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Shell-model study of the N = 82 isotonic chain with a realistic effective Hamiltonian
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We have performed shell-model calculations for the even- and odd-mass N = 82 isotones, focusing attention
on low-energy states. The single-particle energies and effective two-body interaction both have been determined
within the framework of the time-dependent degenerate linked-diagram perturbation theory, starting from a low-
momentum interaction derived from the CD-Bonn nucleon-nucleon potential. In this way, no phenomenological
input enters our effective Hamiltonian, whose reliability is evidenced by the good agreement between theory and
experiment.
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I. INTRODUCTION

The N = 82 region has long been the subject of shell-model
studies owing to the strong doubly magic character of 132Sn. In
this context, several calculations have been performed employ-
ing purely phenomenological two-body effective interactions
[1]. Clearly, a main issue in the study of this region is that
it provides the opportunity to investigate the effect of adding
protons to a doubly magic core over a large number of nuclei
(from mass number A = 133 to A = 152). Comprehensive
studies of this kind were conducted some 20 years ago in
Refs. [2,3]. In the former a simple pairing Hamiltonian and
empirical single-particle (SP) energies were used, while in
the latter the two-body matrix elements and single-particle
energies were determined simultaneously by a least-squares
fit to the ground-state and excited-state energies drawn from
all experimentally studied N = 82 nuclei.

Starting in the mid-1990s, however, shell-model calcula-
tions employing effective interactions derived from realistic
nucleon-nucleon (NN ) potentials have been performed in
the N = 82 region, which have generally yielded very good
results [4–8]. Some of these studies [5–7] have focused
attention on the evolution of the low-energy properties of the
N = 82 isotones as a function of A, showing that the observed
behavior is well reproduced by the theory. In Refs. [6,7]
the shell-model results were also compared with those of a
quasiparticle random-phase approximation calculation leading
to the conclusion that the low-lying states are equally well
described by these two approaches.

A main advantage of the above-mentioned realistic shell-
model calculations is, of course, that no adjustable parameter
appears in the matrix elements of the two-body effective inter-
action. In all of them, however, the SP energies have been taken
from experiment. Actually, the calculational techniques used
in these studies are based on the time-dependent degenerate
linked-diagram perturbation theory [9], which provides an
effective shell-model Hamiltonian, Heff , containing both one-
and two-body components. Usually, however, the one-body
components, which represent the theoretical SP energies, are
subtracted from Heff and replaced by those obtained from the

experimental spectra of nuclei with one valence nucleon [10].
This procedure has indeed led to a very good description of
nuclear properties in different mass regions [11].

Recently, we have performed fully realistic shell-model
calculations employing both theoretical SP energies and two-
body interactions in studies of p- and sd-shell nuclei [12,13].
In these studies we have renormalized the high-momentum
repulsive components of the bare NN potential VNN by way of
the so-called Vlow-k approach [14,15], which provides a smooth
potential preserving exactly the onshell properties of the
original VNN up to a cutoff �. The effective Hamiltonian has
then been derived within the framework of the time-dependent
degenerate linked-diagram perturbation theory. In both papers
[12,13] a cutoff momentum � = 2.1 fm−1 was employed.
This corresponds to the laboratory energy Elab � 350 MeV,
which is the inelastic threshold of the NN scattering. The
results of these studies compare well with experiment and
other shell-model calculations [16,17].

On these grounds, we have found it interesting to carry
out a similar shell-model study of the N = 82 chain, focusing
attention on the low-lying states of both even- and odd-mass
isotones. In this case, the SP energies and two-body effective
interaction are determined from a Vlow-k derived from the high-
precision CD-Bonn potential [18] with a cutoff momentum
� = 2.6 fm−1. This value of �, which is somewhat larger than
that used in our studies of the light nuclei, is needed to obtain a
reasonable description of the experimental SP spectrum of the
medium-heavy nucleus 133Sb. This is mainly due to the fact
that, at variance with the model spaces for light nuclei, in this
case the 50–82 major shell contains the intruder 0h11/2 state,
whose relative energy turns out to be strongly sensitive to the
value of �. More precisely, for small values of � this state lies
far away from the other SP levels of the 50–82 shell, while the
correct structure of this shell is restored when increasing the
value of � [19].

The dependence of the results on � would obviously
vanish when complementing the Vlow-k effective two-body
interaction with different three- and higher-body components
for each value of �. However, it is at present a very hard task,
from the computational point of view, to take into account

0556-2813/2009/80(4)/044320(8) 044320-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.044320


CORAGGIO, COVELLO, GARGANO, ITACO, AND KUO PHYSICAL REVIEW C 80, 044320 (2009)

two- and three-body forces on an equal footing in a third-order
perturbative calculation for medium- and heavy-mass nuclei.
Therefore, the value of the cutoff � may be considered as
a parameter that we have chosen to reproduce satisfactorily
the experimental SP spectrum. For the sake of completeness,
it should be mentioned that the trend of our calculated SP
energies suggests that a larger value of the cutoff could
even improve the agreement with experiment. However, this
would amount to include higher-momentum components,
which would rapidly deteriorate the convergence properties
of the perturbative expansion used to derive the effective
shell-model Hamiltonian. In the following section we show
that our choice of � is a reasonable compromise to assure
both good perturbative properties and quality of the results.

The article is organized as follows. In Sec. II we give
a brief outline of our calculations, focusing attention on
the convergence properties of the effective Hamiltonian.
Section III is devoted to the presentation and discussion of our
results, while some concluding remarks are given in Sec. IV.

II. OUTLINE OF CALCULATIONS

Our goal is to derive an effective Hamiltonian for shell-
model calculations in the proton 2s1d0g0h shell, which is the
standard model space to describe the spectroscopic properties
of N = 82 isotones. Within the framework of the shell model,
an auxiliary one-body potential U is introduced to break up
the Hamiltonian for a system of A nucleons as the sum of a
one-body term H0, which describes the independent motion of
the nucleons, and a residual interaction H1:

H =
A∑

i=1

p2
i

2m
+

A∑
i<j=1

V NN
ij = T + V

= (T + U ) + (V − U ) = H0 + H1. (1)

Once H0 has been introduced, a reduced model space
is defined in terms of a finite subset of H0’s eigenvectors.
The diagonalization of the many-body Hamiltonian (1) in
an infinite Hilbert space, that it is obviously unfeasible, is
then reduced to the solution of an eigenvalue problem for an
effective Hamiltonian Heff in a finite space.

In this article, we derive Heff by way of the time-dependent
perturbation theory [9]. Namely, Heff is expressed through the
Kuo-Lee-Ratcliff (KLR) folded-diagram expansion in terms of
the vertex function Q̂-box, which is composed of irreducible
valence-linked diagrams [20,21]. We include in the Q̂-box
one- and two-body Goldstone diagrams through third order
in H1. The folded-diagram series is summed up to all orders
using the Lee-Suzuki iteration method [22].

The Hamiltonian Heff contains one-body contributions,
whose collection is the so-called Ŝ-box [10]. As mentioned
in the Introduction, in realistic shell-model calculations it is
customary to use a subtraction procedure so only the two-body
terms of Heff , which make up the effective interaction Veff , are
retained while the SP energies are taken from experiment. In
this work, we have adopted a different approach, employing SP
energies obtained from the Ŝ-box calculation. In this regard,

it is worth pointing out that, due to the presence of the −U

term in H1, U -insertion diagrams arise in the Q̂-box. In our
calculation we use the harmonic oscillator (HO) potential,
U = 1

2mω2r2, and take into account all U -insertion diagrams
up to third order. The oscillator parameter is h̄ω = 7.88 MeV,
according to the expression [23] h̄ω = 45A−1/3 − 25A−2/3 for
A = 132.

Let us now outline the Vlow-k approach [14,15] to the
renormalization of VNN . The repulsive core contained in VNN

is smoothed by integrating out the high-momentum modes of
VNN down to a certain cutoff �. This integration is carried
out with the requirement that the deuteron binding energy and
phase shifts of VNN are preserved by Vlow-k, which is achieved
by the following T -matrix equivalence approach. We start from
the half-on-shell T matrix for VNN

T (k′, k, k2) = VNN (k′, k) + P
∫ ∞

0
q2dqVNN (k′, q)

× 1

k2 − q2
T (q, k, k2), (2)

where P denotes the principal value and k, k′, and q stand for
the relative momenta. The effective low-momentum T matrix
is then defined by

Tlow-k(p′, p, p2) = Vlow-k(p′, p) + P
∫ �

0
q2dqVlow-k(p′, q)

× 1

p2 − q2
Tlow-k(q, p, p2), (3)

where the intermediate state momentum q is integrated from 0
to the momentum space cutoff � and (p′, p) � �. The above
T matrices are required to satisfy the condition

T (p′, p, p2) = Tlow-k(p′, p, p2); (p′, p) � �. (4)

The above equations define the effective low-momentum
interaction Vlow-k, and it has been shown [15] that their
solution is provided by the KLR folded-diagram expansion
[9,20] mentioned before. In addition to the preservation of
the half-on-shell T matrix, which implies preservation of the
phase shifts, this Vlow-k preserves the deuteron binding energy,
because eigenvalues are preserved by the KLR effective
interaction. For any value of �, the Vlow-k can be calculated
very accurately using iteration methods. Our calculation of
Vlow-k is performed by employing the method proposed
in Ref. [24], which is based on the Lee-Suzuki similarity
transformation [22].

As mentioned in the Introduction, our Vlow-k has been
derived from the CD-Bonn NN potential with a cutoff
momentum � = 2.6 fm−1, and for protons the Coulomb force
has been explicitly added to Vlow-k.

A discussion of the convergence properties of Heff is now
in order. For the sake of clarity, we first consider the two-body
matrix elements (TBME) of Veff and then the SP energies.

In Fig. 1, we report the diagonal Jπ = 0+ TBME of Veff as
a function of the maximum allowed excitation energy of the
intermediate states expressed in terms of the oscillator quanta
Nmax. We have chosen the Jπ = 0+ matrix elements because
they are the largest ones in the entire set of Veff TBME and play
a key role in determining the relative spectra and ground-state
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FIG. 1. Diagonal J π = 0+ TBME of
Veff as a function of Nmax (see text for
details).

(g.s.) properties of the even N = 82 isotones. From Fig. 1 it is
clear that our results have practically achieved convergence at
Nmax = 15.

As regards the order-by-order convergence, an estimate of
the value to which the perturbative series should converge
may be obtained by using Padé approximants. In Table I, we
compare all the Q̂-box Jπ = 0+ TBME calculated at third
order with those given by the [2|1] Padé approximant [25]

[2|1] = V 0
Q-box + V 1

Q-box + V 2
Q-box

1 − V 3
Q-box

/
V 2

Q-box

, (5)

TABLE I. Q̂-box J π = 0+ two-body matrix elements at third
order in Vlow-k (in MeV) compared with those obtained by
calculating the Padé approximant [2|1].

Configuration Third order Padé [2|1]

〈(0g7/2)2|VQ-box|(0g7/2)2〉 −0.8624 −0.8757
〈(0g7/2)2|VQ-box|(1d5/2)2〉 −1.0022 −1.0196
〈(0g7/2)2|VQ-box|(1d3/2)2〉 −0.6948 −0.6999
〈(0g7/2)2|VQ-box|(2s1/2)2〉 −0.4642 −0.4662
〈(0g7/2)2|VQ-box|(0h11/2)2〉 2.0532 2.0580
〈(1d5/2)2|VQ-box|(1d5/2)2〉 −0.7069 −0.7138
〈(1d5/2)2|VQ-box|(1d3/2)2〉 −1.7611 −1.8191
〈(1d5/2)2|VQ-box|(2s1/2)2〉 −0.6807 −0.7555
〈(1d5/2)2|VQ-box|(0h11/2)2〉 1.2028 1.2081
〈(1d3/2)2|VQ-box|(1d3/2)2〉 0.0838 0.0447
〈(1d3/2)2|VQ-box|(2s1/2)2〉 −0.4817 −0.4857
〈(1d3/2)2|VQ-box|(0h11/2)2〉 1.0457 1.0459
〈(2s1/2)2|VQ-box|(2s1/2)2〉 −0.8820 −0.4686
〈(2s1/2)2|VQ-box|(0h11/2)2〉 0.6580 0.6586
〈(0h11/2)2|VQ-box|(0h11/2)2〉 −0.8025 −0.8391

V n
Q-box being the nth-order contribution to the Jπ = 0+ TBME

in the linked-diagram expansion. From Table I we see that our
third-order results are in good agreement with those from the
[2|1] Padé approximant, the differences being all in the order
of few tens of keV with the exception of the diagonal matrix
element for the (2s1/2)2 configuration. This indicates a weak
dependence of our results on higher-order Q̂-box perturbative
terms.

In Fig. 2 we report the relative SP energies calculated at third
order in H1 as a function of Nmax. In the same figure, the results
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FIG. 2. (Color online) Theoretical relative SP energies as a
function of Nmax (see text for details). The experimental spectrum
of 133Sb is also reported.
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obtained by calculating the Padé approximant [2|1] are also
reported (red lines). Once again, the agreement between third-
order results and those from this approximant points to a good
perturbative behavior of the calculated relative SP energies.
We also see that an Nmax = 15 calculation yields satisfactorily
converged values for the relative SP energies.

A different situation occurs for the absolute SP energies.
Actually, the calculated energy of the 1d5/2 level relative to
132Sn is −4.468, −5.225, and −5.954 MeV for (Nmax = 11,
13, and 15, respectively. This shows that there is no sign
of convergence of the absolute SP energies as a function
of the number of intermediate states. Moreover, the Padé
approximant [2|1] of the 1d5/2 energy for Nmax = 15 is equal
to −7.262, showing that also the order-by-order convergence
of the absolute SP energies is unsatisfactory. This poor pertur-
bative behavior may be traced to the chosen value of the cutoff
momentum, � = 2.6 fm−1, which is substantially larger than
the standard one, � � 2.1 fm−1. However, the inaccuracy of
the absolute SP energies affects only the ground-state energies
of the nuclei considered. In fact, the calculated spectroscopic
properties (energy spectra, electromagnetic transition rates)
are certainly reliable, based on the good convergence of the
relative SP energies and TBME.

III. RESULTS AND DISCUSSION

We have performed calculations, using the OSLO shell-
model code [26], for the even-mass N = 82 isotones up to
154Hf, which is the last known nucleus belonging to this chain,
and for the odd-mass ones up to 149Ho, the last odd-mass
nucleus with a well-established experimental low-lying energy
spectrum. This is the longest isotonic chain approaching
the proton drip line and therefore provides an interesting
laboratory to study the evolution of nuclear structure when
adding pairs of identical particles.

In Table II our calculated SP energies are reported and
compared with the experimental spectrum of 133Sb. We see
that the latter is on the whole reasonably well reproduced by
the theory. However, while the calculated positions of the 1d5/2

and 1d3/2 levels come very close to the experimental ones, the
energy of the 0h11/2 level is overestimated by about 0.85 MeV.
As we shall discuss later in this section, the energy of the 2s1/2

level, for which there is no experimental information, appears
to be somewhat underestimated.

TABLE II. Calculated SP relative energies (in MeV),
compared with the experimental spectrum of 133Sb [27].
The values in parenthesis are the absolute SP energies with
respect to the doubly closed 132Sn.

nlj Calc. Expt.

0g7/2 0.000 (−6.999) 0.000 (−9.663)
1d5/2 1.045 0.962
1d3/2 2.200 2.440
2s1/2 2.006
0h11/2 3.645 2.793
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FIG. 3. Experimental and calculated 134Te spectra.

A strong test for our effective Hamiltonian is given by
the calculation of the energy spectrum of 134Te, because the
theory of the effective interaction is tailored for systems with
two valence nucleons. From Fig. 3, where the experimental
[27] and calculated 134Te spectra are reported up to 3.5 MeV
excitation energy, we see that a very good agreement is indeed
obtained.

In Fig. 4, we show the calculated and experimental [28]
ground-state energies (relative to the 132Sn core) per valence
proton as a function of the number of valence particles Zval

of even-mass isotopes. We see that the experimental and
theoretical curves are practically straight lines having the same
slope, while being about 2.4 MeV apart. This discrepancy is
essentially the same as that existing between the theoretical
and experimental ground-state energies of 133Sb (see Table II).
This confirms the reliability of our SP spacings and TBME,
because the pattern of the theoretical curve depends only on
these quantities.

In Figs. 5, 6, and 7 we report, as a function of the
mass number A, the experimental and calculated excitation
energies of the 2+, 4+, and 6+ yrast states, respectively.
The experimental behavior is well reproduced, expecially
for the Jπ = 2+ and 4+ states, for which the discrepancies
do not exceed 350 keV. However, it should be noted that
according to our calculations the proton subshell closure,
which experimentally occurs at 146Gd, is not reproduced. As
mentioned before, this can be traced to the theoretical position
of the 2s1/2 orbital, which appears to be too low in energy.
This is confirmed by the fact [4] that this level has to be
placed at 2.8 MeV to reproduce the experimental energy of
the Jπ = 1

2
+

at 2.150 MeV in 137Cs, which is predominantly
of SP nature [29]. We have verified that, if the 2s1/2 SP level
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FIG. 4. (Color online) Experimental and calculated ground-state
energies per valence proton for N = 82 isotones from A = 134 to
154. Zval is the number of valence protons.

is placed at 2.8 MeV, we obtain that the 2+
1 excitation energy

in 146Gd raises from 1.716 MeV to 1.976 MeV, while in 148Dy
it decreases from 1.827 to 1.758 MeV, thus reproducing the
observed subshell closure.

To have a more complete test of the theory, we have also
calculated the B(E2; 2+

1 → 0+
1 ) transition rates up to 144Sm,

employing an effective operator obtained at third order in
perturbation theory, consistently with the derivation of Heff .
Our results are reported and compared with the experimental
data in Table III Ref. [27]. We see that the agreement is quite
good, providing evidence for the reliability of our calculated
effective operator that takes into account microscopically
core-polarization effects.

Let us now come to the odd-mass isotones. In Figs. 8–11 we
report, as a function of the mass number A, the experimental
and calculated energies of the 5

2

+
, 3

2
+

, 1
2

+
, and 11

2
−

yrast states

relative to the 7
2

+
yrast state, respectively. The experimental

behavior is well reproduced for the 5
2

+
, 3

2
+

, and 11
2

−
states.

For the latter, however, most of the calculated energies are
higher than the experimental ones by about 300–400 keV,
which reflects the theoretical overestimation of the value of

TABLE III. Experimental and calculated
B(E2; 2+

1 → 0+
1 ). The reduced transition prob-

abilities are expressed in W.u..

Nucleus Calc. Expt.

134Te 5.5 6.3 ± 2.0
136Xe 9.06 16.6 ± 2.4
138Ba 11.1 10.8 ± 0.5
140Ce 14.5 13.8 ± 0.3
142Nd 16.26 12.03 ± 0.22
144Sm 16.6 11.9 ± 0.4

the 0h11/2 SP energy. Less satisfactory is the comparison

between the calculated and experimental behavior of the 1
2

+

yrast states, which is a further confirmation that the theoretical
2s1/2 level in 133Sb lies too low in energy. As a matter of fact,
by performing a calculation within the seniority scheme up
to v = 3, we have found that in 137Cs and 139La the lowest
1
2

+
states, which are quite well reproduced by the theory,

have significant seniority v = 3 components. From A = 141
onward, the experimental ( 1

2
+

)1 levels are predominantly of
SP nature, as confirmed by the spectroscopic factors [27], and
the corresponding calculated states, which are dominated by
v = 1 components, underestimate their energies.

As pointed out in the Introduction, the main purpose
of this study has been to test the use of a fully realistic
shell-model Hamiltonian for the description of medium-heavy
mass nuclei. In this context, it should be noted that, aside
from adopting experimental single-particle energies, earlier
calculations on the N = 82 isotones differ from the present
ones in other respects, like the starting NN potential and the
renormalization procedure. For instance, while we employ the
CD-Bonn potential renormalized through the Vlow-k procedure,
in the works of Refs. [6,7] use is made of the Bonn-A potential
and the Brueckner G-matrix approach. A comparison between
the results of earlier works and the present one would not
therefore be very meaningful. It is worth mentioning, however,
that the agreement between experiment and theory achieved
in this article is on the whole comparable with that obtained
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FIG. 5. (Color online) Experimental and
calculated excitation energies of the yrast
J π = 2+ states for N = 82 isotones.
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FIG. 6. (Color online) Experimental and
calculated excitation energies of the yrast
J π = 4+ states for N = 82 isotones.
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FIG. 7. (Color online) Experimental and
calculated excitation energies of the yrast
J π = 6+ states for N = 82 isotones.
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mental and calculated energies of the
yrast J π = 3
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)1 for odd-mass N = 82 isotones.
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mental and calculated energies of the
yrast J π = 1
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)1 for odd-mass N = 82 isotones.
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mental and calculated energies of the
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in the previous calculations employing realistic effective
interactions.

IV. CONCLUDING REMARKS

As discussed in detail in the Introduction, the N = 82
isotonic chain has long been considered a benchmark for shell-
model calculations. This has resulted in a number of theoretical
works that have practically all led to a good description of
low-energy properties of these nuclei, evidencing the strong
doubly magic character of 132Sn.

A main step toward a microscopic shell-model descrip-
tion of nuclear structure has been the use of two-body
effective interactions derived from the free nucleon-nucleon
potential. This approach, in which no adjustable parameter
is involved in the calculation of the TBME, has been
successfully applied to the N = 82 isotones in the past
decade, showing the ability of realistic effective interac-
tions to provide an accurate description of nuclear structure
properties.

However, some important theoretical questions still remain
open. In particular, these concern the calculation of the single-
particle energies and the role of three-body correlations. In the
present article, we have tried to investigate the former issue
by constructing a realistic effective shell-model Hamiltonian
for the N = 82 isotones, where both the SP energies and

TBME have been obtained starting from a Vlow-k derived
from the CD-Bonn potential. This is a natural extension of
our studies of p-shell nuclei [12] and oxygen isotopes [13].
Here, we have shown that our effective Hamiltonian yields
results that are in quite good agreement with experiment
along the whole chain of the N = 82 isotones. As regards the
calculated single-particle energies, significant discrepancies
with the experimental values occur only for the 0h11/2 and
2s1/2 levels. Note that for the latter no direct comparison is
possible because the single-particle 2s1/2 state is still missing
in the experimental spectrum of 133Sb. However, we have
verified that increasing the calculated value by 0.8 MeV the
proton subshell closure occurs at 146Gd, in agreement with the
experimental findings.

At this point, the question naturally arises as to how
contributions from three-body forces would modify the present
results, in particular as regards the single-particle energies.
While this remains a major task for future investigation, we
feel that the present study paves the way toward a better
understanding of the microscopic foundations of the nuclear
shell model.
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