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A new step-by-step diagonalization procedure for evaluating exact solutions of the nuclear deformed mean-field
plus pairing interaction model is proposed via a simple Bethe ansatz in each step from which the eigenvalues
and corresponding eigenstates can be obtained progressively. This new approach draws upon an observation that
the original one- plus two-body problem in a k-particle Hilbert subspace can be mapped onto a one-body grand
hard-core boson picture that can be solved step by step with a simple Bethe ansatz known from earlier work.
Based on this new procedure, it is further shown that the extended pairing model for deformed nuclei [Feng
Pan, V. G. Gueorguiev, and J. P. Draayer, Phys. Rev. Lett. 92, 112503 (2004)] is similar to the standard pairing
model with the first step approximation, in which only the lowest energy eigenstate of the standard pure pairing
interaction part is taken into consideration. Our analysis shows that the standard pairing model with the first
step approximation displays similar pair structures of the first few exact low-lying states of the model, which,
therefore, provides a link between the two models.
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I. INTRODUCTION

Pairing is an important residual interaction when a mean-
field approach is used as a starting approximation for a
description of nuclear structure. In particular, pairing cor-
relations are essential for a description of binding energies,
odd-even effects, single-particle occupancies, excitation spec-
tra, electromagnetic transition rates, beta-decay probabilities,
transfer reaction amplitudes, low-lying collective modes, level
densities, and moments of inertia, etc. [1–3]. Two commonly
used methods, the Bardeen-Cooper-Schrieffer (BCS) [4] and
Hartree-Fock-Bogolyubov (HFB) [2] technique for finding
approximate solutions are well known. The limitations of these
methods, when applied in nuclear physics, are well understood
[5], which is also the case when using these methods to
determine the energy spectra of nanoscale metallic grains [6,7].
Various procedures have been used to correct the approxima-
tion deficiencies, such as particle-number projected mean-field
treatments [8–10], the use of coherent states [11], stochastic
number projection techniques [12], statistical descriptions
[13], treatments of the residual parts of the Hamiltonian in the
random phase approximation [14,15], and various recursive
approaches [16,17]. Typically, however, these procedures
have been found to have only limited applicability because
the results usually yield insufficient accuracy. Other methods
are likewise limited by their own sets of complications.

On the other hand, an exact treatment of the nuclear mean-
field plus pairing type Hamiltonian was initiated by Richard-
son and Gaudin, known as the Richardson-Gaudin method
[18–21]. Recently, extensions to the Richardson-Gaudin the-
ory have been made using the Bethe ansatz methodology
[22–31], especially, an application of the Richardson-Gaudin
solution to Sm isotopes with less than seven pairs of valence
nucleons was made [32]. Though these approaches show
that the mean-field plus pairing model is exactly solvable,
the solutions are generally not simple and normally require
extensive numerical work, especially when the number of
levels and valence pairs are large in spite of the recent
efforts in improving the procedure [33]. In [34], an extended

pairing model with many-pair interaction terms was proposed,
which can be solved based on a simpler Bethe ansatz, and
describes even-odd mass differences in 154–171Yb isotopes
rather well. However, it was not clear why the pairing
interaction strength in the model should be drastically reduced
when increasing the number of valence nucleon pairs in
order to fit experimental data of even-odd mass differences.
Moreover, since the standard form of the pairing Hamiltonian
is commonly adopted, it should be interesting to see whether
the extended pairing model in some aspects covers main
features of the standard model.

In the following, a new step-by-step diagonalization pro-
cedure for evaluating exact solutions of the nuclear deformed
mean-field plus pairing interaction model will be proposed via
a simple Bethe ansatz in each step from which the eigenvalues
and corresponding eigenstates can be obtained progressively,
which is shown in Sec. II. In Sec. III, as a demonstration of
the procedure, a system with p = 10 levels will be analyzed.
In Sec. IV, it will be shown that the extended pairing model
for deformed nuclei is similar to the standard pairing model
with the first step approximation, in which only the lowest
energy eigenstate of the standard pure pairing interaction
part is taken into consideration. Our analysis reveals that the
standard pairing Hamiltonian with the first step approximation
displays similar pair structures of the first few exact low-lying
states of the model, which, therefore, provides a link between
the two models. A short discussion regarding implications of
our results is given in Sec. V.

II. A NEW DIAGONALIZATION PROCEDURE FOR THE
MEAN-FIELD PLUS STANDARD PAIRING

HAMILTONIAN

The deformed mean-field plus standard pairing model
Hamiltonian is given by

Ĥ =
p∑

j=1

εj n̂j − GS+S− =
p∑

j=1

εj n̂j − G
∑
ij

S+
i S−

j , (1)
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where p is the total number of levels considered, G > 0 is
the overall pairing strength, {εj } are single-particle energies
taken from any deformed mean-field, such as the Nilsson
model [2] or the relativistic mean-field theory [35–37], n̂j =
c
†
j↑cj↑ + c

†
j↓cj↓ is the fermion number operator for the j th

level, and S+
i = c

†
i↑c

†
i↓(S−

i = (S+
i )† = ci↓ci↑) are pair creation

(annihilation) operators. The up and down arrows in these
expressions refer to time-reversed states. Since the formalism
for even-odd systems is similar, in the following we only focus
on the even-even seniority zero case.

Since each deformed level can be occupied by no more than
a single pair due to the Pauli principle, the Hamiltonian (1) is
also equivalent to a finite-site hard-core Bose-Hubbard model
with infinite range hopping and infinite on-site repulsion.
Let B+

i1i2···ik = S+
i1
S+

i2
· · · S+

ik
with 1 � i1 < i2 < · · · < ik � p.

In the following, we set µ = (i1i2 · · · ik) to be the µth
normal order sequence with 1 � i1 < i2 < · · · < ik � p. The
operator B+

µ can be regarded as a grand hard-core boson
creation operator [34]. The total number of these operators
is p!/((p − k)!k!) which exactly equals the dimension of the
Hilbert subspace of k pairs with no double occupancy.

For k-pair excitations, by using the standard second
quantization formalism, the Hamiltonian (1) can effectively
be reduced to the following ‘one-body’ Hamiltonian in the
grand hard-core boson picture:

Ĥk =
∑
µν

〈µ|
p∑

j=1

εj n̂j |ν〉B+
µ Bν − G

∑
µν

〈µ|S+S−|ν〉B+
µ Bν,

(2)

where Bµ = (B+
µ )†, because any k-pair eigenstate of Eq. (1)

can be expanded in terms of single grand hard-core boson states
{|µ〉 = B+

µ |0〉}, where |0〉 is the pair vacuum state. In Eq. (2),
the mean-field one-body term in the Hilbert subspace spanned
by {|µ〉 = B+

µ |0〉} is diagonal with the matrix elements

〈µ|
p∑

j=1

εj n̂j |ν〉 = δµν2ε̄µ = δµν2
k∑

t=1

εit , (3)

while the matrix elements of the pairing interaction term are

〈µ|S+S−|ν〉 =
∑
qρ

〈µ|p/2 − qρk〉QQ

×〈p/2 − qρk|S+S−|p/2 − qρk〉QQ

×〈p/2 − qρk|ν〉, (4)

in which

Q〈p/2 − qρk|S+S−|p/2 − qρk〉Q

= h
(q)
k = (k − q)(p − k − q + 1) (5)

is the matrix element of S+S− in the Racah quasispin
formalism [38] with the total quasispin SQ = p/2 − q, where
q = 0, 1, . . . , min[k, p − k], and ρ is an additional quantum
number needed in distinguishing from different states with
the same quasispin for a given p and k. For a given p,
the total number of different quasispin states with the same

SQ = p/2 − q is given by [39]

ωq = (p − 2q + 1)p!

(p − q + 1)(p − q)!q!
. (6)

Furthermore, α
qρ
µ = 〈µ|p/2 − qρk〉Q used in Eq. (4) is an

overlap of the quasispin state |p/2 − qρk〉Q with µth single
grand hard-core boson state |µ〉, which can be chosen as real.
It can easily be verified that the total number of different
quasispin states equals exactly to the dimension of the Hilbert
subspace of k pairs with no double occupancy:

d =
min[k,p−k]∑

q=0

ωq = p!

(p − k)!k!
. (7)

Thus, Eq. (2) can explicitly be written as

Ĥk =
d∑

µ=1

2ε̄µB+
µ Bµ − G

min[k,p−k]∑
q=0

h
(q)
k

ωq∑
ρ=1

∑
µν

αqρ
µ αqρ

ν B+
µ Bν.

(8)

In order to diagonalize the Hamiltonian (8), let us consider
a simpler Hamiltonian with only the first term and q = 0 part
in the second term of Eq. (8):

h0 =
d∑

µ=1

2ε̄µB+
µ Bµ − Gh

(0)
k

∑
µν

α01
µ α01

ν B+
µ Bν. (9)

As shown in [34,40], the Hamiltonian (9) can be diagonalized
into the following form:

h0 =
∑
τ0

E(τ0)D+(E(τ0))D(E(τ0)) (10)

with

D+(E(τ0)) =
√

1

Nτ0

∑
µ

α01
µ

2ε̄µ − E(τ0)
B+

µ , (11)

where E(τ0) is the τ0-th root of the following equation:

Gh
(0)
k

∑
µ

(
α01

µ

)2

2ε̄µ − E(τ0)
= 1, (12)

and Nτ0 is the normalization constant obtained from

∑
µ

(
α01

µ

)2

(E(τ0) − 2ε̄µ)(E(τ ′
0) − 2ε̄µ)

= δτ0τ
′
0
Nτ0 . (13)

In this case, Eq. (12) will provide exactly d different
roots E(τ0) as long as all combinations of the single-particle
energies ε̄µ = ∑k

t=1 εit are different for all k-pair excitation
cases. Fortunately, this is always the case when single-particle
energies {εj } are generated from any deformed mean-field
theory. To the contrary, let us consider an extreme situation
with all levels degenerate, ε̄µ = ε for any µ. In this case,
Eq. (12) becomes

Gh
(0)
k

∑
µ

(
α01

µ

)2

2ε − E(τ0)
= 1, (14)
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which only has one solution with E(τ0) = 2ε − Gh
(0)
k since∑

µ(α01
µ )2 = 1. Thus, other d − 1 solutions cannot be obtained

from such a procedure. A similar situation also occurs in the
former Richardson-Gaudin solution to the standard pairing
Hamiltonian (1). Though the Richardson-Gaudin method is
effective to get exact solutions for both deformed and nonde-
formed cases, the method can only get complete solutions for
cases with nondegenerate single-particle energies.

Since Eqs. (8) and (9) should be diagonalized within the
single grand hard-core boson subspace spanned by {B+

µ |0〉},
the effective commutation relations needed to prove that
Eq. (9) can indeed be expressed in the form shown in Eq. (10)
are

[Bν, B
+
µ ] = δµν, (15)

which are only valid when they are applied into the vacuum
state. Using Eq. (9) and the ansatz (11), we have

[h0,D
+(E(τ0))] = E(τ0)D+(E(τ0))

−
√

1

Nτ0

(
1 − Gh

(0)
k

∑
µ

(
α01

µ

)2

2ε̄µ − E(τ0)

)

×
∑

ν

α01
ν B+

ν . (16)

Though a direct proof is in demand, it can be checked
numerically with any set of parameters, Gh

(0)
k , {α01

µ }, and {ε̄µ}
with ε̄1 �= ε̄2 · · · �= ε̄d , that the orthnormal condition (13) is
automatically satisfied when E(τ0) satisfies Eq. (12). Therefore,
Eq. (9) can indeed be expressed as that shown in Eq. (10) as
long as Eq. (12) is satisfied.

In order to simplify our expression, in the following the
indices (q, ρ) are relabeled by r with r = (q, ρ). Thus, the
Hamiltonian (8) can be rewritten as

Ĥk =
∑
τ0

E(τ0)D+(E(τ0))D(E(τ0))

−G

d−1∑
r=1

h
(r)
k

∑
µν

αr
µαr

νB
+
µ Bν. (17)

In the next step, we consider

h1 =
∑
τ0

E(τ0)D+(E(τ0))D(E(τ0)) − Gh
(1)
k

∑
µν

α1
µα1

νB
+
µ Bν

(18)

in Eq. (17). Using Eq. (11), we have

B+
µ =

∑
τ0

√
1

Nτ0

α01
µ

2ε̄µ − E(τ0)
D+(E(τ0)). (19)

By using Eq. (19),
∑

µ α1
µB+

µ in the second term of Eq. (18)
can be expressed as

∑
µ

α1
µB+

µ =
∑
τ0

√
1

Nτ0

∑
µ

α01
µ α1

µ

2ε̄µ − E(τ0)
D+(E(τ0)). (20)

Then, we similarly have∑
τ0

E(τ0)D+(E(τ0))D(E(τ0)) − Gh
(1)
k

∑
µν

α1
µα1

νB
+
µ Bν

=
∑
τ0

E(τ0)D+(E(τ0))D(E(τ0))

−Gh
(1)
k

∑
τ0τ

′
0

�τ0�τ ′
0
D+(E(τ0))D(E(τ ′

0))

=
∑
τ1

E(τ1)D+(E(τ1))D(E(τ1)), (21)

where

�τ0 =
√

1

Nτ0

∑
µ

α01
µ α1

µ

2ε̄µ − E(τ0)
, (22)

D+(E(τ1)) =
√

1

Nτ1

∑
τ0

�τ0

E(τ0) − E(τ1)
D+(E(τ0)), (23)

E(τ1) is the τ1-th root of the following equation:

Gh
(1)
k

∑
τ0

(�τ0 )2

E(τ0) − E(τ1)
= 1, (24)

and Nτ1 is the normalization constant obtained from

∑
τ0

(�τ0 )2

(E(τ0) − E(τ1))(E(τ0) − E(τ ′
1))

= δτ1τ
′
1
Nτ1 . (25)

Thus, using the results shown in Eqs. (21)– (25) and
following the above procedure consecutively, we finally have

Ĥk =
∑
τ0

E(τ0)D+(E(τ0))D(E(τ0))−G

d−1∑
r=1

h
(r)
k

∑
µν

αr
µαr

νB
+
µ Bν

=
∑
τd−1

E(τd−1)D+(E(τd−1))D(E(τd−1)), (26)

where

D+(E(τd−1)) =
√

1

Nτd−1

∑
τd−2

�τd−2

E(τd−2)−E(τd−1)
D+(E(τd−2)) (27)

with

�τs
=

√
1

Nτs

∑
τ0τ1···τs−1

s−1∏
ν=0

�τν

E(τν )−E(τν+1)

∑
µ

αs+1
µ α01

µ

2ε̄µ−Eτ0
, (28)

D+(E(τs+1)) =
√

1

Nτs+1

∑
τs

�τs

E(τs ) − E(τs+1)
D+(E(τs )), (29)

Gh
(s+1)
k

∑
τs

(�τs
)2

E(τs ) − E(τs+1)
= 1, (30)

and∑
τs

(�τs
)2

(E(τs ) − E(τs+1))(E(τs ) − E(τ ′
s+1))

= δτs+1τ
′
s+1
Nτs+1 , (31)
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for s = 0, 1, 2, . . . , d − 2. Hence, after d steps, the Hamilto-
nian (8) is diagonalized as shown in Eq. (26), of which the
eigenstate is

|k, τd−1〉 = D+(E(τd−1))|0〉 (32)

with the corresponding eigenenergy E(τd−1).
This new step-by-step diagonalization procedure needs

at most d steps to get final exact results, but in each
step the corresponding Bethe ansatz equation (30) contains
only one variable, of which roots can easily be obtained
numerically similar to what is required in the extended pairing
model proposed previously [34], and in the TDA and RPA
approximations with separable potentials [2]. Though this
method may be unpractical for large size systems because
one needs to get all d roots from Eq. (30) in each step, this
procedure can also be used to check contributions from pairing
potential in the Racah quasispin formalism for different q of the
second term in Eq. (8), and is certainly applicable to relatively
small systems. Actually, for k pair excitation, though each term
with different q from the second term of Eq. (8) will contribute
to the final eigenenergy and correlate with eigenstates, the first
few of these terms are key to determining properties of the first
few low-lying states of the model as will be shown in the next
section.

III. A NUMERICAL EXAMPLE FOR p = 10

In this section, we will apply this new step-by-step
diagonalization procedure to the deformed mean-field plus
standard pairing model for p = 10 levels with number of
pairs k = 1, 2, . . . , 10, in which the single particle energies
are given by εi = i + χi for i = 1, 2, . . . , 10, where χi are
random numbers within the interval (0, 1) to avoid accidental
degeneracy, and the pairing strength is set to be G = 0.5.
Since h

(0)
k > h

(1)
k � · · · � hd−1 is always satisfied, the lowest

quasispin term with q = 0 from the pairing potential should
be most important to the first few eigenstates of the model,
which is indeed the case as can be seen from results shown in
Table I.

In each step, we need to calculate the overlaps of the
quasispin states |p/2 − qρk〉Q with µth single grand hard-core
boson states |µ〉. For q = 0, the k-pair state

|p/2k〉Q =
√

(p − k)!/(k!p!)(S+)k|0〉
=

√
k!(p − k)!/p!

∑
1�i1<i2<···<ik�p

S+
i1
S+

i2
· · · S+

ik
|0〉

=
√

1/d
∑

µ

B+
µ |0〉 (33)

is the eigenstate of the operator S+S−. Thus we have

α01
µ = 〈µ|p/2k〉Q =

√
1/d. (34)

For q � 1, the quasispin states |p/2 − qρk〉Q can be obtained
by directly diagonalizing S+S− as shown in Eq. (5), or by
using the representation theory of SUQ(2) × Sp summarized
in [39]. Then, one can use them to calculate the overlaps α

qρ
µ =

〈µ|p/2 − qρk〉Q.

In Table I, we list the first five eigenenergies and overlaps of
the eigenstates with the corresponding exact ones for number
of pairs k = 1, 2, . . . , 10 calculated with only the h0 term
involved, which is called the first step approximation. With
the first step approximation, it can be seen from Table I that
results of k = 1 and k = 10 cases are exact because h(q) = 0
for q � 1. The approximate energy eigenvalues will gradually
increase the corresponding exact ones with increasing the
number of pairs k since pairing potential terms h(q) with q =
1, 2, . . . , min[p − k, k] will contribute more and more to the
final eigenenergies. However, the overlaps of the eigenstates
with the corresponding exact ones are always greater than
88% for the ground and the first excited states for any number
of pairs k. Therefore, the h(0) term of the pairing potential
is dominant in determining pairing structure of the first two
excitation states in the model though the corresponding energy
eigenvalues are different from the exact ones.

Since the largest deviation of the energy eigenvalues
from the exact ones occurs at the half-filling case, using
the procedure shown in the previous section, we calculated
energy eigenvalues step by step for the k = 5 case with q =
0, 1, . . . , 4 since h(5) = 0, of which the results are shown in
Table II. For a given q, there are actually ωq substeps involved
in the diagonalization process according to the procedure
shown in the previous section. It can be seen from Table II that
the overlaps of the first four eigenstates with the corresponding
exact ones will reach 99% after three diagonalization steps
though there is still a deviation in eigenenergies, which shows
that the first few h(q) terms with q = 0, 1, 2 are key to
determine the pair structure of the first few low-lying states of
the model. While high-lying quasispin states mainly correlate
with high excited states of the model and keep the low part of
the spectrum less affected.

IV. COMPARISON WITH THE EXTENDED PAIRING
MODEL

For k pair excitations, if only the h(0) term from the
standard pairing potential is considered for the standard pairing
Hamiltonian (8), namely,

Ĥ
(1)
k =

d∑
µ=1

2ε̄µB+
µ Bµ − G(k(p − k + 1)/d)

∑
µν

B+
µ Bν, (35)

following Eqs. (9)–(13), the eigenstate of Eq. (35) can be
written as

|k; τ ) =
d∑

µ=1

1

2ε̄µ − E(τ )
B+

µ |0〉, (36)

where τ is an additional quantum number used to distinguish
different excitation states, and E(τ ) is an unknown variable
to be determined in diagonalizing Eq. (35). In solving the
following eigenequation:

Ĥ
(1)
k |k; τ ) = E

(τ )
k |k; τ ) (37)
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TABLE I. First five eigenenergies of the standard pairing model with p = 10 levels for k = 0, 1, 2 . . . , 10 obtained from the first
step approximation (appro.) and compared with the corresponding exact results (exact), and overlap (olp) of the eigenstates obtained
from the first step approximation with the corresponding exact ones, in which the single-particle energies ε1 = 1.706, ε2 = 2.754,
ε3 = 3.440, ε4 = 4.349, ε5 = 5.743, ε6 = 6.604, ε7 = 7.591, ε8 = 8.959, ε9 = 9.335, ε10 = 10.125, and pairing strength G = 0.5,
where the single-particle energies and G are given in arbitrary units.

k = 1 k = 2 k = 3 k = 4 k = 5

exact appro. olp exact appro. olp exact appro. olp exact appro. olp exact appro. olp

E1 2.255 2.255 100% 6.662 8.133 98% 12.873 15.423 93% 21.101 24.272 91% 31.856 35.748 88%
E2 4.797 4.797 100% 8.999 9.808 97% 15.508 17.213 92% 24.293 26.909 90% 34.529 37.447 88%
E3 6.438 6.438 100% 10.756 11.392 78% 16.961 18.576 89% 26.161 28.312 65% 36.407 39.209 83%
E4 8.272 8.272 100% 13.128 12.2618 75% 17.973 19.832 82% 26.176 29.058 67% 36.961 40.167 81%
E5 10.969 10.969 100% 13.375 13.625 85% 18.936 20.598 65% 27.621 29.882 62% 38.828 41.206 55%

k = 6 k = 7 k = 8 k = 9 k = 10

exact appro. olp exact appro. olp exact appro. olp exact appro. olp exact appro. olp

E1 44.638 48.868 91% 59.532 63.713 96% 76.780 79.982 96% 95.625 97.091 95% 116.212 116.212 100%
E2 47.415 50.152 90% 62.610 65.911 93% 78.949 82.641 97% 97.888 101.652 96%
E3 49.165 52.261 81% 63.852 67.440 82% 80.277 83.861 81% 99.015 102.961 99%
E4 50.908 53.366 76% 64.573 69.232 71% 81.182 85.191 82% 101.540 105.221 98%
E5 51.728 54.227 74% 65.263 69.651 55% 83.148 86.404 75% 103.552 107.341 98%

with BµB+
ν |0〉 = δµν |0〉, it shows that the variable E(τ ) must

satisfy the following equation:

G(k(p − k + 1)/d)
d∑

µ=1

1

2ε̄µ − E(τ )
= 1, (38)

and the eigenenergy E
(τ )
k = E(τ ). Thus, the additional quantum

number τ labels different roots of Eq. (34). This is the so-called
first step approximation shown in Sec. II. The solution is
complete so long as all combinations of the single-particle
energies

∑k
t=1 εit are different for all k-pair excitation cases.

Fortunately, this is always the case when single-particle
energies {εj } are generated from any deformed mean-field
theory. Since the single grand particle energies 2ε̄µ are all
different, there are exactly p!/((p − k)!k!) distinct roots in
Eq. (38). The resultant eigenstates (33), which are mutually
orthogonal but not normalized, satisfy

(k; τ |k; τ ′) = δττ ′Nτ , (39)

where

Nτ =
d∑

µ=1

1

(2ε̄µ − E(τ ))2
. (40)

It follows that the normalized eigenstate can be expressed as
|k; τ 〉 = √

1/Nτ |k; τ ).
As shown in [34], a Nilsson mean-field plus extended

pairing interaction Hamiltonian

Ĥex =
p∑

j=1

εjnj − Gex

∑
i,j

S+
i Sj − Gex

⎛
⎝ ∞∑

ρ=2

1

(ρ!)2

×
∑

i1 �=i2 �=···�=i2ρ

S+
i1
S+

i2
· · · S+

iρ
Siρ+1Siρ+2 · · · ai2ρ

⎞
⎠ , (41)

where no pair of indices among {i1, i2, · · · , i2ρ} is the same
for any ρ, can also be solved exactly by using a simple

TABLE II. First five eigenenergies of the standard pairing model with p = 10 levels for k = 5
obtained from step-by-step diagonalization procedure, in which the parameters used are the same
as those shown in Table I, where only h(q) with q = 0, 1, 2, . . . , s terms from the pairing potential
are involved in the sth step approximation as described in the previous section.

1st step 2nd step 3rd step 4th step exact
q = 0, 1 q = 0, 1, 2 q = 0, 1, 2, 3 q = 0, 1, 2, 3, 4 q = 0

eigenvalue olp eigenvalue olp eigenvalue olp eigenvalue olp eigenvalue olp

E1 35.748 88% 33.862 98% 32.481 99% 32.176 99% 31.856 100%
E2 37.447 88% 36.566 97% 35.631 99% 35.102 99% 34.528 100%
E3 39.209 83% 38.398 90% 37.451 99% 36.847 99% 36.407 100%
E4 40.167 81% 39.422 89% 37.942 99% 37.637 99% 36.961 100%
E5 41.206 55% 40.821 57% 39.779 97% 38.819 97% 38.828 100%
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Bethe ansatz that is similar to what is proposed in this
work. Besides the usual Nilsson mean-field and the standard
pairing interaction, this form includes many-pair hopping
terms that allow nucleon pairs to simultaneously scatter (hop)
between and among different Nilsson levels. Furthermore, the
extended pairing interaction Hamiltonian (41) can be used to
describe even-odd mass differences rather well as long as the
extended pairing interaction strength Gex decreases with an
increasing number of pairs k. It follows from this that it is
interesting to compare results of the deformed mean-field plus
standard pairing Hamiltonian (1) with those from the extended
pairing model [34]. And indeed, it is not difficult to show
that the expressions for eigenstates of the extended pairing
Hamiltonian and those of the standard pairing Hamiltonian (1)
in the first step approximation are the same. For k-pair
excitations, the eigenenergies E

(τ )
k (ex) of the extended pairing

Hamiltonian (41) are given by

E
(τ )
k (ex) = E(τ )

ex − (k − 1)Gex, (42)

where Eτ
ex is the τ -th root of the Bethe ansatz equation,

Gex

d∑
µ=1

1

2ε̄µ − E
(τ )
ex

= 1. (43)

A comparison of Eq. (43) with the Bethe ansatz equation (36)
for the standard pairing Hamiltonian in the first step approxi-
mation (35) shows that the two Hamiltonians yield exactly the
same excitation energies and the corresponding eigenstates so
long as the parameter Gex in the extended pairing model and
the parameter G in the standard pairing Hamiltonian (1) satisfy
the following relation:

Gex = ((p − k)!k!(p − k + 1)k/p!) G. (44)

Furthermore, while the ground states of the two Hamiltonians
are also the same, the ground-state energies are different.
However, once the overall pairing strength G is fixed, and
the parameter Gex is chosen according to Eq. (44), it is easy to
show that the difference between the ground-state energy of
the extended model and that of the standard pairing model in
the first step approximation is given by

E
(g)
k (ex) − E

(g)
k = −(k − 1)Gex. (45)

This expression shows that the extended pairing interaction
contributes a little more attraction among valence pairs than
the standard pairing interaction in the first step approximation,
but reproduces excitation energies exactly the same as those
in the standard pairing model with first step approximation.
Since Gex decreases drastically with an increasing of k toward
the half-filling, the ground state energy difference of the two
Hamiltonians becomes negligible with an increasing number
of pairs k with k � [p/2] − 1 when p is even, and k � [p/2]
when p is odd, where [x] denotes the integer part of x.

As an example, the ground-state energy difference (45) of
the two Hamiltonians in the sixth (82–126) major shell with
the standard pairing strength G = 0.2 MeV, which is a typical
parameter value for describing deformed nuclei in this region,
shows that the ground-state energy difference of the two
Hamiltonians are rather small in this case. The largest deviation

of the ground-state energy of the two Hamiltonians is at k = 2
with E

(g)
k (ex) − E

(g)
k = −36.3636 keV. Notwithstanding,

since the only difference between the two Hamiltonians, so
long as Gex is taken to be related to G by prescription (44), is
in the overall binding energy, and since an analytic expression
for this difference in also known in terms of Gex through
Eq. (45), for practical purposes the two Hamiltonians yield the
same results, even though the Hamiltonians are quite different.
This in itself is interesting, since it shows that a many-pair
interaction Hamiltonian can have identical solutions to the
two-pair interaction with truncations. Obviously, it follows
that for such systems the structure of fixed-Z (isotopic) and
fixed-N (isotonic) chains follow solely from the structure of
the simplest single-pair member of the chain and simple “pair-
counting” factors related to the pairing interaction strength and
single-particle energies.

Thus, we conclude that, basically, the extended pairing
model is different from the standard pairing model. However, if
only the first few eigenstates are considered, the pair structure
of these states in the two models are similar, especially in the
ground state, as can be seen from an analysis of the overlaps
in the previous section. It can be expected that the difference
of the two models will be negligible when the number of
pairs k or pairing interaction strength G is small. In addition,
since the extended pairing model can be solved exactly with
a single one variable equation (43), which is simpler than
the Richardson-Gaudin equations with k variables for the
standard pairing Hamiltonian, the extended pairing model can
be applied to relatively large systems, especially when one
only wants to know the first few low-lying eigenstates and
corresponding eigenenergies.

V. CONCLUSION

A new step-by-step diagonalization procedure for evalu-
ating exact solutions of the nuclear deformed mean-field plus
pairing interaction model is proposed via a simple Bethe ansatz
in each step from which the eigenvalues and corresponding
eigenstates can be obtained progressively. This new approach
draws upon an observation that the original one- plus two-body
problem in a k-particle Hilbert subspace can be mapped into a
one-body grand hard-core boson picture that can be solved step
by step with a simple Bethe ansatz known from earlier work,
in which one only needs to solve a single variable nonlinear
equation instead of a set of coupled nonlinear equations with
k variables as is required, for example, within the framework
of the well-known Richardson-Gaudin method. Though this
method may be unpractical for large size systems because one
needs to get all d roots from the Bethe ansatz equation in each
step, this procedure can be used to check contributions from
the pairing potential in the Racah quasispin formalism, and is
certainly applicable to relatively small systems.

As is shown in the example with p = 10 levels, though
each term with different q from the pure pairing interaction
will contribute to the final eigenenergy and correlate with
eigenstates, the first few of these terms are key to determine
the first few low-lying states of the model. While high-lying

044306-6



NEW EXACT SOLUTIONS OF THE STANDARD PAIRING . . . PHYSICAL REVIEW C 80, 044306 (2009)

quasispin states mainly correlate with high excited states of
the model and keep the low part of the spectrum less affected.

Based on this new procedure, it is further shown that the
extended pairing model for deformed nuclei [34] is similar to
the standard pairing model with the first step approximation,
in which only the lowest energy eigenstate of the standard
pure pairing interaction part is taken into consideration. Our
analysis shows that the standard pairing Hamiltonian with
the first step approximation displays similar pair structures
of the first few low-lying states of the standard pairing
model, which, therefore, provides a link between the two
models.

Furthermore, the new method proposed is not limited to
the deformed mean-field plus pairing problem only, as it
should also prove useful for solving a much larger class of
quantum many-body problems in which model Hamiltonians
are described by

Ĥ = Ĥ0 + λĤ1, (46)

where λ is a real parameter, and Ĥ0 and Ĥ1 do not
commute, [Ĥ0, Ĥ1] �= 0. According to our procedure, if the
particle number is a conserved quantity, and Ĥ0 and Ĥ1

can be diagonalized independently in a k-particle basis,
then the Hamiltonian (46) is exactly solvable by using the
step-by-step exact diagonalization procedure. Moreover, the
method can also be extended to deal with Hamiltonians with
more than two noncommutative terms by using a similar
procedure consecutively. Research in this direction is in
progress.
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