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Potential for measurement of the tensor polarizabilities of nuclei in storage rings by
the frozen spin method
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The frozen spin method can be effectively used for a high-precision measurement of the tensor electric and
magnetic polarizabilities of the deuteron and other nuclei in storage rings. For the deuteron, this method would
provide the determination of the deuteron’s polarizabilities with absolute precision of the order of 10−43 cm3.

DOI: 10.1103/PhysRevC.80.044315 PACS number(s): 21.45.−v, 11.10.Ef, 21.10.Ky

I. INTRODUCTION

Tensor electric and magnetic polarizabilities are important
properties of the deuteron and other nuclei defined by spin
interactions of nucleons. Their measurement provides a good
possibility to examine the theory of spin-dependent nuclear
forces. Methods for determining these important electromag-
netic properties of the deuteron based on the appearance of
interactions quadratic in the spin have been proposed by
V. Baryshevsky and co-workers [1–3]. Additional investiga-
tions have been performed in Refs. [4,5].

Interactions quadratic in the spin and proportional to
the tensor electric and magnetic polarizabilities affect spin
dynamics. When an electric field in the particle rest frame
oscillates at the resonant frequency, an effect similar to the
nuclear magnetic resonance takes place. This effect stimulates
the buildup of the vertical polarization (BVP) of the deuteron
beam [1–3]. General formulas describing the BVP caused by
the tensor electric polarizability of the deuteron in storage
rings (the Baryshevsky effect) have been derived in Ref. [4].
The problem of influence of the tensor electric polarizability
on spin dynamics in such a deuteron electric-dipole-moment
experiment in storage rings has been investigated [4]. It has
been proved that doubling the resonant frequency used in
this experiment dramatically amplifies the Baryshevsky effect
and provides the opportunity to make high-precision measure-
ments of the deuterons tensor electric polarizability [4].

The tensor magnetic polarizability, βT , produces the spin
rotation with two frequencies instead of one, beating with a
frequency proportional to βT , and causes transitions between
vector and tensor polarizations [2,3]. In Ref. [5], the existence
of these effects has been confirmed and a detailed calculation
of deuteron spin dynamics in storage rings has been carried
out. The use of the matrix Hamiltonian derived in Ref. [4]
is very helpful for calculating general formulas describing the
evolution of the spin. Significant improvement in the precision
of possible experiments can be achieved if initial deuteron
beams are tensor-polarized [4,5].

The frozen spin method [6,7] provides another possibility
to measure the tensor polarizabilities of the deuteron and other
nuclei. This method ensures that the spin orientation relative
to the momentum direction remains almost unchanged. In the
present work, we also analyze additional advantages ensured
by the use of tensor-polarized beams and compute the related
spin evolution.

The system of units h̄ = c = 1 is used.

II. GENERAL EQUATIONS

The traditional quantum mechanical approach (see Ref. [8])
uses the matrix Hamiltonian equation and the matrix Hamilto-
nian H for determining the evolution of the spin wave function:

i
d�

dt
= H�,� =

⎛
⎜⎝

C1(t)

C0(t)

C−1(t)

⎞
⎟⎠ . (1)

The three-component wave function �, which is similar to
a spinor, consists of the amplitudes Ci(t) characterizing states
with definite spin projections onto the preferential direction
(z axis). Correction to the Hamilton operator caused by the
tensor polarizabilities has the form [4]

V = −αT

γ
(S · E′)2 − βT

γ
(S · B′)2, (2)

where αT is the tensor electric polarizability, γ is the Lorentz
factor, and E′ and B′ are the electric and magnetic fields in
the rest frame of the deuteron.

The spin motion in storage rings is measured relative to the
axes of the cylindrical coordinate system. Therefore, cylindri-
cal coordinates are used in the present work. The horizontal
axes of the cylindrical coordinate system are connected with
the position of the particle and rotate at the instantaneous
frequency of its revolution. As a result, frequencies of spin
rotation in Cartesian and cylindrical coordinates differ by the
instantaneous frequency of orbital revolution of the particle
(see Ref. [9]).

The description of spin effects in the cylindrical coordinate
system strongly correlates with that in the frame rotating at the
instantaneous frequency of orbital revolution of the deuteron.
This frequency is almost equal to the cyclotron one. The
instantaneous frequency of orbital revolution of the deuteron
defines a difference between the frequencies of rotation of
its spin in the laboratory and rotating frames (see Ref. [10]).
Since this quantity is also equal to a difference between the
frequencies of spin rotation in the Cartesian and cylindrical
coordinates, the frequency of spin precession in the rotating
frame coincides with that in the cylindrical coordinate system.
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In the rotating frame, the motion of deuterons is relatively
slow because it can be caused only by beam oscillations and
other deflections from the ideal trajectory. As a result, the
difference between the rotating frame and the rest frame of the
deuteron is not too important and the fields in the two frames
are almost equal.

The particle in the rotating frame is localized and ideally
is at rest. Therefore, we can direct the x and y axes in this
frame along the radial and longitudinal axes, respectively.
This procedure is commonly used (see Ref. [4] and references
therein) and results in the simplest forms of spin matrices:

Sρ = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , Sφ = i√

2

⎛
⎜⎝

0 −1 0

1 0 −1

0 1 0

⎞
⎟⎠ ,

Sz =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ . (3)

The Hamiltonian operator is defined by [4]

H = H0 + S · ωa + V, (4)

where ωa is the angular velocity of the spin precession
relatively to the momentum direction (g − 2 precession).

In the considered case, the expressions for E′ and B′ in
terms of the unprimed laboratory fields have the form

E′ = γ (Eρ + βφBz)eρ, B′ = γ (βφEρ + Bz)ez, (5)

where βφ = β · eφ ≡ v · eφ/c.
When the frozen spin method is used, the quantity ωa is

very small and the fields satisfy the following relation [7]:

Eρ = aβφγ 2

1 − aβ2γ 2
Bz. (6)

Since the main electric field is radial and almost orthogonal
to the particle (nucleus) trajectory, its effect on a change of
the γ factor can be neglected. This factor is also changed by
radio frequency cavities. The radio frequency cavities cause
oscillations of the particle momentum and γ factor. However,
the amplitudes of these oscillations are small because of a
smallness of the initial particle momentum spread. As a result,
we can suppose γ to be constant.

For the deuteron, a ≡ (g − 2)/2 = −0.143. Therefore,

V = − γB2
z

(1 − aβ2γ 2)2

[
αT (1 + a)2β2S2

ρ + βT S2
z

]
. (7)

The matrix Hamiltonian has the form [4]

H =

⎛
⎜⎝
E0 + ω0 + A + B 0 A

0 E0 + 2A 0

A 0 E0 − ω0 + A + B

⎞
⎟⎠,

(8)

where E0 is the zero energy level, ω0 = (ωa)z,

A = −αT

(1 + a)2β2γB2
z

2(1 − aβ2γ 2)2
, B = −βT

γB2
z

(1 − aβ2γ 2)2
. (9)

Equations (8) and (9) are basic equations defining the dynamics
of the deuteron spin in storage rings when the frozen spin
method is used.

We are interested in the case when the particle or nucleus
has a fixed spin projection (Sl = +1, 0, or −1) onto the certain
direction l defined by the spherical angles θ and ψ . The
azimuth ψ is determined in relation to the cylindrical axes
eρ and eφ . The ψ = 0 case characterizes the spin directed
radially outward. The eigenfunctions of the states with fixed
spin projections on l are given by

ψ−1 = eiα1

⎛
⎜⎝

− sin2 (θ/2)e−iψ

√
2 sin (θ/2) cos (θ/2)

− cos2 (θ/2)eiψ

⎞
⎟⎠ ,

ψ0 = 1√
2
eiα2

⎛
⎜⎝

− sin θe−iψ

√
2 cos θ

sin θeiψ

⎞
⎟⎠ , (10)

ψ1 = eiα3

⎛
⎜⎝

cos2 (θ/2)e−iψ

√
2 sin (θ/2) cos (θ/2)

sin2 (θ/2)eiψ

⎞
⎟⎠ ,

where α1, α2, and α3 are arbitrary phases.
The polarization of particles (nuclei) is described by the

three-component polarization vector P and the polarization
tensor Pij , which has five independent components:

Pi = 〈Si〉
S

, Pij = 3〈SiSj + SjSi〉 − 2S(S + 1)δij

2S(2S − 1)
, (11)

where Pij = Pji and Pρρ + Pφφ + Pzz = 1. In the considered
case, i, j denote projections onto the axes of the cylindrical
coordinate system.

The dependence of components of the polarization vector
and the polarization tensor on the three components of the spin
wave function is given by

Pρ = 1√
2

(C1C
∗
0 + C∗

1C0 + C0C
∗
−1 + C∗

0C−1),

Pφ = i√
2

(C1C
∗
0 − C∗

1C0 + C0C
∗
−1 − C∗

0C−1),

Pz = (C1C
∗
1 − C−1C

∗
−1),

Pρρ = 3

2
(C1C

∗
−1 + C∗

1C−1 + C0C
∗
0 ) − 1

2
,

Pφφ = −3

2
(C1C

∗
−1 + C∗

1C−1 − C0C
∗
0 ) − 1

2
, (12)

Pzz = C1C
∗
1 − 2C0C

∗
0 + C−1C

∗
−1,

Pρφ = i
3

2
(C1C

∗
−1 − C∗

1C−1),

Pρz = 3

2
√

2
(C1C

∗
0 + C∗

1C0 − C0C
∗
−1 − C∗

0C−1),

Pφz = i
3

2
√

2
(C1C

∗
0 − C∗

1C0 − C0C
∗
−1 + C∗

0C−1).
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III. EVOLUTION OF VECTOR POLARIZATION OF THE
DEUTERON BEAM

In Ref. [5], off-diagonal components of the Hamiltonian (9)
were not taken into account, because their effect on the rotating
spin did not satisfy the resonance condition. These components
cannot, however, be neglected in the considered case because
the resonant frequency ω0 can be very small.

The best conditions for a measurement of the tensor
polarizabilities of the deuteron and other nuclei can be
achieved with the use of tensor-polarized initial beams. In this
case, we may confine ourselves to the consideration of a zero
projection of the deuteron spin onto the preferential direction.
When this direction is defined by the spherical angles θ and
ψ , the initial polarization is given by

P(0) = 0, Pρρ(0) = 1 − 3 sin2 θ cos2 ψ,

Pφφ(0) = 1 − 3 sin2 θ sin2 ψ, Pzz(0) = 1 − 3 cos2 θ,
(13)

Pρφ(0) = − 3
2 sin2 θ sin (2ψ),

Pρz(0) = − 3
2 sin (2θ ) cos ψ, Pφz(0) = − 3

2 sin (2θ ) sin ψ.

In this case, the general equation describing the evolution
of the polarization vector has the form

Pρ(t) = sin (2θ )

{[
cos (ω′t) sin ψ + ω0

ω′ sin (ω′t) cos ψ

]

× sin (bt) + A
ω′ sin (ω′t) cos (bt) sin ψ

}
,

Pφ(t) = sin (2θ )

{[
− cos (ω′t) cos ψ + ω0

ω′ sin (ω′t) sin ψ

]

(14)

× sin (bt) + A
ω′ sin (ω′t) cos (bt) cos ψ

}
,

Pz(t) = −2A
ω′ sin2 θ sin (ω′t)

[
cos (ω′t) sin (2ψ)

+ ω0

ω′ sin (ω′t) cos (2ψ)

]
,

where

ω′ =
√

ω2
0 + A2, b = B − A. (15)

When the frozen spin method is used,

b = − γB2
z

(1 − aβ2γ 2)2

[
βT − 1

2
αT (1 + a)2β2

]
. (16)

As a rule, we can neglect A2 as compared with ω2
0 and use

the approximation bt � 1. In this case,

Pρ(t) = sin (2θ )

[
bt sin (ω0t + ψ) + A

ω0
sin (ω0t) sin ψ

]
,

Pφ(t) = sin (2θ )

[
−bt cos (ω0t + ψ) + A

ω0
sin (ω0t) cos ψ

]
,

(17)

Pz(t) = −2A
ω0

sin2 θ sin (ω0t) sin (ω0t + 2ψ).

When the initial deuteron beam is vector-polarized and the
direction of its polarization is defined by the spherical angles

θ and ψ , one has

Pρ(0) = sin θ cos ψ, Pφ(0) = sin θ sin ψ,

Pz(0) = cos θ, Pρρ(0) = 3
2 sin2 θ cos2 ψ − 1

2 ,

Pφφ(0) = 3
2 sin2 θ sin2 ψ − 1

2 , Pzz(0) = 3
2 cos2 θ − 1

2 , (18)

Pρφ(0) = 3
4 sin2 θ sin (2ψ),

Pρz(0) = 3
4 sin (2θ ) cos ψ, Pφz(0)= 3

4 sin (2θ ) sin ψ.

Such a polarization (with θ = π/2) will be used in the planned
deuteron electric-dipole-moment (EDM) experiment [11]. The
EDM manifests in an appearance of a vertical component of
the polarization vector.

The evolution of this component defined by the tensor
polarizabilities of the deuteron is given by

Pz(t) =
[

1 − 2A2

ω′2 sin2 (ω′t)
]

cos θ

+ A
ω′ sin2 θ sin (ω′t)

[
cos (ω′t) sin (2ψ) (19)

+ ω0

ω′ sin (ω′t) cos (2ψ)
]
.

The tensor magnetic polarizability does not influence Pz.
In the same approximation as before,

Pz(t) = cos θ + A
ω0

sin2 θ sin (ω0t) sin (ω0t + 2ψ). (20)

IV. DISCUSSION AND SUMMARY

Experimental conditions needed for the measurement of
the tensor polarizabilities and the EDMs of nuclei in storage
rings [7,11] are similar. Equation (6) shows that the radial
electric field should be sufficiently strong to eliminate the
effect of the vertical magnetic field on the spin. As a result, the
frozen spin method provides a weaker magnetic field than other
methods. This factor is negative because the evolution of the
spin caused by both the tensor polarizabilities and the EDMs
strongly depends on Bz. Nevertheless, the Storage Ring EDM
Collaboration considers the frozen spin method to be capable
of detecting the deuteron EDM of the order of 10−29 e cm.
Another method for searching for the deuteron EDM in storage
rings is the resonance method developed in Ref. [12]. This
method is based on a strong vertical magnetic field and an
oscillatory resonant longitudinal electric field. The use of the
resonance method for the measurement of the tensor electric
polarizability of the deuteron proposed in Refs. [1–3] may
ensure high precision [4]. However, the following estimates
show that the frozen spin method can also be successfully
used for the measurement of the tensor electric and magnetic
polarizabilities of the deuteron and other nuclei.

We can evaluate the precision of measurement of the tensor
polarizabilities of the deuteron via its comparison with the
expected sensitivity of the deuteron EDM experiment.

Evidently, the tensor electric polarizability can in principle
imitate the presence of the EDM. The exact equation of spin
motion with allowance for the EDM has been obtained in
Ref. [6] specifically for the EDM experiment. In the considered
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case, the angular velocity of spin rotation is equal to

ωa = ω0ez + Ceρ, C = − eη

2m
· 1 + a

1 − aβ2γ 2
βφBz, (21)

where η = 2dm/(eS) is the factor similar to the g factor for
the magnetic moment with d being the EDM.

When the tensor polarizabilities are not taken into account,
the spin rotates about the direction

e′
z = C

ω′ eρ + ω0

ω′ ez

with the angular frequency ω′ =
√
ω2

0 + C2.
When the initial polarization of the beam is given by

Eq. (18), the polarization vector is equal to

Pρ(t) = ω0C
ω′2 [1 − cos (ω′t)] cos θ

+
[

1 − 2ω2
0

ω′2 sin2 ω′t
2

]
sin θ cos ψ

− ω0

ω′ sin (ω′t) sin θ sin ψ,

Pφ(t) = sin (ω′t)
(

ω0

ω′ sin θ cos ψ − C
ω′ cos θ

)
(22)

+ cos (ω′t) sin θ sin ψ,

Pz(t) =
[

1 − 2C2

ω′2 sin2 ω′t
2

]
cos θ

+ ω0C
ω′2 [1 − cos (ω′t)] sin θ cos ψ

+ C
ω′ sin (ω′t) sin θ sin ψ.

If we neglect terms of the order of C2, the vertical component
of the polarization vector takes the form

Pz(t) = cos θ + 2C
ω0

sin θ sin
ω0t

2
sin

ω0t + 2ψ

2
. (23)

Although Eqs. (20) and (23) are similar, the effects of
the tensor electric polarizability and the EDM have different
angular dependencies and can be properly separated.

For the considered experimental conditions [11], the
sensitivity to the EDM of 1 × 10−29 e cm corresponds to
measuring the tensor electric polarizability with an accuracy
of δαT ≈ 5 × 10−42 cm3.

There are three independent theoretical predictions for the
value of the tensor electric polarizability of the deuteron,
namely αT = −6.2 × 10−41 cm3 [13], −6.8 × 10−41 cm3

[14], and 3.2 × 10−41 cm3 [15]. The first two values are very
close to each other but they do not agree with the last result.

The theoretical estimate for the tensor magnetic polarizability
of deuteron is βT = 1.95 × 10−40 cm3 [13,14].

We can therefore conclude that the expected sensitivity
of the deuteron EDM experiment allows us to measure
the tensor electric polarizability with an absolute precision
of δαT ≈ 5 × 10−42 cm3, which corresponds to the relative
precision of the order of 10−1. This estimate is made for the
vector-polarized initial beam. However, the best sensitivity in
the measurement of αT can be achieved with the use of a
tensor-polarized initial beam. When the vector polarization
of such a beam is zero, spin rotation does not occur. In
this case, there are no related systematic errors caused by
the radial magnetic field or other factors. In the general
case, such systematic errors are proportional to a residual
vector polarization of the beam. This advantage leads to a
sufficient increase in experimental accuracy [4,5]. In this
case, our preliminary estimate of experimental accuracy is
δαT ∼ 10−43 cm3.

The frozen spin method can also be successively used
for the measurement of the tensor magnetic polarizability.
Equations (14)–(17) show that the preferential direction of
initial tensor polarization is defined by θ = π/2 and θ = π/4
for measuring the tensor electric and magnetic polarizabilities,
respectively. In the latter case, the horizontal components of the
polarization vector should be measured. Owing to a restriction
of spin rotation in the horizontal plane, the achievable absolute
precision of measurement of the tensor magnetic polarizability
of the deuteron is of the same order (δβT ∼ 10−43 cm3). A
comparison with the theoretical estimate [13,14] shows that
the relative precision of measurement of this quantity can be
rather high (δβT /βT ∼ 10−3).

All the formulas derived here are applicable to any spin-1
nucleus. Moreover, the evolution of the polarization vector
defined by spin tensor effects has to be identical for nuclei
with any spin S � 1 despite difference of spin matrices. This
statement follows from the fact that quantum mechanical
equations describing spin dynamics should agree with classical
spin physics and therefore should not explicitly depend on S.

Thus, the frozen spin method can be effectively used for
the high-precision determination of the tensor electric and
magnetic polarizabilities of the deuteron and other nuclei.
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