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We have studied positive-parity states of 28Si using antisymmetrized molecular dynamics and multiconfig-
uration mixing with constrained variation. Applying constraints to the cluster distance and the quadrupole
deformation of the variational calculation, we have obtained basis wave functions that have various structures
such as α-24Mg and 12C-16O cluster structures as well as deformed structures. Superposing those basis wave
functions, we have obtained a oblate ground-state band, a β vibration band, a normal-deformed prolate band, and a
superdeformed band. It is found that the normal-deformed and superdeformed bands contain large amounts of the
12C-16O and α-24Mg cluster components, respectively. The results also suggest the presence of two excited bands
with the developed α-24Mg cluster structure, where the intercluster motion and the 24Mg-cluster deformation
play important roles.
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I. INTRODUCTION

Clustering plays critical roles in excited states of p-shell
and very light sd-shell nuclei such as 16O and 20Ne [1,2]. In
spite of the importance of clustering in the A <∼ 20 region,
its role in the A >∼ 30 region has not been studied enough. In
such a heavier-mass region, other effects such as deformations
are considered to become more important than in a lighter-
mass region. Recently, based on AMD calculations, there has
been discussion that both mean-field and cluster aspects play
important roles in the excited states of 32S, 40Ca, and 44Ti
[3–6].

To understand the mean-field and cluster aspects in the
heavier system, 28Si is an important case, because 28Si has
a rich variety of structures in its excited states from view
points of both clustering and deformations. In the ground-
state band and the low-lying excited band, the coexistence of
the prolate and the oblate deformation has been studied for
quite some time. The ground-state band is oblately deformed,
while the excited band built on the 0+

3 state at 6.69 MeV is
considered to have prolate deformation (prolate ND) [7–10].
Among these states, the β vibration of the oblate deformed
ground-state band generates the band built on the 0+

2 state at
4.98 MeV [9,10].

Furthermore, Kubono et al. have proposed a largely
deformed band called the “excited prolate” band based on a
12C(20Ne,α) reaction [11–13]. This band assignment, however,
is not confirmed yet, because intraband electromagnetic
transitions have not been observed.

In the highly excited states of 28Si, the cluster aspects have
been discussed. The excited states from Ex = 18 to 30 MeV,
which have been observed by 24Mg(6Li,d), 24Mg(α,α),
and 24Mg(α,γ ) reactions, are suggested as candidates for
the rotational band members that have an α-24Mg cluster
structure [14,15], though a detailed theoretical study of α-24Mg
cluster states has not been done. Another cluster feature of 28Si
is 12C-16O clustering, which has been intensively investigated
experimentally and theoretically. Around the excitation energy
region of 30–50 MeV, the 12C + 16O molecular resonances

have been experimentally observed by elastic, inelastic,
other exit channels, and fusion cross sections [16–22]. On
the theoretical side, the 12C-16O molecular resonances and
their relation to the low-lying prolate deformed states have
been studied by microscopic and macroscopic cluster models
[23–25]. By the 12C-16O potential model, the prolate ND
band and observed 12C-16O molecular resonances are
reproduced [25].

We aim in the present work to investigate the nature of
excited states of 28Si, focusing on clustering and deformations
in a unified manner. Shape coexistence and β vibration are
studied, and those states are discussed in relation to cluster
components of α-24Mg and 12C-16O clustering. We also
discuss the possible existence of the superdeformation and
developed α-24Mg cluster states.

In this study, we apply a theoretical framework of deformed-
basis antisymmetrized molecular dynamics (deformed-basis
AMD) + multiconfiguration mixing (MCM) with constrained
energy variation. The deformed-basis AMD wave function
enables us to describe both clustering and deformation
phenomena in a unified manner [3,26,27]. To study excited
states, we first perform energy variation under two kinds
of constraints to obtain basis functions. We shall call these
constraints β and d constraints that are imposed on the
quadrupole deformation β and distance d between the center
of mass of clusters, respectively. Then we carry out the
MCM by superposing the basis wave functions to obtain
energy levels and wave functions of the ground and excited
states. The method of deformed-basis AMD+MCM with the
β and d constraints has been applied already to 40Ca and
proved to be efficient for describing various cluster states
and deformed states as well as clustering correlation in the
deformed states [3]. In the present study of 28Si, we naturally
adopt the α-24Mg and 12C-16O clustering for the d constraint,
because the α-24Mg and 12C-16O clustering correlations are
expected to play important roles as mentioned before. The
obtained wave functions are analyzed to investigate the nature
of the states.
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The present article is organized as follows: In Sec. II,
the framework of deformed-basis AMD+MCM is explained
briefly. Results of energy variation imposing two kinds of
constraints and analysis of the obtained wave functions are
presented in Sec. III. In Sec. IV, results of MCM and
structures of low-lying states are discussed. Clustering aspects
are discussed in Sec. V. Finally, we give a summary and
conclusions in Sec. VI.

II. FRAMEWORK

We have used the theoretical framework of deformed-basis
AMD+MCM with constraints [26]. The details are presented
in Refs. [3,27,28].

A. Wave function and Hamiltonian

The deformed-basis AMD wave function is a Slater
determinant of triaxially deformed Gaussian wave packets,

|�int〉 = Â|ϕ1, ϕ2, . . . , ϕA〉, (1a)

|ϕi〉 = φi, χi, τi〉, (1b)

〈r|φi〉 =
∏

σ=x,y,z

(
2νσ

π

) 1
4

exp

[
−νσ

(
rσ − Ziσ√

νσ

)2
]

, (1c)

|χi〉 = αi |↑〉 + βi |↓〉, (1d)

|τi〉 = p〉 or |n〉. (1e)

Here, the complex parameters Zi , which represent the cen-
troids of the Gaussian wave packets in phase space, take
independent values for each single-particle wave function. The
width parameters νx , νy , and νz are real parameters and take
independent values for each of the x, y, and z directions but
are common for all nucleons. The spin part |χi〉 is parameter-
ized by αi and βi and the isospin part |τi〉 is fixed as |p〉 (proton)
or |n〉 (neutron). The values {Zi , αi, βi}(i = 1, . . . , A), νx, νy ,
and νz are variational parameters and are optimized by energy
variation as explained below.

The trial wave function in the energy variation with
constraints is a parity-projected wave function,

|�π 〉 = 1 + πP̂r

2
|�int〉, (2)

where π is parity and P̂r is the parity operator. In this study,
we will discuss positive-parity states.

The Hamiltonian is

Ĥ = K̂ + V̂N + V̂C − K̂G, (3)

where K̂ and K̂G are the kinetic energy and the energy of the
center-of-mass motion, respectively, and V̂N is the effective
nucleon-nucleon interaction. We have used the Gogny D1S
force [29], which is one of the widely used effective forces for
(beyond-)mean-field approaches. It consists of the finite-range
and zero-range density-dependent two-body central terms and
the zero-range two-body spin-orbit term. The form of the

Gogny D1S force is given as,

V̂N =
∑
i<j

v̂N
ij , (4)

v̂N
12 =

2∑
n=1

e−(r̂1−r̂2)2/µ2
n(Wn + BnP̂

σ − HnP̂
τ − MnP̂

σ P̂ τ )

+ iW0(σ̂ 1 + σ̂ 2)k̂ × δ(r̂1 + r̂2)k̂

+ t3(1 + P̂ σ )δ(r̂1 − r̂2)ρ1/3

(
r̂1 + r̂2

2

)
. (5)

Where the P̂ σ and P̂ τ are exchange operators of spin
and isospin parts, respectively, the σ̂ is the spin oper-
ator, and the k̂ is the operator of the relative momen-
tum k̂ = (p̂1 − p̂2)/2 h̄. Force parameters of the Gogny
D1S force are µ1 = 0.7 fm, W1 = −1720.30 MeV, B1 =
1300.00 MeV, H1 = −1813.53 MeV, M1 = 1397.60 MeV,
µ2 = 1.2 fm, W2 = 103.64 MeV, B2 = −163.48 MeV, H2 =
162.81 MeV, M2 = −223.93 MeV, W0 = −130 MeV fm5

and t3 = 1390.60 MeV fm4. This force has been proved
to reproduce the binding energy in the wide mass region
systematically. The Coulomb force V̂C is approximated by
a sum of seven Gaussian functions.

B. Energy variation

We have performed energy variation and optimized the
variational parameters included in the trial wave function
[Eqs. (1)] to find the state that minimizes the energy of the
system Eπ ,

Eπ = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 + Vcnst. (6)

Here, we add the constraint potential Vcnst to the expectation
value of Hamiltonian Ĥ to obtain energy-minimum states
under the optional constraint condition. In this study, we
employ two types of constraints, one on the quadrupole
deformation parameter β (β constraint) and other on the
distance between clusters’ centers of mass d (d constraint)
by using the potential Vcnst,

Vcnst =
{

v
β
cnst(β − β̃)2 for β constraint,

vd
cnst(dCm-Cn

− d̃Cm-Cn
)2 for d constraint.

. (7)

Here β is the matter quadrupole deformation parameter, and
dCm-Cn

is the distance between the clusters’ centers of mass Cm

and Cn,

dCm-Cn
= |RCm-Cn

|, (8)

RCm-Cn
= RCm

− RCn
, (9)

RCnσ = 1

ACn

∑
i∈Cn

ReZiσ√
νσ

, (10)

where ACn
is the mass number of cluster Cn and the expression

i ∈ Cn means that the ith nucleon is contained in cluster Cn.
It should be noted that the σ (=x, y, z) component of the
spatial center of the single-particle wave function |ϕi〉 is ReZiσ√

νσ
.

When sufficiently large values are chosen for v
β
cnst and vd

cnst,
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the resultant values β and dCm-Cn
of energy variation become β̃

and d̃Cm-Cn
, respectively. We constrain the dα-24Mg and d12C-16O

values for the d constraint. In each calculation of energy
variation, we constrain one of the values β, dα-24Mg and d12C-16O.
Other quantities such as triaxiality γ are not constrained and
optimized by the energy variation.

The energy variation with the AMD wave function is
carried out using the frictional cooling method [30]. The time
evolution equation for the complex parameters Zi , αi , and βi

is
dXi

dt
= −µX

∂Eπ

∂X∗
i

, (i = 1, 2, . . . , A), (11)

where Xi is Zi , αi , or βi and the time evolution equation for
the real parameters νx, νy , and νz is

dνσ

dt
= −µν

∂Eπ

∂νσ

, (σ = x, y, z). (12)

The quantities µX and µν are arbitrary positive real numbers.
The energy of the system decreases as time progresses, and
after a sufficient number of time steps, we obtain a minimum
energy state under the condition satisfying the given constraint.

C. Angular momentum projection and multiconfiguration
mixing

After performing the constraint energy variation for |�π 〉,
we superpose the optimized wave functions by employing
the quadrupole deformation parameter β and the distances
between the centers of mass among clusters dCm-Cn

for the
Cm-Cn configurations,

∣∣�Jπ

M

〉 =
∑
K

P̂ Jπ

MK

⎛
⎝ ∑

i

f
β

iK

∣∣�β

i

〉

+
∑

i,Cm-Cn

f
dCm-Cn

iK

∣∣�dCm-Cn

i

〉⎞⎠ , (13)

where P̂ J π

MK is the parity and total angular-momentum pro-

jection operator, and |�β

i 〉 and |�dCm-Cn

i 〉 are optimized wave
functions with β and dCm-Cn

constraints for the constrained
values β̃(i) and d̃

(i)
Cm-Cn

, respectively. The integrals over the
three Euler angles in the total angular-momentum projection
operator P̂ J

MK are evaluated by numerical integration. The
mesh widths in numerical integration are 2π/9, π/257 and
2π/9 for α, β, and γ , respectively. Here the body-fixed x, y,
and z axes are chosen as 〈x2〉 � 〈y2〉 � 〈z2〉 for γ < 30◦ wave
functions and 〈x2〉 � 〈y2〉 � 〈z2〉 for γ > 30◦ ones in the case
of β-constrained wave functions. In the case of d-constrained
wave functions, the z axis is chosen as the vector RCm-Cn

,
which connects the Cm and Cn clusters. The coefficients f

β

iK

and f
dCm-Cn

iK are determined by the Hill-Wheeler equation,

δ
(〈
�Jπ

M

∣∣Ĥ ∣∣�Jπ

M

〉 − ε
〈
�Jπ

M

∣∣�Jπ

M

〉) = 0. (14)

Then we get the energy spectra and the corresponding wave
functions that expressed by the superposition of the optimum

wave functions, {|�β

i 〉}, {|�dα-24Mg

i 〉}, and {|�d12C-16O
i 〉}.

D. Single-particle orbit and squared overlap

In this subsection, we give the definitions of single-particle
orbits and the squared overlap. These values are useful in
analysis of the calculated wave functions.

1. Single-particle orbits

To analyze a AMD wave function |�int〉 from the mean-field
description, we have calculated Hartree-Fock-type single-
particle orbits |ϕ̃i〉 [28] given by superposition of single-
particle wave functions |ϕi〉 of the AMD wave function as
follows.

First, orthonormalized wave functions |ϕ′
i〉 are obtained by

the linear combination of |ϕi〉. Next, the |ϕ′
i〉 are transformed to

|ϕ̃i〉 by the unitary transformation to diagonalize the mean-field
Hamiltonian matrix

hij = 〈ϕ′
i |t̂ |ϕ′

j 〉 +
∑

k

〈ϕ′
iϕ

′
k|(v̂N + v̂C)(|ϕ′

jϕ
′
k〉 − |ϕ′

kϕ
′
j 〉),

(15)
where t̂ is the one-body operator of the kinetic energy, and
the v̂N and the v̂C are the two-body operators of the nuclear
effective interaction v̂N

12 in Eq. (5) and that of the Coulomb
force, respectively. Thus obtained |ϕ̃i〉 satisfy the following
equations,

〈ϕ̃i |ϕ̃j 〉 = δij , (16)

〈ϕ̃i |t̂ |ϕ̃j 〉 +
∑

k

〈ϕ̃i ϕ̃k|(v̂N + v̂C)(|ϕ̃j ϕ̃k〉 − |ϕ̃kϕ̃j 〉) = eiδij .

(17)

2. Squared overlap

To analyze the contributions to an MCM wave function
|�Jπ

M 〉 of a subset X = {|�(X)
i 〉} (i = 1, 2, . . .) of the total set

of basis wave functions, squared overlap SX is calculated as

SX =
∑

i

∣∣〈�Jπ

M

∣∣�̃(X)
i

〉∣∣2
, (18)

where |�̃(X)
i 〉 is an orthonormalized set obtained by the linear

combination of |�(X)
i 〉.

III. STRUCTURES OBTAINED BY CONSTRAINED
ENERGY VARIATION

By energy variation under the constraints on quadrupole
deformation parameter β and intercluster distance dα-24Mg

and d12C-16O for α-24Mg and 12C-16O cluster structures,
respectively, energy curves as functions of β, dα-24Mg, and
d12C-16O are obtained. On the curves, various structures appear.
Figure 1 shows the β-energy curves for the positive-parity
states before and after the angular momentum projection to
Jπ = 0+ states.

The obtained wave functions always have axially symmetric
shapes, though the mass quadrupole deformation parameter
γ for triaxiality is not constrained and optimized by the
energy variation. In the small deformed region β <∼ 0.5, the
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FIG. 1. β-energy curves projected to positive-parity (solid lines)
and J π = 0+ states (dashed lines). In smaller and larger β regions,
oblate and prolate shapes are obtained, respectively (see text).

system is oblately deformed and the surface has a shallow
minimum. In the large deformed region β >∼ 0.4, the system
has prolate deformation and two local minima around β = 0.5
and 0.7 that we call ND and SD minima in the following
discussion. The Skyrme SLy7 force gives similar results [31].
Figures 2(a), 2(b), and 2(c) show density distributions of the
oblate, ND, and SD minima obtained with β constraint, which
have no remarkable cluster structures.

2 fm

(d)

2 fm

(e)

2 fm

(b)
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(c)

2 fm

(a)
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(f)
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(g)

FIG. 2. Density distribution are shown around (a) oblate, (b) ND
(β = 0.46) and (c) SD local minima (β = 0.79) for β-constrained
wave functions, (d) type-T and (e) type-A wave functions for dα-24Mg-
constrained wave functions (dα-24Mg = 4.5 fm), and (f) type-T and
(g) type-A wave functions for d12C-16O-constrained wave functions
(d12C-16O = 6.0 fm). Density distributions are projected onto the yz

plane, where the z and x axes are major and minor axes, respectively.
Symbols “+” indicate centroids of wave packets.
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FIG. 3. Energies of neutrons’ single-particle orbits as functions
of quadrupole deformation parameter β. Solid and dashed lines show
positive- and negative-parity states, respectively. The β values for
oblate shapes are defined as negative values.

To study the change of the intrinsic structures as a functions
of β, single-particle orbits are investigated. The single-particle
energies ei for the neutron orbits are shown in Fig. 3. The orbits
for protons are similar to those for neutrons qualitatively but
shift by approximately 5 MeV due to the Coulomb energies.

Two single-particle orbits are always degenerate due to
the time reversal symmetry, and they are approximately the
eigenstates parity except for the transitional region from ND
to SD minima around β = 0.58. Positive- and negative-parity
orbits are represented by solid and dotted lines, respectively,
in Fig. 3.

The parity of each single-particle orbits shows that oblate
and ND states has (sd)12 configurations. In the SD region
(β ∼ 0.8), negative-parity orbits intrude, and the system has
the 4p4h configuration in which four nucleons are promoted
into the pf -shell across an N = 20 shell gap.

The promotion of nucleons into the pf shell is confirmed by
the density distribution of the highest occupied single-particle
orbitals at ND and SD minima (Fig. 4). The density distribution
at the SD minimum [Fig. 4(b)] is well deformed and has three
nodes, thereby showing its pf -shell nature, while at the ND
minimum, it shows a sd-shell nature.

Therefore, the SD minimum appears as a result of the
crossing of the sd orbits and the pf orbit caused by the strong
deformation of the system.

We next discuss the results obtained by energy variation
while imposing the d constraint. Figure 5 shows the energy
curve obtained by the dα-24Mg constraint. The energy of the
positive-parity states is shown by solid lines as functions of
the intercluster distance. The energy curves before and after

2 fm

(b) β = 0.79

2 fm

(a) β = 0.46

FIG. 4. Density distributions of the highest-energy single-particle
orbits in (a) β = 0.46 and (b) β = 0.79 wave functions are shown.
Solid and dashed lines show density distributions of single-particle
orbits and total wave functions, respectively.
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FIG. 5. dα-24Mg-energy curves projected to (a) positive-parity and
J π = 0+ and (b) positive-parity and J π = 2+ states. Filled circles
are obtained by hand (see text).

angular-momentum projection to Jπ = 0+ and 2+ are given by
the dashed and dotted lines. Two types of shapes are obtained
by energy variation. One is the triaxial shape (denoted as
type T) [Fig. 2(d)] and the other is the axial symmetric shape
(denoted as type A) [Fig. 2(e)]. The 24Mg cluster in the α-24Mg
cluster structures deforms prolately. In the case of type A, the
α cluster is located on the symmetric axis of the deformed
24Mg cluster, while in the case of type T, the orientation of
the deformed 24Mg cluster is transverse and the longitudinal
axis of the 24Mg cluster is perpendicular to the intercluster
direction. The type-T wave functions are obtained in small
dα-24Mg region. With the increase of dα-24Mg, the structure
changes from the type-T into the type-A structure. Because
of the triaxiality of type-T wave function, two Jπ = 2+ states
are obtained by K mixing as shown in Fig. 5(b). The energy
of the second Jπ = 2+ state of type T and that of the Jπ = 2+
state of type A are almost the same at dα-24Mg � 4 fm, but
the overlap of those wave functions is quite small, and hence
the type-T and type-A wave functions are not mixed in the
result from MCM. As mentioned above, in the large dα-24Mg

region, the type-A wave function is favored and the type-T
wave functions are not obtained by the energy variation. As
shown later, the obtained type-T wave functions are found to
play an important role for an α-cluster band. To check the
behavior of the type-T structure in the large dα-24Mg region
and its effect on the band structure, we have prepared the
type-T wave functions with dα-24Mg = 5.0–8.0 fm by shifting
by hand the α cluster position in the type-T wave function at
dα-24Mg = 4.5 fm (filled circles in Fig. 5).
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FIG. 6. d12C-16O-energy curves projected to positive-parity and
J π = 0+ and 2+ states.

Figure 6 shows d12C-16O-energy curves projected to positive-
parity and Jπ = 0+ state. Two types of shapes, type-T
[Fig. 2(f)] and type-A [Fig. 2(g)], are obtained due to the
deformation of the 12C cluster as in the case of the dα-24Mg

constraint. Namely, in the type-A wave functions, the 16O is
cluster located on a symmetric axis of the oblate 12C cluster,
while in the type-T wave functions, the symmetric axis of
oblate 12C cluster is perpendicular to the intercluster direction.
In contrast to the dα-24Mg-energy curves, the type-T wave
functions are obtained in a small dα-24Mg region, while the
type-A structure is favored in a large dα-24Mg region. The result
occurs because clusters should be excited due to the Pauli
principle when the clusters overlap in a small d region. To avoid
overlap, a symmetric axis of a prolate (oblate) cluster tends
to be oriented perpendicularly (parallel) to the intercluster
direction in a small d region.

In the type-A 12C-16O wave functions with small d12C-16O,
the 16O cluster is excited and forms an α-12C-like structure,
and these wave functions are similar to the β-constrained wave
functions at the ND local minimum.

IV. BAND STRUCTURES

In this section, we discuss the results obtained by the MCM
calculation.

A. MCM calculation and energy levels

We have performed the MCM calculation by using
the obtained basis wave functions. The adopted bases are
22 β constrained with β = 0.07–0.48 for oblate shapes
and β = 0.37–0.95 for prolate shapes, 15 type-T and nine
type-A dα-24Mg-constrained wave functions with dα-24Mg =
1.0–8.0 fm and 4.0–8.0 fm, respectively, and six type-T
and six type-A d12C-16O-constrained wave functions with
d12C-16O = 5.5–8.0 fm and d12C-16O = 3.5–6.0 fm, respectively.
In the MCM calculation, |K| � 2 and 〈�|P̂ J π

KK |�〉/〈�|�〉 >

0.005 states are adopted as the MCM basis. Other states
are omitted, because they contain numerical errors in the
numerical integration of the angular momentum projection.
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FIG. 7. Level scheme of
positive-parity states in 28Si is
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are for experimental and
theoretical values, respectively.
The experimental data are taken
from Refs. [12] and [32]. The “ex.
pr.” indicates “excited prolate”
band.

The convergence of the MCM calculation is confirmed by
changing the number of the basis wave functions.

As shown in the energy spectra in Fig. 7, many rotational
bands are constructed due to the coexistence of various
structures. An oblate ground (g) band, a β vibration (vib)
band, a ND band, and a SD band are obtained. Moreover, two
α cluster bands (α2+ and α0+ ) with α-24Mg cluster structure are
found in high excited states. As for the experimental α0+ band,
averaged values of the excitation energy are listed because
those states are fragmented (dotted lines) [14].

B. Shape coexistence and β vibration

The excitation energies of the ground-state band and β vi-
bration band members have good agreement with experimental
data. As for the ND band, the calculated excitation energies are
slightly higher than the experimental ones, but the calculations
reproduce well the level spacing in the ND band as shown in
Fig. 8, which shows moments of inertia as functions of angular
momentum. That is, both theoretical and experimental values
of moments of inertia of the ND band are almost constant and
approximately 4 h̄2/MeV.

To analyze the wave functions of the ground, β vibration,
ND, and SD bands, squared overlaps Sβ=βi

= |〈�MCM|�β

i 〉|2
with β-constrained wave functions are used, as shown in
Fig. 9, where the βi is the value of the quadrupole deformation
parameter β for the |�β

i 〉. The Sβ=βi
values for the band-head

0+ states are plotted as functions of quadrupole deformation
parameter β. The wave functions of both the ground and β

vibration bands have large amplitudes in the oblate region,
and it is found that the Jπ = 0+

vib state appears owing to its
orthogonality to the ground state Jπ = 0+

gs, which shows a
β vibration mode. The ground-state band amplitudes a peak
at β = −0.4, which shows a rather large deformation. The
ND and SD bands have large amplitudes at prolate regions

(β � 0.4 and 0.8, respectively). These results suggest the shape
coexistence of the oblate and prolate normal deformations and
the prolate superdeformation.

C. Superdeformed band

The present result predicts the SD band starting form Jπ =
0+ state at 13.8 MeV, though the SD band has not been clearly
identified. There are experimental works that argue for the
existence of the “excited prolate” band with a large moment
of inertia starting from the state at around 10 MeV [11–13].
We compare the theoretical SD band and the experimental
“excited prolate” band.

As shown in Figs. 1 and 9, SD states are obtained by wave
functions around the local minimum at β � 0.8. Reflecting
the large deformation, the moments of inertia are large and
take a value of approximately 6 h̄2/MeV as shown in Fig. 8.
However, the moments of inertia for the “excited prolate”
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E(J+2)−E(J ) h̄2, where E(J ) is excitation energy of the
angular momentum J state.
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FIG. 9. Squared overlaps with β-constrained wave functions as
functions of quadrupole deformation parameter β for ground, β

vibration, ND, and SD bands are shown. β values are defined as
negative values for oblate shapes.

band deduced from the band assignment of the experimental
work are much larger than those of the theoretical SD band.
The present results do no support the band assignment of
“excited prolate” band. To conclude the correspondence of
the theoretical SD band and the “excited prolate” band, more
experimental information, such as intraband transitions, are
required. As shown in the next subsection, large strengths for
the electric quadrupole transition are suggested in the present
SD band.

D. Electric quadrupole transition strengths B(E2)

Table I shows electric quadrupole transition strengths
B(E2) of intra- and interband transitions. Experimental data

TABLE I. Electric quadrupole transition strengths B(E2) are
shown. Units are in Weisskopf unit B(E2)W.u. = 5.05 e2 fm4 for
28Si. Ji and Jf are the angular momentum of initial and final states,
respectively. Experimental data and the results of the 12C + 16O
potential model (PM) are also listed. The experimental data are taken
from Ref. [32].

Ji Jf Experiment Present PM

Intra 2+
gs 0+

gs 13.2 ± 0.3 15.0
4+

gs 2+
gs 13.8 ± 1.3 23.2

6+
gs 4+

gs 9.9 ± 2.5 28.6
8+

gs 6+
gs – 33.3

2+
vib 0+

vib 5.5 ± 1.3 8.7
4+

vib 2+
vib – 14.2

6+
vib 4+

vib – 15.2
2+

ND 0+
ND – 41.7 45.9

4+
ND 2+

ND 29 ± 5 57.4 63.9
6+

ND 4+
ND >16 59.1 67.1

8+
ND 6+

ND – 56.3 64.9
2+

SD 0+
SD – 132.1

4+
SD 2+

SD – 188.1
6+

SD 4+
SD – 205.8

8+
SD 6+

SD – 212.6

Inter 0+
vib 2+

gs 8.6 ± 1.6 6.7
2+

vib 0+
gs 0.029 ± 0.009 0.3

2+
vib 4+

gs 0.8 ± 0.3 3.3

and theoretical values of the 12C + 16O potential model [25]
are also listed. Reflecting the large deformation of the ND and
SD states, the B(E2) values for their intra-band transitions are
large.

The 12C + 16O potential model gives consistent results with
the present calculation for the intraband transitions in the
ND band. Compared to the experimental data, the B(E2)
values are overestimated. Especially, B(E2; 6+

gs → 4+
gs) is

much overestimated. It might be because structural changes
with an increase of angular momentum are not represented
enough in the present framework, which uses variation before
angular-momentum projection.

V. CLUSTER CORRELATIONS

Table II shows squared overlaps of the MCM wave
functions with the oblate (βOB), prolate ND (βND), and SD
(βSD); α-24Mg type-T (αT) and type-A (αA); and 12C-16O
type-T (CT) and type-A (CA) components. Here, βND and βSD

indicate subsets consisting of the β-constrained wave func-
tions with β = 0.37–0.58 and β = 0.65–0.95 wave functions,
respectively. The definition of squared overlap is described in
Sec. II D.

The values of squared overlaps of the βOB component in
the ground-state band are large and almost unity. However, the
band also contains a large amount of the αT component, which
that means the degrees of freedom of the α-24Mg clustering
are embedded in the ground-state band. In the β vibration
band, the values of squared overlaps of the βOB component
are also almost unity, similarly to the ground-state band. The
values of squared overlaps in the β vibration band are also
large but smaller than those in the ground-state band, which

TABLE II. Squared overlaps of obtained wave functions and
oblate (βOB), prolate ND (βND), and SD (βSD); α-24Mg type-T
(αT) and type-A (αA); and 12C-16O type-T (CT) and type-A (CA)
components are shown. See text about the ND and SD.

Band J π βOB βND βSD αT αA CT CA

gs 0+ 0.97 0.97
2+ 0.97 0.97
4+ 0.97 0.93

vib 0+ 0.97 0.89
2+ 0.95 0.86
4+ 0.94 0.53

ND 0+ 0.99 0.89
2+ 0.99 0.88
4+ 0.99 0.88

SD 0+ 0.94 0.88 0.15
2+ 0.94 0.88 0.16
4+ 0.94 0.88 0.16

α0+ 0+ 0.13 0.72
2+ 0.25 0.76
4+ 0.05 0.81

α2+ 2+ 0.17 0.98
3+ 1.00
4+ 0.07 0.99
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shows that the degrees of freedom of the α-24Mg clustering are
not activated, while the β vibration band appear by β vibration
as mentioned in Sec. IV B.

The states in the ND band contains a 12C-16O cluster
component in the present calculation. That presence is con-
sistent with the works of 12C + 16O cluster models and a
12C + 16O potential model, where the ND band is interpreted
as the lowest band of the 12C + 16O cluster states [25]. In
the present work, the 12C-16O higher nodal bands are not
obtained, because the MCM basis wave functions of the type-A
12C-16O configuration with large d12C-16O are not sufficiently
incorporated to describe the excitation of the 12C-16O relative
motion.

The SD band members contain a large αA component.
Because the SD states can be interpreted as the 4p4h states
as mentioned before, it is natural that the α-cluster correlation
is enhanced in this band. Therefore, the SD states are expected
to be observed in α-transfer reactions. It should be noted that
the SD state contains only the component of the type-A α-24Mg
structure that has the very longitudinal structure. This property
is in contrast to the case of the ground-state band that contains
only the type-T α-24Mg component.

The α0+ and the α2+ bands have the characteristic feature
that they have large amounts of the type-T α-24Mg component,
while the other components are small. Especially the amount of
the α-24Mg component in the α2+ band is quite large and nearly
equals unity. This value indicates that this band is formed
by almost pure type-T α-24Mg wave functions. That is the
reason why we call these two bands the α cluster bands. For
limitations of the present model space such as the bound state
approximation, the widths or fragmentation of the α0+ are not
reproduced.

Recall that the type-T α-24Mg component is contained in
the ground-state band as well as the α0+ and the α2+ bands.
Therefore, it is expected that these bands might be understood
as cluster excited states built on the ground-state band. To
analyze the cluster features of these bands, we here discuss the
overlap of the states with the α-24Mg cluster wave functions
in more detail. Figure 10 shows the type-T α-24Mg cluster
structure component Sα of (a) the Jπ = 0+ and (b) 2+ states
in the ground, α0+ , and α2+ bands as functions of the distance
dα-24Mg. As shown in the figure, the amplitudes for the Jπ = 0+

gs
and 2+

gs in the ground-state band are concentrated in the small
dα-24Mg region, while those for the Jπ = 0+

α0+ and 2+
α0+ states

are compressed in the small distance region compared to the
ground-state band, and they have a peak at dα-24Mg ∼ 5 fm. This
figure shows the typical α-24Mg higher-nodal nature of the α0+

band built on the ground-state band owing to the excitation
of intercluster motion. As mentioned before, the candidates
for the members of the α-cluster band have been observed by
24Mg(6Li,d) and 24Mg(α,α) reactions. The observed Kπ = 0+
band may correspond to the α0+ band though the excitation
energies are slightly overestimated by the present calculations.

As for the α2+ band, the 2α2+ state shows a large amplitude
of Sα in the small dα-24Mg region, similar to the Jπ = 2+

gs in
the ground-state band. It shows that the α2+ band is regarded
as a counterpart of the ground-state band due to K-mixing
because of the triaxial deformation of the type-T α-24Mg
cluster structure. In particular, the α2+ band has a |K| = 2
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FIG. 10. α-24Mg cluster structure component Sα of the (a) J π =
0+ states in the gs and α0+ bands and (b) J π = 2+ states in the g, α0+ ,
and α2+ bands as functions of distance between α and 24Mg clusters.

feature of the type-T α-24Mg cluster structure. Here, K is
defined with respect to the z axis set to the intercluster direction
of the α and 24Mg clusters, and the orientation of the prolate
24Mg cluster is perpendicular to the z axis as mentioned before.
Therefore, the α2+ band is interpreted as the α-24Mg cluster
band with the cluster core excitation of 24Mg(2+). On the
experimental side, there is no established band with Kπ = 2+.
To search for the α2+ band, observation of unnatural parity
states might be helpful.

28Si has a variety of deformed bands, and those states
contain cluster components. Other deformed states and cluster
correlations such as a hyperdeformed states and α-20Ne-α
clustering are also attractive issues [33,34].

VI. SUMMARY AND CONCLUSIONS

Positive-parity states in 28Si have been studied using
the deformed-basis AMD+MCM focusing on clustering and
deformation. The experimental energy levels in the low-energy
region are reproduced well by the present calculations. The
oblately deformed ground-state band and prolately deformed
excited band are reproduced, and the result shows shape
coexistence. The β vibration band also appears because the
oblately deformed state is soft against quadrupole deformation.
A superdeformed band is suggested in the present results. The
SD band is described by the (sd)8(pf )4 configuration. If the
suggested SD band of 28Si is observed experimentally it should
be the superdeformation of the lightest sd-shell nucleus.
Existence of largely deformed band (“excited prolate”) has
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been proposed experimentally, however, we cannot assign the
experimental band with the theoretical SD band because the
experimental moment of inertia is not consistent with that
of the calculated SD band. More experimental data such as
electric or magnetic transitions are requested.

The cluster bands, α0+ and α2+ bands also have been
obtained. These bands contain significant α-24Mg cluster
structure components. The α0+ band is regarded as the higher-
nodal band owing to the excitation of intercluster motion, while
the α2+ band is interpreted as the Kπ = 2+ band due to the
triaxiality of the α-24Mg cluster structure.

It is found that cluster components are significantly con-
tained in the low-lying deformed states as well as the cluster
bands. Namely, the gs and SD bands contain a significant
α-24Mg cluster structure component, and the ND band contains
a 12C-16O cluster structure component. Those results are
analogous to situations of other sd-shell nuclei such as 32S,
for which 16O-16O correlations in the SD band have been
suggested [5,35], and 40Ca where α-36Ar correlations in the

ND band and 12C-28Si correlations in the SD band have been
discussed [3,6].

We have shown the importance of clustering effects as well
as deformation effects in low-lying states of 28Si. That finding
is consistent with the recent full-microscopic studies that
suggested that both clustering and deformations play important
roles in the wide-range sd-shell region.
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