2m∗BHF

pe/av (kF )) Z2/3(p) = ZBHF
pe/av(kF )

(iii) �1
hard:

ξ1(p) = ∫ p

kF
dq q/m∗BHF

k (q) Z1(p) = 1

ξ2/3(p) = (p2 − k2
F )/(2m∗BHF

k,pe/av(kF )) Z2/3(p) = 1
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-mass, SNM
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FIG. 1. (Color online) Momentum dependence of the HF ef-
fective k-mass for �soft = 1.8 fm−1 (upper panel) and of the BHF
effective masses for �hard = 6.0 fm−1 (lower panel) in PNM and
SNM at kF = 1.2 fm−1. Whereas the HF approximation only
provides a k-mass, the hole-line expansion already generates an
e-mass at leading order.

effects in the gap equation.2 This can be considered as an
intermediate case between classes �1

soft and �Z
hard.

III. INFINITE NUCLEAR MATTER RESULTS

A. Effective mass

1. Momentum dependence

Figure 1 shows the momentum dependence of the effective
masses calculated at lowest order for soft (upper panel) and
hard (lower panel) interactions, at a representative density of
kF = 1.2 fm−1 in PNM and SNM.

The HF calculation using the soft interaction only generates
a k-mass that is smaller than the bare mass and displays a
smooth momentum dependence. The HF k-mass is smaller in
SNM than in PNM because of the stronger in-medium effects,
notably brought by the proton-neutron (tensor) interaction.

In the BHF calculation already at leading order a k-mass
and an e-mass are generated. The e-mass is given by the
energy dependence of Re �

(1)
hard(p,ω) and displays a typical

enhancement around the Fermi momentum associated with
the increased probability of virtually occupying two-particle–
one-hole configurations. This effect comes at second order in

2Once the k-mass is extracted from the total effective mass, the
corresponding self-energy is recovered through the integral given in
Table II.

0.8 1.0 1.2 1.4 1.6

F [fm-1]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

*
/

PNM

SNM

*HF

*HF

SLy4
*

FIG. 2. (Color online) Momentum-independent effective masses
m∗HF

pe (kF ) and m∗HF
av (kF ) obtained from the soft interaction in PNM

and SNM. For comparison we show the effective masses m∗
SLy4 of the

Skyrme SLy4 parametrization.

the perturbative expansion for soft interactions (see Table I).
The BHF k-mass is similar to, but slightly smaller than the HF
k-mass shown in the upper panel. The total BHF effective
mass is the product of the k-mass and the e-mass and is
thus larger than the k-mass for all densities, in addition to
carrying the typical enhancement of the e-mass around the
Fermi momentum. We have also checked that BHF masses
and Z-factors do not change significantly by increasing the
cutoff beyond � = 6.0 fm−1 in SNM and PNM.

2. Averaged momentum dependence

Figure 2 shows the momentum-independent effective
masses m∗HF

pe (kF ) and m∗HF
av (kF ) obtained by applying the

two averaging schemes introduced in Sec. II D2 for the soft
interaction. A key result obtained for PNM and SNM is that the
two schemes lead to essentially identical results. This is due
to the mild momentum dependence of the HF k-mass obtained
from the soft interaction and indicates that reducing such a
momentum dependence may be a tractable approximation
when solving the gap equation. Figure 2 also compares the
microscopically calculated m∗HF(kF ) to the density-dependent
effective mass m∗

SLy4(kF ) of the SLy4 Skyrme functional
parametrization. Although the functional dependence is not
fully captured by m∗

SLy4(kF ), the microscopic result in SNM
at saturation density kF = 1.35 fm−1 is well reproduced.
In PNM, however, the neutron effective mass m∗

SLy4(kF )
underestimates the microscopic predictions significantly. This
reflects the known deficiency in the isovector effective mass
of SLy4 [35].

In Fig. 3, we present the momentum-independent total ef-
fective mass, k-mass, and Z-factor obtained in SNM applying
the two averaging schemes in the case of the hard interaction.
Because of the more pronounced momentum dependence of
the effective masses and the larger averaging region set by the
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FIG. 3. (Color online) Momentum-independent effective masses
and Z-factors obtained from the hard interaction in the BHF scheme
in SNM. m∗BHF

k (kF ) and ZBHF(kF ) depend strongly on the averaging
scheme, whereas the total mass is less sensitive to this.

regulator f (q,� = 6.0 fm−1) in Eq. (10), the point-evaluated
and averaged values differ substantially. This difference is also
much larger in SNM than in PNM as self-energy effects are
larger in SNM. Because of a compensation effect between
the k-mass and the e-mass, the total effective mass happens
to be relatively insensitive to the averaging scheme used.
Nevertheless, as the gap equation depends on both the total
effective mass and Z-factor [see Eq. (13)], the present results
indicate that it may be unreliable to average the momentum
dependence of m∗BHF(p, kF ) and Z(p, kF ) in this case. The
same conclusion can be anticipated when solving the gap
equation within the frame of the third class of Table II, that is,
when the e-mass and Z-factor are neglected.

B. Pairing gaps

1. Soft interaction

Figure 4 shows our results for the pairing gaps at the Fermi
surface �̂(p = kF ) as a function of the Fermi momentum
kF in PNM and SNM for the �1

soft class defined in Table II.
The band represents the pairing gaps obtained using the SLy4
effective mass and varying the cutoff in the NN interaction over
a wide cutoff range. This band corresponds to the variation
of the pairing gaps obtained in finite nuclei [36] by varying
the resolution scale of the pairing kernel. The upper limit
of the band corresponds to the low cutoff � = 1.8 fm−1. This
is the result to be compared with the microscopic calculations
discussed in this subsection. The lower limit of the band
corresponds to the hard cutoff � = 15.0 fm−1 and will be
relevant to the next subsection.

As shown in the upper panel of Fig. 4, the pairing gaps
obtained from the �1

soft class are essentially indistinguishable.
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FIG. 4. (Color online) Neutron 1S0 pairing gaps in PNM and
SNM obtained using the soft interaction with �soft = 1.8 fm−1 as
the pairing interaction and the HF approximation for the normal
self-energy. Results are shown for the three cases of class �1

soft (see
Table II).

We find

�̂[εHF(k)] ≈ �̂
[
m∗HF

pe (kF )
] ≈ �̂

[
m∗HF

av (kF )
]
, (14)

to an excellent approximation in PNM. As expected from
Fig. 2, the momentum averaging of the normal self-energy
εHF(p) → (p2 − k2

F )/(2m∗HF(kF )) is well justified in PNM
and has essentially no impact on the computed gaps. Because
of the wrong isovector dependence of m∗

SLy4 compared to
m∗HF(kF ) (see Fig. 2), the microscopic gaps are larger than
the upper limit of the band.

In SNM, the pairing gaps are also insensitive to the
effective-mass approximation scheme, in particular over
the range kF ≈ 1.0–1.4 fm−1. In the density region kF ≈
1.2–1.4 fm−1, m∗

SLy4 reproduces well the effective mass
obtained from the soft NN interaction (see Fig. 2), and
therefore the microscopic gaps are close to the upper limit
of the band. At lower densities kF < 1.2 fm−1, m∗

SLy4 is
larger than the calculated effective mass, and therefore we
find pairing gaps that are smaller than the upper limit of the
band.

In addition, we practically find cutoff independence of
the pairing gaps in SNM and PNM for soft cutoffs � ≈
1.8–3.0 fm−1. This approach therefore provides a tractable
lowest order starting point with respect to appropriate3

variations of the renormalization scale. These results also

3One must consider variations of � such that the perturbative
expansion remains valid. Weinberg eigenvalues demonstrate that this
is the case for � <∼ 3.0 fm−1 [37].

044321-6



NON-EMPIRICAL PAIRING ENERGY FUNCTIONAL IN . . . PHYSICAL REVIEW C 80, 044321 (2009)

SNM

SNM

0.5

1.0

1.5

2.0

2.5
(

F
) 

[M
eV

]

0

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

F [fm-1]

0.5

1.0

1.5

2.0

2.5

(
F
) 

[M
eV

]

0

*
SLy4+ =1.8-15.0 fm-1

*BHF( F)+ =6.0 fm-1

*BHF( F)+ =6.0 fm-1

BHF( )+ =6.0 fm-1

FIG. 5. (Color online) Neutron 1S0 pairing gaps in SNM obtained
using the hard interaction with �hard = 6.0 fm−1 as the pairing
interaction and the BHF approximation for the normal self-energy.
For the results in the upper panel, only the k-mass effects are taken
into account according to class �1

hard of Table II. The lower panel
shows the results of the class �Z

hard including e-mass and Z-factor
effects.

complement the cutoff independence of pairing gaps obtained
in INM using a free single-particle spectrum [17] and in finite
nuclei [36] over the same cutoff range.

2. Hard interaction

Figure 5 shows the pairing gaps �̂(p = kF ) computed
in SNM according to the two classes �1

hard and �Z
hard

defined in Table II. The upper panel shows the results
taking only the k-mass contributions into account (�1

hard),
whereas the lower panel includes also the e-mass and Z-
factor effects (�Z

hard) generated at first order in the hole-line
expansion.

Comparing the two different classes, we find the typical
systematic reduction of the gaps due to the decreased spectral
strength of the quasiparticle propagator that wins over the
increased density of states characterizing the e-mass effects.
At this point, however, we are not primarily interested in the
differences of the pairing gaps between the different classes of
Table II, but rather in the deviation of the pairing gaps within
a given class as we approximate the momentum dependence
of the normal self-energy and of the Z-factor.

It is clear from Fig. 5 that the choice of the method used to
average the momentum dependence of the effective mass and
of the Z-factor has a strong impact on pairing gaps, irrespective
of whether e-mass effects are taken into account or not. This
result could have been expected from Fig. 3. In contrast to

the soft interaction case (lower panel of Fig. 4 for SNM),
replacing εBHF(p) → (p2 − k2

F )/(2m∗BHF(kF )) is unreliable.
Since m∗BHF

av is systematically larger than m∗BHF
pe (see Fig. 3),

we find for hard potentials, in contrast to Eq. (14),

�̂
[
m∗BHF

av (kF )
]

> �̂[ε∗BHF(k)] > �̂
[
m∗BHF

pe (kF )
]
, (15)

for all densities of interest. Such an inequality holds irre-
spective of whether e-mass effects are taken into account or
not. We also observe that the pairing gaps obtained for the
two classes are bounded from above, over the entire density
range, by the lower limit of the band obtained when using
the single-particle spectrum generated by the SLy4 Skyrme
functional and without the explicit Z-factor.

3. Analysis

To obtain a deeper understanding of the qualitative dif-
ference between soft and hard interactions, we write the gap
equation, Eq. (13), as

�̂(p = kF ) ≡
∫

dq Y (kF , q). (16)

Once the self-consistent gap equation is solved, the integrand
function Y (kF , p) contains information about the momentum
scales from which the gap at the Fermi momentum is built.
The NN interaction matrix elements V (kF , p), the resulting
function Y (kF , p), and the k-mass are shown in Fig. 6
for cutoffs �soft = 1.8 fm−1 and �hard = 6.0 fm−1 at a
representative density of kF = 1.2 fm−1. For simplicity, we
only consider the class �1

hard for the hard interaction. This way,
we avoid the additional subtleties connected with Z-factors
and the more pronounced momentum dependence of the total
effective mass for the hard potential case.

As can be seen from the middle panel of Fig. 6, the gap is
generated for soft interactions from momentum modes around
the Fermi surface, because off-diagonal matrix elements do
not couple low and high momenta (upper panel). It is there-
fore understandable that fixing the momentum-independent
effective mass to its value at or in the vicinity of the Fermi
surface (lower panel) is a good approximation. For large
cutoffs, however, the major contributions to the gap at the
Fermi momentum originate from high momenta [18], far away
from the Fermi surface. In particular for � = 6.0 fm−1 and
kF = 1.2 fm−1, the matrix elements of the pairing interaction
are very small around the Fermi surface, and essentially the
entire gap strength is built from the repulsive part of the
NN interaction at high momenta. Therefore, approximating
the normal self-energy through a momentum-independent
effective mass m∗BHF

pe/av defined in the vicinity of the Fermi
surface is unreliable in this case. Since the effective mass
approaches the free mass m at high momenta (see lower panel),
the gaps �[m∗BHF

pe ] are too small compared to the reference
ones obtained by keeping the full momentum dependence
of the normal self-energy. In contrast, the gaps �[m∗BHF

av ]
are too large compared to the reference gaps since the
averaging method, Eq. (10), includes high-momentum modes
with too much weight, where the effective mass is larger
than at the Fermi surface. Hence, to obtain a more reliable
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FIG. 6. (Color online) Analysis of the effective-mass approxi-
mation at a representative density kF = 1.2 fm−1. Middle panel:
(i) for low cutoffs, the gap at the Fermi momentum is built from
low-momentum modes around the Fermi surface, and (ii) for large
cutoffs, the gap is built mainly from high-momentum modes, where
the NN interaction matrix elements are maximal and repulsive (upper
panel). In the hard potential case, the momentum averaging of the
effective mass would necessitate a non-trivial fine tuning to reproduce
the pairing gaps calculated with the full momentum dependence of
the k-mass (lower panel).

momentum-independent effective mass for hard potentials, the
behavior of the NN interaction matrix elements would have to
be taken into account in the averaging scheme.

IV. FINITE NUCLEI RESULTS

Before going to higher orders, our goal is to perform a
complete first-order calculation in superfluid nuclei, including
the normal and anomalous self-energies consistently. Inter-
mediate steps toward this goal have been taken recently. On
the one hand, calculations of non-superfluid nuclei have been
performed starting from soft NN interactions [38,39]. This
gives access to the single-particle field at first order in the

NN interaction but does not account for the pairing channel.
Recently, the work of Ref. [39] has been extended to HFB cal-
culations of superfluid nuclei, employing a soft NN interaction
in the particle-hole channel but without three-nucleon (3N)
forces [40]. On the other hand, HFB calculations combining
a pairing kernel based on the direct NN interaction with the
single-particle field generated by the empirical SLy4 Skyrme
functional have been performed [10–13,41]. Eventually, one
needs to combine the benefits of these two applications to
obtain complete first-order calculations of superfluid nuclei,
including also the effects of 3N interactions on the single-
particle field. Although the density of states around the Fermi
energy may be dominated by NN interactions, 3N interactions
contribute especially to spin-orbit splittings in nuclei. The
present work is an attempt to qualify whether the two sets
of results published in Refs. [10,11] and Refs. [12,13] provide
a good approximation to a complete first-order calculation
and to understand the mismatch between them. While insights
have been obtained in previous sections through calculations in
INM, this present section is dedicated to assessing the situation
in finite nuclei.

A. Soft interaction

Let us start with the case of the soft NN interaction.
The findings discussed in Sec. III B1 are useful in assessing the
validity of the results of Refs. [10,11]. One expects the
momentum-independent effective-mass approximation, which
is reliable in INM, to be tractable in finite nuclei as well,
because the discussion of Sec. III B3 can be carried over to
finite nuclei. This gives us some confidence that computing
the single-particle field from an EDF characterized by a
momentum-independent effective mass is a good approxi-
mation, as long as one is working consistently with a low-
resolution scale. Nevertheless, this must be checked explicitly
by comparing the results thus obtained with the HF single-
particle field computed in finite nuclei4 from soft NN [38,39]
and 3N interactions.

1. Refitted Skyrme effective mass

Given the validity of the momentum-independent effective-
mass approximation, we construct a new empirical EDF so that
it reproduces well the effective mass obtained microscopically.
As discussed, to this end the SLy4 value m∗/m = 0.7 at
nuclear saturation density is appropriate. However, the SLy4
effective mass has an incorrect isovector dependence and an
unsatisfactory low-density behavior in SNM (see Fig. 2). To

4References [38,39] focus on the single-particle spectrum of
40Ca, which displays significant differences with the corresponding
spectrum generated from Skyrme EDFs characterized by m∗/m =
0.7 at nuclear saturation density. However, 40Ca constitutes an
anomaly, because the spectrum generated by such EDFs is unnaturally
dense around the Fermi energy [42,43]. In addition, a meaningful
microscopic calculation of single-particle spectra must include 3N
interactions.
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FIG. 7. (Color online) New Skyrme effective masses constrained
to reproduce the HF result obtained from the soft NN interaction.

improve on these deficiencies and to reach a higher confidence
in the gaps of Refs. [10,11], we generate a new parametrization
of the Skyrme EDF, adding to the Lyon protocol [44] the
constraint that both SNM and PNM HF effective masses
shown in Fig. 2 are reproduced around saturation density. The
refitted effective masses in both SNM and PNM are shown in
Fig. 7. By default, the isoscalar effective mass reproduces well
the microscopic one around saturation, whereas the isovector
one is clearly improved compared to SLy4. However, the
isoscalar effective mass is only marginally improved compared
to SLy4 at low densities where it overestimates the HF result.
In fact, a better reproduction of the low-density behavior of
the effective mass in SNM requires extending the analytical
form of the Skyrme functional [35]. This is underway, in
particular through the design of non-empirical Skyrme EDFs
based on the development of the density-matrix expansion for
low-momentum interactions [45,46].

Pairing gaps calculated in SNM and PNM with the refitted
Skyrme EDF and the soft NN interaction as a pairing kernel are
presented in Fig. 8. With the improved isovector effective mass,
the gaps are more satisfactory in PNM than when using SLy4
(see upper panel of Fig. 4), but they are essentially unchanged
in SNM, where in particular, microscopic pairing gaps are
overestimated for kF < 1.2 fm−1.

2. Pairing gaps in semimagic nuclei

Employing the refitted Skyrme EDF and the soft NN
interaction as the pairing kernel, we compute neutron and
proton pairing gaps in semimagic nuclei by solving HFB
equations in spherical symmetry [11]. Theoretical gaps are
provided by �LCS, which denotes the diagonal pairing matrix
element �i corresponding to the lowest canonical state (LCS),
whose quasiparticle energy is lowest. Our results are presented
in Figs. 9 and 10. Experimental gaps extracted from binding
energies through three-point mass differences centered on odd-
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FIG. 8. (Color online) Neutron 1S0 pairing gaps in SNM and
PNM based on the refitted Skyrme EDF (see text) with the soft NN
interaction as the pairing kernel.

mass nuclei [47] are shown as a reference. The pairing gaps are
essentially identical to those obtained using SLy4 [11] where
data exist. The improved isovector effective mass leads to a tiny
increase (decrease) of neutron (proton) gaps in neutron-rich
nuclei. Note that although the discrepancy between the refitted
Skyrme effective mass and the microscopic results at low
densities in SNM implies an uncertainty for the present results,
we expect this to be small, as it is unlikely that such densities
weigh significantly in pairing gaps of (non-halo) nuclei.

Keeping in mind the necessity to confirm the effective-mass
approximation through a systematic comparison of HF and
Skyrme single-particle spectra in doubly magic nuclei, one
can conclude that the NN-only results of Refs. [10,11] are
presently put on a rather solid basis. The most important of
these conclusions is that neutron and proton pairing gaps in
semimagic spherical nuclei are approximately accounted for
using the 1S0 partial wave of soft interactions at first order.
This result is valid [11] over the broad cutoff range of � ≈
1.8–3.0 fm−1 that characterizes perturbative NN interactions
[6,8,37]. This finding is somewhat puzzling, as it indicates
that neglected contributions, such as higher partial waves,
3N interactions, and coupling to density, spin, and isospin
collective fluctuations for both the normal self-energy and the
pairing interaction, may have a small net effect on pairing
gaps in nuclei.5 Such a conjecture needs to be confirmed
by explicitly incorporating all neglected contributions in a
consistent way.

B. Hard interaction

Let us now turn to the hard NN interaction case. The
findings discussed in Sec. III B2 are useful in assessing the
validity of the results of Refs. [12,13]. Indeed, it is natural to
expect that the uncertainties in pairing gaps generated in INM
by the momentum-independent effective-mass approximation

5Of course, the neglected contributions do not have to be individu-
ally small.
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FIG. 9. (Color online) Neutron and proton LCS pairing gaps computed in semimagic nuclei using a soft (hard) NN interaction and the
corresponding refitted Skyrme EDF whose effective masses are shown in Fig. 7 (Fig. 11). In the hard-interaction case, a Z-factor is taken into
account when solving the HFB equations. Calculations include the Coulomb interaction in the proton pairing kernel [11].

propagate to finite nuclei. This is the case because the
uncertainty relates to high-momentum modes that are of a
similar nature in homogeneous and non-homogenous systems.
Practical applications combining a hard NN interaction as the

pairing kernel with a momentum-independent effective mass
provided by a phenomenological Skyrme functional would
require a fine tuning of the momentum-independent effective
mass and of the momentum-independent Z-factor when

FIG. 10. (Color online) Neutron and proton LCS pairing gaps computed in semimagic nuclei using a hard NN interaction and the
corresponding refitted Skyrme EDF whose effective masses are shown in Fig. 12. The Z-factor and e-mass are not taken into account when
solving the HFB equations. Calculations include the Coulomb interaction in the proton pairing kernel [11].
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solving HFB equations. Because of the energy dependence
of the BHF normal self-energy, a consistent calculation of
pairing gaps within the Brueckner expansion requires the
inclusion of Z-factors. However, since the HFB calculations
of Refs. [12,13] are performed without a Z-factor, both classes
�Z

hard and �1
hard (see Sec. II E) are investigated in this study in

order to make contact with these works.

1. Refitted Skyrme effective mass and Z-factor

To assess the uncertainties of the pairing gaps in finite nuclei
due to the effective-mass approximation schemes, we use the
INM results of Sec. III A2 for the construction of new Skyrme
functionals for hard interactions. We again consider the two
classes of Table II: �Z

hard with m∗ = m∗
pe/av and Z = Zpe/av
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FIG. 11. (Color online) New Skyrme effective masses con-
strained to reproduce BHF total effective masses obtained from the
hard NN interaction. We have used a simple functional form to fit the
Z-factors.
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FIG. 12. (Color online) New Skyrme effective masses con-
strained to reproduce BHF k-masses obtained from the hard NN
interaction.

as well as �1
hard with m∗ = m∗

k,pe/av and Z = 1. For the two
classes, the difference of the gaps using the point-evaluated
and averaged quantities provides a range for the uncertainty in
the pairing gaps.

The refitted Skyrme effective masses in SNM and PNM
are shown in Figs. 11 and 12. As in the soft-interaction case,
the effective mass is satisfactory around saturation density
in both SNM and PNM. Only the fit to the point-evaluated
k-mass in SNM is somewhat problematic because of the den-
sity dependence of the Skyrme parametrization. Reproducing
well the BHF effective mass at low densities would require to
extend the analytical form of the Skyrme functional [35].

2. Pairing gaps in semimagic nuclei

Employing the refitted Skyrme EDFs and the hard NN
interaction as the pairing kernel, we compute neutron and
proton pairing gaps in semimagic nuclei. The results are shown
in Figs. 9 and 10.

We observe a reduction of the pairing gaps obtained
within the �Z

hard class compared to those obtained from
soft NN interactions. This is consistent with the results
obtained in INM and discussed in Sec. III B. This difference
is genuine and reflects that many-body expansion schemes
depend on the resolution scale and that finite-order results for
soft and hard interactions are in general not equivalent and
immediately comparable. Effectively, the Z-factor accounting
for the energy dependence of the BHF self-energy is largely
responsible for the smallness of the pairing gaps computed
at lowest order in the hard NN interaction. Omitting the
Z-factor and e-mass makes the present calculation formally
similar to those performed in Refs. [12,13] which (using
the SLy4 parametrization with an isoscalar effective mass
of m∗/m = 0.7 at saturation density) led to pairing gaps
smaller by a factor of two-thirds than those obtained with soft
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interactions [11]. Using the new Skyrme parametrization, such
a calculation leads to larger gaps than in class �Z

hard, but still
generally smaller than with soft interactions. However, for both
classes �Z

hard and �1
hard, the dependence of the pairing gaps on

the effective-mass approximation scheme is significant. For
class �Z

hard, the uncertainty is ≈0.5 MeV, and for class �1
hard,

it is ≈0.25 MeV, which both constitute a substantial fraction
of the gap strength. This demonstrates that the effective-mass
approximation problem is present irrespective of the inclusion
or omission of the energy dependence of the self-energy.

V. CONCLUSIONS

The present paper complements recent works directed
toward the construction of non-empirical energy functionals
for nuclei [10–13,41]. We have studied neutron 1S0 pair-
ing gaps with special attention to the consistency of the
pairing interaction and normal self-energy contributions. In
nuclear matter, we calculated the normal and anomalous parts
of the self-energy consistently at first order in the expansion
scheme for soft and hard NN interactions. Our results also
provide new constraints to empirical Skyrme functionals.
We have found that T = 1 pairing gaps obtained from
low-momentum interactions depend only weakly on approx-
imations to the normal self-energy, while gaps from hard
potentials are very sensitive to the effective-mass approxi-

mation scheme. This is because a momentum-independent
effective mass does not approach the free mass at high
momenta, but for hard interactions the high-momentum modes
are not decoupled. The same conclusion has been reached
for calculations of pairing gaps in finite nuclei. This is
problematic for hard NN interactions when employed in
conjunction with standard empirical EDFs which are of
low-momentum character. Although a complete first-order
calculation is needed, where the Skyrme EDF is replaced by
a microscopic HF calculation including 3N forces, our results
put the effective-mass approximation used in Refs. [10,11] on
a rather solid basis.
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