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SU(3) symmetry in the triaxially deformed harmonic oscillator
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An anisotropic harmonic oscillator Hamiltonian can be brought into invariant form under SU(3) transformations
by applying nonlinear transformations to the oscillator bosons. The classification of the single-particle levels
based on this covering group predicts magic numbers for the triaxial oscillator. It is shown that when the
deformation |δ| is not too large, the physical operators are approximated by the group operators. Estimation is
carried out for the alignment of orbital angular momentum in a triaxial field.
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I. INTRODUCTION

The eigenstates of a many-body Hamiltonian are obtained
by projecting the total angular momentum, total nucleon
number, parity, etc. from the Slater determinant, which
consists of the products of the intrinsic single-particle wave
functions. Usually, such an intrinsic single-particle state is
determined self-consistently within the approximation which
is due to a suitable truncation of the single-particle basis. We
adopt the triaxially deformed harmonic oscillator model to
approximate the intrinsic single-particle Hamiltonian instead
of such self-consistent solutions. Our main aim is to find a
general classification scheme for the intrinsic single-particle
wave functions for the case of triaxial deformation, in order that
we can distinguish which single-particle level is lower than the
others, and which kind of energy degeneracy in single-particle
levels exists.

We have extended Elliott’s SU(3) model [1] to axially
symmetric deformed shapes, namely, the superdeformed
bands, the hyperdeformed bands, and the highly deformed
bands [2], where the original harmonic oscillator boson is
replaced by a product of new bosons according to the rational
ratio which approximates a given oscillator strength. The
boson transformation introduced in Ref. [2] is inappropriate
for the triaxial case, since all the harmonic oscillator states
are not exhausted. We encounter the difficulty that the new
boson number becomes fractional, and that there appears a
degeneracy of the vacuum. In the present paper, we propose
a new type of nonlinear transformation in order to avoid the
degeneracy of the vacuum and in order to map all the oscillator
states onto an SU(3) representation. However, the projection
operator has to limit the eigenvalues of the new boson numbers
to physically allowed integral values. We apply our method not
only to the typical case γ = 30◦ but also to 17◦ ∼ 20◦, which
has recently been investigated in Lu isotopes [3].

In Sec. II, the deformation parameters δ and γ are defined
from the triaxial deformed harmonic oscillator potential. In
Sec. III, new bosons for SU(3) are introduced in a general
manner. In Sec. IV, the special case of γ = 30◦ is discussed.
In Sec. V, the relationship to recent topics regarding the case
γ ∼ 19◦ is discussed. In Sec. VI, the paper is concluded.

II. THE DEFORMATION PARAMETERS

The harmonic oscillator Hamiltonian with three frequencies
ωx, ωy , and ωz, where x, y, and z are the principal axes in the
body-fixed frame, is given by

H = 1

2M
p 2 + M

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
. (1)

The deformation parameters δ and γ are related to the three
frequencies by

ω2
x = ω2

0

[
1 + 2δ

3
(
√

3 sin γ + cos γ )

]
,

ω2
y = ω2

0

[
1 + 2δ

3
(−

√
3 sin γ + cos γ )

]
, (2)

ω2
z = ω2

0

(
1 − 4δ

3
cos γ

)
,

where ω0 is the oscillator strength in the spherical limit with
h̄ω0 = 41A−1/3 MeV, and A denotes the mass number. Here,
we choose the Lund convention for γ . Within the region 0◦ <

γ < 60◦ and for positive δ, the inequalities ωx > ωy > ωz

correspond to Rx < Ry < Rz, where Rk describes the nuclear
radius in the k direction (k = x, y, z). On the other hand, for
negative δ, the inequalities ωx < ωy < ωz hold corresponding
to Rx > Ry > Rz. If we assume δ to be small and take only its
first order in the Nilsson potential, Eq. (2) reduces to

ωx = ω0

[
1 + δ

3
(
√

3 sin γ + cos γ )

]
,

ωy = ω0

[
1 + δ

3
(−

√
3 sin γ + cos γ )

]
, (3)

ωz = ω0

(
1 − 2δ

3
cos γ

)
.

The volume conservation condition ωxωyωz = ω3
0 is satisfied

by Eq. (3) up to the first order in δ, and its square, i.e., ω6
0, is

satisfied by Eq. (2), also up to the first order in δ. In the present
paper, we adopt the parametrization given by Eq. (3) rather than
Eq. (2) as a model of triaxial deformation. Here, we remark
that δ is the same as δosc in Bohr-Mottelson’s textbook [4].
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The harmonic oscillator boson operators c
†
k and ck, k =

x, y, z, in a triaxially deformed field are defined as

x = −i

√
h̄

2Mωx

(c†x − cx), px =
√

h̄Mωx

2
(c†x + cx),

y =
√

h̄

2Mωy

(c†y + cy), py = i

√
h̄Mωy

2
(c†y − cy), (4)

z = −i

√
h̄

2Mωz

(c†z − cz), pz =
√

h̄Mωz

2
(c†z + cz).

Suppose that the three frequencies ωx, ωy , and ωz have an
irreducible integral ratio a : b : c, i.e.,

ωx = aωsh, ωy = bωsh, ωz = cωsh. (5)

We express the eigenstate of n̂k = c
†
kck as

|nk〉〉 = (c†k)nk

√
nk!

|0〉. (6)

Then the eigenvalues and eigenfunctions of H , for fixed
ratio of a : b : c, are described by a set of quantum numbers
(nx, ny, nz):

H |nx, ny, nz〉〉 = h̄ωsh

(
Nsh + a + b + c

2

)
|nx, ny, nz〉〉

= Esh|nx, ny, nz〉〉, (7)

where the nk are the eigenvalues of the number operator n̂k =
c
†
kck , and nk integers � 0. The shell quantum number Nsh is

given by

Nsh = anx + bny + cnz. (8)

These degeneracies are already known and have been dis-
cussed in the literature by many authors [2,5]. However, there
has been no explicit discussion regarding the triaxial case in
connection with SU(3) symmetry.

From Eq. (3) follow the relations

ωx + ωy + ωz = 3ω0, (9a)

tan γ =
√

3
ωx − ωy

ωx + ωy − 2ωz

, (9b)

2δ

3
√

3
sin

(
γ + π

3

)
= ωx − ωz

ωx + ωy + ωz

. (9c)

Equation (9a) is used to determine ωsh as

ωsh = 3

a + b + c
ω0. (10)

Equations (9b) and (9c) express γ and δ in terms of a, b, and
c. For the case of an axially symmetric deformation where
ωx = ωy , Eq. (9c) determines δ uniquely corresponding to the
ratio ωx : ωz. In the triaxially deformed case, different ratios
ωx : ωy : ωz can yield the same value for the parameter γ .
Thus, for a fixed value of the parameter γ , Eq. (9b) yields a
relation among a, b, and c. Once a set of a, b, and c is given
consistent with this relation, Eq. (9c) will give a distinct value
for the parameter δ.

III. NEW BOSONS FOR SU(3) AND THE EIGHT
GENERATORS

Now, we consider the general case of an integral ratio of a :
b : c. To construct an SU(3)-invariant expression, we express
the harmonic oscillator boson ck, k = x, y, z, Eq. (4), in terms
of an m-fold product of new bosons sm, for positive integer m,
by requiring

s†msm = mc
†
kck and [sm, s†m] = 1. (11)

Here, we remark that m represents an integer a, b, or c

introduced in Eq. (5). First, we consider the case m = 2. Using
a procedure analogous to the Holstein-Primakoff transforma-
tion for spin operators, we introduce new boson operators s2

and s
†
2 through the relation ck = (q1 + q2n̂2)−1/2s2s2, where

n̂2 = s
†
2s2. The coefficients q1 and q2 are determined from

Eq. (11). Then, it follows

ck = 1√
2(1 + n̂2)

(s2)2, c
†
k = (s†2)2 1√

2(1 + n̂2)
. (12)

Similarly, for the case of m = 3, we find new boson operators
s3 and s

†
3 from Eq. (11) as a triproduct,

ck = 1√
3(n̂3 + 2)(n̂3 + 1)

(s3)3. (13)

From Eq. (13) it follows that n̂3 = s
†
3s3 = 3c

†
kck . Thus, the

general form of the new bosons sm, for any positive integer m,
is given by

ck =
[
m

m−1∏
r=1

(n̂m + r)

]−1/2

(sm)m

=
[

�(n̂m + 1)

m�(n̂m + m)

]1/2

(sm)m, (14)

where n̂m = s
†
msm. Equation (14) satisfies the conditions given

by Eq. (11), and Eqs. (12) and (13) correspond to the cases
m = 2 and m = 3 in Eq. (14), respectively.

The transformation defined by Eq. (14) differs from the
transformation introduced in our previous paper [2], where the
new bosons are constructed from the product of the original
bosons. In this paper, the original bosons are constructed
instead from the product of new bosons as seen from Eq. (14).
Thus, there exists a unique vacuum, which is annihilated by sm

as well as ck . However, since the harmonic boson operators ck

are replaced by the mth power of new boson operators sm, the
many boson Fock space, which is generated by operating s

†
m on

a common vacuum, will include unphysical states other than
the eigenstates of the original Hamiltonian. In dealing with
these unwanted many boson states, the projection operator

Pm = 1

m

m−1∑
k=0

ei 2πk
m

n̂m (m = a, b, c) (15)

is necessary to project out the physical states. It is straightfor-
ward to show P 2

m = Pm. The normalized physical states |nm〉
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are projected out from the Fock space basis |m):

|nm〉 = Pm|m)√
(m|Pm|m)

, (16)

with

|m) = (s†m)nm

√
nm!

|0〉, (17)

where |0〉 is the vacuum common to both Eqs. (6) and (17).
Setting m = a, b, or c in Eq. (14), we determine sa, sb, and sc

for a given ratio a : b : c, and obtain for Nsh = na + nb + nc

in Eq. (7).
The nine operators that commute with the Hamiltonian H

are given by

(G) ≡

⎛
⎜⎜⎝

s
†
asa s

†
bsa s

†
c sa

s
†
asb s

†
bsb s

†
c sb

s
†
asc s

†
bsc s

†
c sc

⎞
⎟⎟⎠ . (18)

These nine operators form a basis for the algebra u(3) as
generators of the group U(3). Removing the singlet operator
s
†
asa + s

†
bsb + s

†
c sc, the remaining eight operators form an

algebra su(3), which generates the group SU(3). From the
matrix element Gµν(µ, ν = 1, 2, 3) given by Eq. (18), we find
the Casimir operator for the single-particle states. From the
definition of Aµν ,

Aµν =
√

3(Gµν − δµνI/3), I = n̂a + n̂b + n̂c, (19)

the second-order Casimir operator is obtained as

C = Tr(AA)

= 2(n̂a + n̂b + n̂c)(n̂a + n̂b + n̂c + 3). (20)

With the help of the notation (λ,µ), which labels SU(3)
irreducible representation, the expectation value of C becomes
2λ(λ + 3) with λ = na + nb + nc and µ = 0.

The SU(3) group reduces to the subgroup SU(2) × U(1).
There are three alternative sets of generators corresponding to
subalgebra su(2) [6]. For example, one such subalgebra su(2)
is given by

I1 = A12 + A21

2
√

3
, I2 = i(A21 − A12)

2
√

3
, I3 = A22 − A11

2
√

3
,

(21)

and U(1) is generated by

YI = A33√
3

. (22)

With the use of Eq. (18), Eqs. (21) and (22) are explicitly
expressed as

I1 = 1
2 (s†asb + s

†
bsa), I2 = i

2 (s†asb − s
†
bsa),

(23)
I3 = 1

2 (s†bsb − s†asa), YI = 1
3 (2s†c sc − s†asa − s

†
bsb).

Elliott [1] has found that the quadrupole operator commutes
with the spherical Hamiltonian, which is defined by

h̄Qq =
√

4π

5

[
r2Y2q(θ, φ) + b0

4p2Y2q(θp, φp)
]/

b0
2, (24)

where b0
4 = 1/(M2ω2

0), and (p, θp, φp) in momentum
space corresponds to (r, θ, φ) in configuration space. This
quadrupole operator does not connect ±2h̄ω0 excitations, i.e.,
it is equivalent to an exact quadrupole operator within an N

shell. We will make the following substitution for Eq. (24):

x → x̃, y → ỹ, z → z̃,
(25)

px → p̃x, py → p̃y, pz → p̃z,

with

x̃ = −i

√
h̄b2

0

2
(s†a − sa), p̃x =

√
h̄

2b2
0

(s†a + sa),

ỹ =
√

h̄b2
0

2
(s†b + sb), p̃y = i

√
h̄

2b2
0

(s†b − sb), (26)

z̃ = −i

√
h̄b2

0

2
(s†c − sc), p̃z =

√
h̄

2b2
0

(s†c + sc).

We also adopt the usual definition for the orbital angular
momentum operator 
k (k = x, y, z),

h̄
z = xpy − ypx, etc. (27)

After the substitution of Eqs. (25) and (26) into Eqs. (24)
and (27), we obtain a new set of group operators Q̃q for q =
0,±1 and ±2, and 
̃k for k = a, b, and c:

Q̃0 = 2s†c sc − s†asa − s
†
bsb,

Q̃±1 = ∓
√

3

2
[s†c (sa ± sb) + sc(s†a ∓ s

†
b)],

Q̃±2 =
√

3

2
[s†asa − s

†
bsb ± (s†asb − s

†
bsa)], (28)


̃± = 1√
2

[s†c (sb ± sa) + sc(s†b ∓ s†a)],


̃c = −(s†bsa + s†asb).

Here, we used the definition of 
̃± = (
̃a ± i
̃b)/
√

2. In con-
trast to Elliott’s case where ±2h̄ω0 excitations are excluded,
the operators given by Eq. (28) exclude ±2h̄ωsh excitations.
Again the commutation relations among the eight operators
defined by Eq. (28) are closed, and they commute with H . The
oscillator Hamiltonian H is invariant with respect to the group
SU(3) which is generated by these eight operators Q̃q and 
̃q .
The following relations hold:

Q̃0 = 2n̂c − n̂a − n̂b,
(29)

Q̃2 + Q̃−2 =
√

6(n̂a − n̂b).

Here, we remark that Q̃0 = 3YI , and Q̃2 + Q̃−2 = −2
√

6I3

[see Eq. (23)].
The Casimir operator in Eq. (20) is also expressed in terms

of the generators in Eq. (28) as

C = 1
2 (Q̃ · Q̃ + 3
̃ · 
̃). (30)

There are three kinds of bilinear combinations of generators
given by Eq. (28), which are expressed in terms of the number
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operators:

1

4

̃2

z + 1

12
(Q̃2Q̃−2 + Q̃−2Q̃2)

=
(

n̂a + n̂b

2

) (
n̂a + n̂b

2
+ 1

)
, (31a)

Q̃2
0 + (Q̃2 + Q̃−2)2

= (2n̂c − n̂a − n̂b)2 + 6 (n̂a − n̂b)2 , (31b)

3(
̃+
̃− + 
̃−
̃+) − (Q̃1Q̃−1 + Q̃−1Q̃1)

= 3 [4n̂c (n̂a + n̂b + 1) + 2 (n̂a + n̂b)] . (31c)

Equation (31a) is also derived from Eq. (23) as I 2
1 + I 2

2 +
I 2

3 and is related to the reduction of the SU(3) group to its
subgroup SU(2) × U(1). The group U(1) is generated by Q̃0,
while the representations of SU(2) are labeled by integral or
half-integral numbers (n̂a + n̂b)/2, as seen from Eq. (31a).
Equation (31b) results from our choice of the principal axis
in Eq. (29). Equation (31c) is related to operators Q̃0 and
(Q̃2 + Q̃−2)/

√
6. The linear combinations of Q̃±1 and 
̃±1,

i.e.,

ξ± = Q̃±1 +
√

3
̃± (η± = Q̃±1 −
√

3
̃±), (32)

become lowering (raising) operators for the value of 〈Q̃0〉 to
〈Q̃0〉 ∓ 3. The operator Q̃0 describes the excess of quanta in
the c direction (z direction) compared with those in the a-b
plane (x-y plane). The operators ξ+ + ξ− and η+ + η− shift
an oscillator quantum from the c direction into the a-b plane
by three units and vice versa, because of the commutation
relations

[Q̃0, ξ±] = −3ξ±, [Q̃0, η±] = 3η±. (33)

These operators are also lowering and raising operators for
(Q̃2 + Q̃−2)/

√
6 by one unit, namely,[

Q̃2 + Q̃−2√
6

, ξ+ + ξ−

]
= −(ξ+ + ξ−),

(34)[
Q̃2 + Q̃−2√

6
, η+ + η−

]
= η+ + η−.

Since (Q̃2 + Q̃−2)/
√

6 equals n̂a − n̂b, the operators ξ+ + ξ−
and η+ + η− shift an oscillator quantum from the a direction
(x direction) to the b direction (y direction) by one unit, and
vice versa.

IV. TRIAXIAL DEFORMATION OF γ = 30◦

In this section, we consider the special case of γ = 30◦,
where tan γ = 1/

√
3. For this case, Eq. (9b) reduces to

a + c = 2b, (35)

and Eq. (9c) gives

δ = 3
√

3(a − c)

2(a + b + c)
. (36)

From Eq. (35), it follows that typical examples for the ratio
a : b : c are 3 : 2 : 1, 4 : 3 : 2, and 5 : 4 : 3. Then, Eq. (36)
yields the deformation δ ∼ 0.866 for 3 : 2 : 1, while δ ∼ 0.577

for 4 : 3 : 2 and δ ∼ 0.433 for 5 : 4 : 3. If more complex ratios
are chosen, the least common multiplier (L.C.M.) for a, b, and
c becomes larger, while the corresponding δ becomes smaller.
The ratio a : b : c = 1 : 2 : 3 corresponds to an oblate nuclear
shape (ωx < ωy < ωz), while the values of the L.C.M. and the
absolute value of δ are the same as for the prolate case with
a : b : c = 3 : 2 : 1. The value of |δ| ∼ 0.866 seems to be
very large but is within the region where ω2

x and ω2
z in Eq. (2)

are non-negative.
Choosing the simplest case, namely, a : b : c = 3 : 2 : 1 for

γ = 30◦, the shell energy Esh in Eq. (7) and shell number Nsh

in Eq. (8) become

Esh = h̄ωsh(Nsh + 3), Nsh = 3nx + 2ny + nz. (37)

The relation ωsh = ω0/2 is deduced from Eq. (10).
With the help of Eq. (14), we construct new s bosons,

namely, s3 defined by means of a triproduct for the cx boson,
and s2 defined by means of a biproduct for the cy boson [both
s2 and s3 bosons were previously determined in Eqs. (12)
and (13)]. The vacuum for the s3 boson is the same as for the
cx boson, and the vacuum for the s2 boson is the same as for
the cy boson. However, since the original harmonic oscillator
bosons ck, k = x, y, are expressed in the form of triproducts
and biproducts of the new bosons sm,m = 3, 2, a projection
operator is needed that projects out the states corresponding
to the eigenvalues of the sm bosons and their boson number
operators, namely, the multiples of 3 for the case of s3 and the
multiples of 2 for the case of s2. These projection operators
are obtained from the general expression, Eq. (15), as

P3 = 1 + ei 2π
3 n̂3 + ei 4π

3 n̂3

3
,

(38)

P2 = 1 + eiπn̂2

2
.

The eight generators in Eq. (28) can be rewritten as

Q̃0 = 2c†zcz − s
†
3s3 − s

†
2s2,

Q̃±1 = ∓
√

3

2
[c†z(s3 ± s2) + cz(s

†
3 ∓ s

†
2)],

Q̃±2 =
√

3

2
[s†3s3 − s

†
2s2 ± (s†3s2 − s

†
2s3)], (39)


̃± = 1√
2

[c†z(s2 ± s3) + cz(s
†
2 ∓ s

†
3)],


̃z = −(s†2s3 + s
†
3s2).

The diagonal number operators given by Eq. (29) be-
come Q̃0 = 2n̂z − n̂3 − n̂2 and Q̃2 + Q̃−2 = √

6(n̂3 − n̂2).
The Casimir operator in Eq. (20) becomes 2(n̂3 + n̂2 +
n̂z)(n̂3 + n̂2 + n̂z + 3).

In Table I, we summarize the classification of the single-
particle states for the case of a triaxial shape for γ = 30◦
and a : b : c = 3 : 2 : 1 for the shells Nsh � 8. Also listed
in Table I are the values for the operators 〈Q̃0〉, 〈Q̃2 +
Q̃−2〉/

√
6, and 〈C〉. The states | 〉 are the states defined

by Eq. (16) in terms of the quantum numbers n3, n2,
and nz. The total number of levels for Nsh = 6m, 6m +
1, 6m + 2, 6m + 3, 6m + 4, and 6m + 5 with integer m
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TABLE I. Single-particle eigenfunctions of Q̃0 and
(Q̃2 + Q̃−2)/

√
6 for γ = 30◦ and a : b : c = 3 : 2 : 1

with 0 � Nsh � 8.

Nsh n3 n2 nz 〈Q̃0〉 〈Q̃2 + Q̃−2〉/
√

6 〈C〉
0 0 0 0 0 0 0
1 0 0 1 2 0 8
2 0 2 0 −2 −2 20

0 0 2 4 0
3 3 0 0 −3 3 36

0 2 1 0 −2
0 0 3 6 0

4 3 0 1 −1 3 56
0 4 0 −4 −4
0 2 2 2 −2
0 0 4 8 0

5 3 2 0 −5 1 80
3 0 2 1 3
0 4 1 −2 −4
0 2 3 4 −2
0 0 5 10 0

6 6 0 0 −6 6 108
3 2 1 −3 1
3 0 3 3 3
0 6 0 −6 −6
0 4 2 0 −4
0 2 4 6 −2
0 0 6 12 0

7 6 0 1 −4 6 140
3 4 0 −7 −1
3 2 2 −1 1
3 0 4 5 3
0 6 1 −4 −6
0 4 3 2 −4
0 2 5 8 −2
0 0 7 14 0

8 6 2 0 −8 4 176
6 0 2 −2 6
3 4 1 −5 −1
3 2 3 1 1
3 0 5 7 3
0 8 0 −8 −8
0 6 2 −2 −6
0 4 4 −4 −4
0 2 6 10 −2
0 0 8 16 0

is given by 3m2 + 3m + 1, (3m + 1)(m + 1), (3m + 2)(m +
1), 3(m + 1)2, (m + 1)(3m + 4), and (m + 1)(3m + 5), re-
spectively. The relations 〈Q̃0〉 = −Nsh + 3nz and 〈Q̃0〉 =
2Nsh − 3(n3 + n2) require that 〈Q̃0〉 starts from −Nsh and
increases in steps by 3 up to 2Nsh, but 2Nsh − 3 does not
contribute since n3 + n2 is always unequal to unity. This differs
from the case of the spherical harmonics. From Table I we
derive, by taking into account the spin quantum number, a
new sequence of magic numbers 2, 4, 8, 14, 22, 32, 46, 62,
and 82. These numbers are still meaningful even when the
	
 · 	s term exists, since the single-particle expectation value of

	
 · 	s vanishes for triaxial field and does not contribute in the
first-order perturbation treatment.

To introduce the realistic operators, we substitute Eq. (4)
directly into Eqs. (24) and (27). First we substitute Eq. (4) into
Eq. (27) and obtain the following expressions:


x = 1

2

[ (√
c

b
−

√
b

c

)
(c†yc

†
z + cycz)

+
(√

c

b
+

√
b

c

)
(c†ycz + cyc

†
z)

]
,


y = i

2

[ (√
a

c
−

√
c

a

)
(cxcz − c†zc

†
x)

+
(√

a

c
+

√
c

a

)
(c†xcz − c†zcx)

]
,


z = 1

2

[ (√
b

a
−

√
a

b

)
(c†xc

†
y + cycx)

−
(√

b

a
+

√
a

b

)
(cxc

†
y + cyc

†
x)

]
. (40)

These operators satisfy the same commutation relations as
the group operators given in Eq. (28). If we set a = b =
c = 1 in Eq. (40) and replace cx and cy by s3 and s2,
the operators 
 go over into the operators 
̃ in Eq. (39).
However, in the general case, Eq. (40) does not commute
with H and connects with levels outside the Nsh shell.
As seen from Eq. (40), the first term in 
k(k = x, y, z)
disappears for the spherical case (a = b = c = 1), where
we can make one component of 	
 diagonal, for example

z. On the contrary, in the triaxial case, no 
k commutes
with H , and its expectation value by the state |nx, ny, nz〉〉
defined in Eq. (6) gives 〈〈nx, ny, nz|
k|nx, ny, nz〉〉 = 0,
which demonstrates the quenching of orbital angular
momentum [7,8].

Now, we compare the diagonal matrix elements of 
̃ · 
̃ and

 · 
. From Eqs. (28) and (40), we get

〈na, nb, nc|
̃ · 
̃|na, nb, nc〉
= 2(na + nb + nc + nanb + nbnc + ncna), (41)

where |na, nb, nc〉 is defined by Eq. (16), and 〈〈nx, ny, nz|
 ·

|nx, ny, nz〉〉 = 〈〈
2

x〉〉 + 〈〈
2
y〉〉 + 〈〈
2

z〉〉with

〈〈

2

x

〉〉 =
(

b

c
+ c

b

) (
ny + 1

2

) (
nz + 1

2

)
− 1

2
,

〈〈

2

y

〉〉 =
( c

a
+ a

c

) (
nz + 1

2

)(
nx + 1

2

)
− 1

2
, (42)

〈〈

2

z

〉〉 =
(

a

b
+ b

a

)(
nx + 1

2

)(
ny + 1

2

)
− 1

2
.

For the purpose of an explicit application of our dynamical
SU(3) model to many-body systems with triaxial deformations
along the line of Elliott’s SU(3) model, we need to investigate
whether the expectation values of 〈
̃ · 
̃〉 and 〈Q̃ · Q̃〉 approx-
imate the expectation values of the exact operators 〈〈
 · 
〉〉
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and 〈〈Q · Q〉〉. Comparing Eq. (41) with 〈〈
 · 
〉〉, we see that
for given values a, b, c, the three coefficients of the boson
numbers must add up to the common factor 2 in Eq. (41). We
find that both expressions coincide with each other only when
b/a = 1 and c/a = 1, which corresponds to the spherical case,
i.e., δ = 0. Therefore, the deviation of b/a + a/b, a/c + c/a,

and c/b + b/c from the factor 2 indicates the quantitative
measure of the approximation. For example, for the case of
a : b : c = 3 : 2 : 1, Eq. (42) becomes

〈〈nx, ny, nz|
 · 
|nx, ny, nz〉〉

=
(

2 + 1

6

)
nxny +

(
2 + 1

2

)
nynz +

(
2 + 4

3

)
nznx

+
(

2 + 3

4

)
nx +

(
2 + 1

3

)
ny +

(
2 + 11

12

)
nz + 1

2
,

(43)

whose coefficients of nznx and nz show large deviation from
the factor 2.

On the other hand, for γ = 30◦ and a : b : c = 4 : 3 :
2(δ = 0.577), we introduce a new boson s4 as a tetraproduct
for cx ,

cx = 1√
4(n̂4 + 3)(n̂4 + 2)(n̂4 + 1)

(s4)4, (44)

where n̂4 = s
†
4s4. As for the other two axes, the cy boson is

replaced by an s3 boson, and the cz boson by an s2 boson.
In this case, Nsh = n4 + n3 + n2, ωsh = ω0/3, 〈Q̃0〉 = 2n2 −
n4 − n3, and 〈Q̃2 + Q̃−2〉/

√
6 = n4 − n3. Equation (41) be-

comes

〈n4, n3, n2|
̃ · 
̃|n4, n3, n2〉
= 2(n4 + n3 + n2 + n4n3 + n3n2 + n2n4), (45)

while Eq. (42) becomes

〈〈nx, ny, nz|
 · 
|nx, ny, nz〉〉

=
(

2 + 1

12

)
nxny +

(
2 + 1

6

)
nynz +

(
2 + 1

2

)
nznx

+
(

2 + 7

24

)
nx +

(
2 + 1

8

)
ny +

(
2 + 1

3

)
nz + 3

16
.

(46)

Compared with Eq. (43), all the coefficients in Eq. (46) are
close to 2, and we may assume that the realistic operators 
 · 


can be simulated by 
̃ · 
̃.
In Table II, we show the classification of the single-particle

states for γ = 30◦ and a : b : c = 4 : 3 : 2, together with
〈Q̃0〉, 〈Q̃2 + Q̃2〉/

√
6, and 〈C〉. Here, we note that Nsh = 1

(= n4 + n3 + n2) is not allowed in this scheme, as n4, n3, and
n2 are multiples of 4, 3, and 2, respectively. Again, though
〈Q̃0〉 changes in steps by 3, some levels that exist in the
spherical harmonics case do not exist here. We see that the
energy degeneracy in Table II (L.C.M. = 12) becomes smaller
than that in Table I (L.C.M. = 6). For Nsh = 6, for example,
seven levels are degenerate in Table I, while only three levels
are degenerate in Table II. This is because of the impossibility
of partitioning certain of the shell numbers Nsh into three large

TABLE II. Single-particle eigenfunction of Q̃0 and
(Q̃2 + Q̃−2)/

√
6 for γ = 30◦ and a : b : c = 4 : 3 : 2

with 0 � Nsh � 12.

Nsh n4 n3 n2 〈Q̃0〉 〈Q̃2 + Q̃−2〉/
√

6 〈C〉
0 0 0 0 0 0 0
2 0 0 2 4 0 20
3 0 3 0 −3 −3 36
4 4 0 0 −4 4 56

0 0 4 8 0
5 0 3 2 1 −3 80
6 4 0 2 0 4 108

0 6 0 −6 −6
0 0 6 12 0

7 4 3 0 −7 1 140
0 3 4 5 −3

8 8 0 0 −8 8 176
4 0 4 4 4
0 6 2 −2 −6
0 0 8 16 0

9 4 3 2 −3 1 216
0 9 0 −9 −9
0 3 6 9 −3

10 8 0 2 −4 8 260
4 6 0 −10 −2
4 0 6 8 4
0 6 4 2 −6
0 0 10 20 0

11 8 3 0 −11 5 308
4 3 4 1 1
0 9 2 −5 −9
0 3 8 13 −3

12 12 0 0 −12 12 360
8 0 4 0 8
4 6 2 −6 −2
4 0 8 12 4
0 12 0 −12 −12
0 6 6 6 −6
0 0 12 24 0

integers. In this case, the magic numbers are predicted to be
2, 4, 6, 10, 12, 18, 20, 30, 36, 46, 54, 68, and 78.

From 〈〈nx, ny, nz|
2
k|nx, ny, nz〉〉(k = x, y, z), we can esti-

mate the direction of alignment in the state |nx, ny, nz〉〉. As
seen from Eq. (42), 〈〈
2

k〉〉 becomes maximum in the k direction
with minimum nk . When two or three nk take a common
minimum value, the direction of the maximum alignment
depends on the magnitudes of b/a + a/b, b/c + c/b, and
c/a + a/c. As the relation of a > b > c(a < b < c) holds
because of Eq. (5), c/a + a/c becomes maximum, resulting
in the maximum alignment along the y axis. For example,
for a : b : c = 4 : 3 : 2 and Nsh = 6(= 4nx + 3ny + 2nz), the
maximum alignment is along the y axis for the |nx = 1, ny =
0, nz = 1〉〉 state, and the next to the largest is along the x

axis. For the |nx = 0, ny = 2, nz = 0〉〉 state, the maximum
alignment is along the x axis, and the next to the largest
along the z axis. For the |nx = 0, ny = 0, nz = 3〉〉 state, the
maximum is along the y axis and the next to the largest
along the x axis. In the oblate case (a : b : c = 2 : 3 : 4), the
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alignment is obtained by exchanging the x axis and the z axis.
Thus, the maximum alignment is now along the z axis for the
|nx = 0, ny = 2, nz = 0〉〉 state, while there is no change in
the direction of maximum alignment for the other states in the
oblate case.

We can also determine the direction for the maximum
value of 
̃2

m(m = 4, 3, 2) for the |n4, n3, n2〉 state. Similar to
〈〈
2

k〉〉, 〈
̃2
m〉 becomes maximum in the m direction with

minimum nm. When two nm take a common minimum
value, a common maximum value occurs in both directions.
For a : b : c = 4 : 3 : 2 and Nsh = 6(= n4 + n3 + n2), the
direction with the maximum 〈
̃2

m〉 is along the s3 axis (y
axis) for |n4 = 4, n3 = 0, n2 = 2〉 (corresponding to |nx =
2, ny = 0, nz = 1〉〉), along the s4 axis (x axis) and along the
s2 axis (z axis) for |n4 = 0, n3 = 6, n2 = 0〉 (corresponding
to |nx = 0, ny = 2, nz = 0〉〉), and along the s3 axis (y axis)
and along the s4 axis (x axis) for |n4 = 0, n3 = 0, n2 = 6〉
(corresponding to |nx = 0, ny = 0, nz = 3〉〉). As for 
̃2

m(m =
4, 3, 2), the direction of maximum value is the same for
both oblate (n2, n3, n4) and prolate (n4, n2, n2) cases, as seen
from Eq. (45). For the |n4 = 0, n3 = 6, n2 = 0〉 state, both
alignments, along the s4 axis (x axis) and the s2 axis (z axis),
are the same and do not differ from the result of the realistic
oblate state |nx = 0, ny = 2, nz = 0〉〉.

Similar to the case of orbital angular momentum �, we get
the realistic quadrupole operators Qq for q = 0,±1,±2.

Q0 = 1

2

[ (
c′ − 1

c′

) (
c† 2
z + c2

z

) +
(

c′ + 1

c′

)
(2n̂z + 1)

− 1

2

(
a′ − 1

a′

) (
c†2
x + c2

x

) − 1

2

(
a′ + 1

a′

)
(2n̂x + 1)

+ 1

2

(
b′ − 1

b′

) (
c†2
y + c2

y

) − 1

2

(
b′ + 1

b′

)
(2n̂y + 1)

]
,

Q±1 = ∓1

2

√
3

2

[ (√
a′c′ − 1√

a′c′

)
(c†zc

†
x + cxcz)

+
(√

a′c′ + 1√
a′c′

)
(c†zcx + c†xcz)

∓
(√

b′c′ − 1√
b′c′

)
(c†zc

†
y − cycz)

∓
(√

b′c′ + 1√
b′c′

)
(c†ycz − cyc

†
z)

]
,

Q±2 = 1

4

√
3

2

[ (
a′ − 1

a′

) (
c†2
x + c2

x

) +
(

a′ + 1

a′

)
(2n̂x + 1)

+
(

b′ − 1

b′

) (
c† 2
y + c2

y

) −
(

b′ + 1

b′

)
(2n̂y + 1)

∓ 2

(√
a′b′ − 1√

a′b′

) (
c†xc

†
y + cycx

)

± 2

(√
a′b′ + 1√

a′b′

)
(c†xcy − cxc

†
y)

]
, (47)

where a′ = 3a/(a + b + c), b′ = 3b/(a + b + c), and c′ =
3c/(a + b + c) are deduced from Eq. (10).

We compare the diagonal part of Q̃ · Q̃ and Q · Q for the
case of a : b : c = 4 : 3 : 2,

〈n4, n3, n2|Q̃ · Q̃|n4, n3, n2〉
= 4

(
n2

4 + n2
3 + n2

2

) + 6(n4 + n3 + n2)

+ 2(n4n3 + n3n2 + n2n4), (48)

and

〈〈nx, ny, nz|Q · Q|nx, ny, nz〉〉

=
(

4 + 49

96

)
n2

x + 4n2
y +

(
4 + 25

24

)
n2

z

+
(

6 + 91

288

)
nx +

(
6 + 1

8

)
ny +

(
6 + 8

9

)
nz

+
(

2 + 1

12

)
nxny +

(
2 + 1

6

)
nynz

+
(

2 − 17

36

)
nznx + 415

576
. (49)

Almost all the coefficients in Eqs. (48) and (49) are close to
each other. Thus, by comparison between Eqs. (45) and (46)
and between Eqs. (48) and (49), we infer that the operators
Q and 
 are approximated by the SU(3) group operators Q̃

and 
̃.
To extend our treatment to the many-fermion problem, we

need the help of the projection operator, P = PaPbPc. For
example, the many-body quadrupole operator is defined by

Qµ =
∑
i,j

〈i|PQ̃µP |j 〉α†
i αj , (50)

where the suffixes i and j represent the boson state which
is specified by (na, nb, nc), and α

†
i (αj ) denotes a fermion

creation (annihilation) operator for the state i (j ). It is obvious
that if we replace P by 1, we have Q̃ · Q̃ = C − 3
̃ · 
̃, and
the expectation value of the many-body Casimir operator
C is 2[λ2 + λµ + µ2 + 3(λ + µ)] for the SU(3) irreducible
representation labeled by (λ,µ) [1]. Such an ideal SU(3) limit
realizes an aspect similar to the interacting boson model (IBM)
in the axially symmetric limit [9].

V. THE OTHER TRIAXIALITY

While our discussion is based on the parametrization of
Eq. (3) as was mentioned below Eq. (3), ω2

z becomes negative
when δ is larger than a positive critical value δ

p
c , and ω2

x

becomes negative when δ is smaller than a negative critical
value δn

c . These critical values are derived from Eq. (2)
depending on the value of γ .

Recently, the triaxial strongly deformed bands were ob-
served in Lu isotopes, where γ is estimated to be around
18◦ ∼ 20◦ [3]. When tan γ = √

3/5, which corresponds to
γ ∼ 19◦, Eq. (9c) gives 2a + c = 3b. The simplest ratio for
a, b, and c is then 4:3:1, and δ ∼ 0.99, which is larger than the
critical value δ

p
c ∼ 0.79. In the prolate case, the next candidate

is a : b : c = 5 : 4 : 2 with δ ∼ 0.72 and L.C.M. = 20. In
the oblate case, we obtain the ratio a : b : c = 1 : 2 : 4, where
L.C.M. is 4 and δ ∼ −1.13, whose absolute value seems to

044307-7



SUGAWARA-TANABE, TANABE, ARIMA, AND GRUBER PHYSICAL REVIEW C 80, 044307 (2009)

be quite large but is still within the limit of δn
c ∼ −1.32.

The other candidate in the oblate case is a : b : c = 3 : 4 : 6
with δ ∼ −0.61 and L.C.M. equal to 12. When tan γ = √

3/4,
which corresponds to γ ∼ 23◦, Eq. (9c) gives 3a + 2c = 5b.
As long as L.C.M. is less than 30, we cannot find any ratio
within the range δn

c < δ < δ
p
c for both the prolate and the oblate

shapes. When tan γ = √
3/6, which corresponds to γ ∼ 16◦,

Eq. (9c) gives 5a + 2c = 7b. Again, as long as L.C.M. is
assumed to be less than 30, we cannot find any ratio within
the range of δn

c < δ < δ
p
c . The energy degeneracy between the

prolate and oblate shapes disappears in all the cases discussed
above.

We discuss now the case of γ ∼ 19◦. Although the absolute
value of δ (δ ∼ −1.13) is large, we consider the oblate case
of a : b : c = 1 : 2 : 4, as the L.C.M.(= 4) is small. In this
case, cy is replaced by an s2 boson and cz by an s4 boson.
Then, Nsh = nx + n2 + n4, ωsh = ω0/2, 〈Q̃0〉 = 2n4 − nx −
n2, and 〈Q̃2 + Q̃−2〉/

√
6 = nx − n2. Equation (42) gives

〈〈nx, ny, nz|
 · 
|nx, ny, nz〉〉

=
(

2 + 1

2

)
nxny +

(
2 + 1

2

)
nynz +

(
2 + 9

4

)
nznx

+
(

2 + 11

8

)
nx +

(
2 + 1

2

)
ny +

(
2 + 11

8

)
nz + 13

16
.

(51)

We see that the coefficients of the boson numbers nx and nz

and their product nznx in Eq. (51) differ significantly from 2.
The magic numbers in this case are 2, 4, 8, 12, 20, 28, 40, 52,
70, and 88.

Next we consider the oblate case of a : b : c = 3 : 4 :
6(δ ∼ −0.61). In this case, a new boson s6 is introduced for cz

in the form of the sixfold product in Eq. (14), i.e.,

cz = 1√
6(n̂6 + 1)(n̂6 + 2)(n̂6 + 3)(n̂6 + 4)(n̂6 + 5)

(s6)6.

(52)

Here, n̂6 = s
†
6s6, and Nsh = n3 + n4 + n6, ωsh = 3ω0/13,

〈Q̃0〉 = 2n6 − n3 − n4, and 〈Q̃2 + Q̃−2〉/
√

6 = n3 − n4.
Equation (42) becomes

〈〈nx, ny, nz|
 · 
|nx, ny, nz〉〉

=
(

2 + 1

12

)
nxny +

(
2 + 1

6

)
nynz +

(
2 + 1

2

)
nznx

+
(

2 + 7

24

)
nx +

(
2 + 1

8

)
ny +

(
2 + 1

3

)
nz + 3

16
.

(53)

All the coefficients in Eq. (53) are close to 2. In Table III, we
summarize the classification of the single-particle energy level
for this case. As seen in Table III, the states for Nsh = 1, 2,
and 5 do not exist, since n3 is a multiple of 3, n4 is a multiple
of 4, and n6 is a multiple of 6. Although the L.C.M. is 12,
as it is for the case of γ = 30◦ with a : b : c = 4 : 3 : 2, the
level degeneracy in γ ∼ 19◦ is less than the level degeneracy
for γ = 30◦. For example, only two levels belong to Nsh = 6
(three levels in Table II), and four levels to Nsh = 12 (seven
levels in Table II). The sequence of magic numbers in Table III

TABLE III. Level degeneracy and the single-particle eigen-
function for 0 � Nsh � 12 at tan γ = √

3/5 with a : b : c = 3 :
4 : 6 (oblate case).

Nsh n3 n4 n6 〈Q̃0〉 〈Q̃2 + Q̃−2〉/
√

6 〈C〉
0 0 0 0 0 0 0
3 3 0 0 −3 3 36
4 0 4 0 −4 −4 56
6 0 0 6 12 0 108

6 0 0 −6 6
7 3 4 0 −7 −1 140
8 0 8 0 −8 −8 176
9 3 0 6 9 3 216

9 0 0 −9 9
10 0 4 6 8 −4 260

6 4 0 −10 2
11 3 8 0 −11 −5 308
12 0 0 12 24 0 360

6 0 6 6 6
0 12 0 −12 −12

12 0 0 −12 12

is 2, 4, 6, 10, 12, 14, 18, 22, 24, 32, 36, 40, 48, 56, 60, 72,
and 80.

We can infer the direction of the largest alignment from the
calculation of 〈〈
2

k〉〉. For the level nx = ny = 0 and nz = 1 in
the Nsh = 6(= 3nx + 4ny + 6nz) shell, the largest alignment
is found to be along the y axis, and the next to the largest
along the x axis. For the level nx = 2 and ny = nz = 0, the
largest alignment is along the y axis and the next to the largest
is along the x axis. Similar estimates can be carried out also
for 
̃2

k(k = 3, 4, 6) as SU(3) operators.
For the prolate case of γ ∼ 19◦ with a : b : c = 5 : 4 :

2(δ ∼ 0.72), a new boson s5 is introduced for cx in the form
of a fivefold product in Eq. (14),

cx = 1√
5(n̂5 + 1)(n̂5 + 2)(n̂5 + 3)(n̂5 + 4)

(s5)5, (54)

where, n̂5 = s
†
5s5. Here, cy is replaced by an s4 bo-

son, and cz by an s2 boson. Subsequently, Nsh = n5 +
n4 + n2, ωsh = 3ω0/11, 〈Q̃0〉 = 2n2 − n5 − n4, and 〈Q̃2 +
Q̃−2〉/

√
6 = n5 − n4. Equation (42) becomes

〈〈nx, ny, nz|
 · 
|nx, ny, nz〉〉

=
(

2 + 1

20

)
nxny +

(
2 + 1

2

)
nynz +

(
2 + 9

10

)
nznx

+
(

2 + 19

40

)
nx +

(
2 + 11

40

)
ny +

(
2 + 7

10

)
nz + 29

80
.

(55)

The coefficients in Eq. (55) are better than those in Eq. (51),
but worse than those in Eq. (53) because of a larger δ. In
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TABLE IV. Level degeneracy and the single-particle
eigenfunction for 0 � Nsh � 11 at tan γ = √

3/5 with
a : b : c = 5 : 4 : 2 (prolate case).

Nsh n5 n4 n2 〈Q̃0〉 〈Q̃2 + Q̃−2〉/
√

6 〈C〉
0 0 0 0 0 0 0
2 0 0 2 4 0 20
4 0 4 0 −4 −4 56

0 0 4 8 0
5 5 0 0 −5 5 80
6 0 4 2 0 −4 108

0 0 6 12 0
7 5 0 2 −1 5 140
8 0 8 0 −8 −8 176

0 4 4 4 −4
0 0 8 16 0

9 5 4 0 −9 1 216
5 0 4 3 5

10 10 0 0 −10 10 260
0 8 2 −4 −8
0 4 6 8 −4
0 0 10 20 0

11 5 4 2 −5 1 308
5 0 6 7 5

Table IV, the classification of the single-particle energy levels
is summarized. As seen in Table IV, the states Nsh = 1 and 3
do not exist, since n5 is a multiple of 5, n4 a multiple of 4, and
n2 a multiple of 2. We can infer the direction of the maximum
alignment from the expectation value of 
2

k . For the level with
nx = 0, ny = 1, and nz = 2 in Nsh = 6 (= 5nx + 4ny + 2nz),
the largest alignment is found to be along the x axis, and
the next to the largest along the y axis. For the level with
nx = ny = 0 and nz = 3, the largest alignment is along the
y axis and the next to the largest along the x axis. This is

also inferred from the SU(3) group operator space. The shell
energy is a little smaller than for the oblate case of 3:4:6. The
sequence of magic numbers in the prolate case (Table IV) 2,
4, 8, 10, 14, 16, 22, 26, 34, 38, 48, 54, 66, and 74 differs from
that in the oblate case (Table III).

VI. CONCLUSION

We have introduced new bosons corresponding to the
integral ratio of three frequencies for a harmonic oscillator
potential, by means of a nonlinear transformation that realizes
the SU(3) group as a dynamical symmetry group and leaves
the anisotropic harmonic oscillator Hamiltonian invariant. In
other words, we have constructed a set of operators of SU(3)
as a covering group, and all oscillator states are embedded in
the SU(3) representation bases. The vacuum is the same as for
the original boson, but the new boson numbers in the physical
states are restricted to multiples of integral coefficients.

Since various combinations of integral coefficients are
allowed for a fixed γ , we have tested several cases with
different L.C.M. for the integral coefficients. According to
increasing L.C.M., |δ| becomes smaller and the level degen-
eracy decreases. We have shown that the physical operators
Q and 
 are approximated by the group operators Q̃ and 
̃,
as long as the absolute value of δ is not large. As examples,
we have considered two cases: tan γ = 1/

√
3(γ = 30◦) and

tan γ = √
3/5(γ ∼ 19◦). For the former case, both prolate

and oblate nuclear shapes have a common |δ| and L.C.M.(=
6 or 12), while for the latter case the oblate nuclear shape has
a smaller L.C.M. (= 4 or 12) than the prolate nuclear shape
(L.C.M. = 20).

Shell closures are predicted by the sequence of magic
numbers depending on the deformation parameters δ and γ .
For the realistic operator 
, we can estimate the direction of
orbital angular momentum alignment.
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