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The (β+β+)0ν and (εβ+)0ν modes of 96Ru, 102Pd, 106Cd, 124Xe, 130Ba, and 156Dy isotopes are studied in
the projected Hartree-Fock-Bogoliubov framework for the 0+ → 0+ transition. The reliability of the intrinsic
wave functions required to study these decay modes has been established in our earlier works by obtaining an
overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced
B(E2 : 0+ → 2+) transition probabilities, quadrupole moments Q(2+) and gyromagnetic factors g(2+), and
the available experimental data in the parent and daughter even-even nuclei. In the present work, the required
nuclear transition matrix elements are calculated in the Majorana neutrino mass mechanism using the same
set of intrinsic wave functions as used to study the two neutrino positron double-β decay modes. Limits on
effective light neutrino mass 〈mν〉 and effective heavy neutrino mass 〈MN 〉 are extracted from the observed
limits on half-lives T 0ν

1/2(0+ → 0+) of (β+β+)0ν and (εβ+)0ν modes. We also investigate the effect of quadrupolar
correlations vis-a-vis deformation on nuclear transition matrix elements (NTMEs) required to study the (β+β+)0ν

and (εβ+)0ν modes.
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I. INTRODUCTION

The sixteen rare, experimentally distinguishable modes
of nuclear ββ decay, namely the double-electron emission
(β−β−), double-positron emission (β+β+), electron-positron
conversion (εβ+), and double-electron capture (εε) with the
emission of two neutrinos, no neutrinos, single Majoron, and
double Majorons, are semileptonic weak transitions involving
strangeness conserving charged currents. The β+β+, εβ+, and
εε modes are energetically competing and we shall refer to
them as e+ββ decay. The experimental as well as theoretical
study of the nuclear β−β− mode has been excellently reviewed
over the past decades, which can be found in the recent
review [1] and references therein. Also, the experimental
and theoretical studies devoted to the e+ββ decay have been
reviewed over the past years [2–11]. Owing to the confirmation
of the flavor oscillation of neutrinos at atmospheric, solar,
reactor, and accelerator neutrino sources, it has been estab-
lished that neutrinos have mass. However, it is generally agreed
that the observation of (ββ)0ν decay can clarify a number of
issues regarding the nature of neutrinos, namely the origin
of neutrino mass (Dirac vs. Majorana), the absolute scale on
neutrino mass, the type of hierarchy and CP violation in the
leptonic sector, etc. Further, the possible mechanisms for the
occurrence of the lepton number violating (ββ)0ν decay are
the exchange of light as well as heavy neutrinos and the right
handed currents in the left-right symmetric models (LRSM),
the exchange of sleptons, neutralinos, squarks, and gluinos
in the Rp-violating minimal supersymmetric standard model
(MSSM), the exchange of leptoquarks, existence of heavy ster-
ile neutrinos, compositeness, and extradimensional scenarios.
In nine Majoron models, namely IB, IC, IIB, IIC, IIF ,
ID, IE, IID, and IIE [12], the single Majoron accompanied

neutrinoless double beta (ββφ)0ν decay and double Majoron
accompanied neutrinoless double beta (ββφφ)0ν decay occur
in the former five and the latter four, respectively. The study of
(ββ)0ν decay can provide stringent limits on the associated
gauge theoretical parameters and its observation can only
ascertain the role of various possible mechanisms in different
gauge theoretical models.

In principle, the β−β− decay and e+ββ decay can pro-
vide us with the same but complementary information. The
observation of (e+ββ)2ν decay modes will be interesting from
the nuclear structure point of view, as it is a challenging task
to calculate the nuclear transition matrix elements (NTMEs)
of these modes along with the (β−β−)2ν mode in the same
theoretical framework. Further, the observation of (e+ββ)0ν

decay modes will be helpful in deciding issues such as
the dominance of the mass mechanism or right handed
currents [13]. In an attempt to study the role of mν , λ, and
η mechanisms, Klapdor-Kleingrothaus et al. have analyzed
the 71.7 kg/y data collected from 1990–2003 on enriched
76Ge [14] and have shown that there is an apparent degeneracy
in the parameters [15]. It has been also concluded that the
analysis of a high sensitive (β−β−)0ν experiment, e.g., 76Ge
and a suitable high sensitive mixed mode decay, e.g., 124Xe is
more advantageous [13].

In spite of the fact that the kinetic energy release in the
(εε)0ν mode is the largest, the experimental and theoretical
study of this mode has not been attempted so far. The
conservation of energy-momentum requires the emission of
an additional particle in the (εε)0ν mode. Further, the emission
of one real photon is forbidden for the 0+ → 0+ transition
if atomic electrons are absorbed from the K-shell. Therefore,
one has to consider various processes such as internal pair
production, internal conversion, emission of two photons,
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L-capture, etc. [6]. The decay rates of the above-mentioned
processes have to be calculated at least by the third order
perturbation theory. As a result, there is a suppression factor
of the order of 10−4 in comparison to the (εβ+)0ν mode. Hence,
the experimental as well as theoretical study of (e+ββ)0ν

decay has been restricted to (β+β+)0ν and (εβ+)0ν modes only.
Arguably, Sujkowski and Wycech [16] have shown that there
will be resonant enhancement of the (εε)0ν mode if the nuclear
levels in parent and daughter nuclei are almost degenerate, i.e.,
Q − (E2P − E2S) ∼ 1 keV, where the energy difference is for
atomic levels. Interestingly, Barabash et al. have reported that
there might be a degeneracy between the 112Sn ground state
and an excited 0+ state at 1870.9 keV in 112Cd fulfilling the
resonance enhancement condition for the (εε)0ν mode [17]. It
is expected that the study of this (εε)0ν mode may be interesting
in the near future.

The complex structure of nuclei in general, and of mass
region 96 < A < 156 in particular, is due to the subtle
interplay of pairing and multipolar correlations present in
the effective two-body interaction. The mass regions A ∼ 100
and 150 offer nice examples of shape transitions at N = 60
and 90, respectively. The nuclei are soft vibrators for neutron
numbers N < 60 and N < 90 and quasirotors for N > 60 and
N > 90. Nuclei with neutron numbers N = 60 and 90 are
transitional nuclei. The yrast spectra of Te and Xe isotopes, on
the other hand, follow an approximate inverse parabolic type
of systematics with a minimum energy of 2+ states occurring
for 120Te and 120Xe isotopes, respectively. In this mass region
96 < A < 156, the deformation parameters β2 are in the range
(0.1409 ± 0.0046)–(0.3378 ± 0.0018) corresponding to 132Xe
and 156Gd isotopes, respectively, and hence, it is clear that
deformation plays a crucial role in reproducing the properties
of these nuclei. In nuclear ββ decay, the role of deformation
degrees of freedom in addition to pairing correlation has been
already stressed [18,19]. Recently, the effects of pairing and
quadrupolar correlations on the NTMEs of the (β−β−)0ν mode
have been studied in the interacting shell model (ISM) [20,21].
In the projected Hartree-Fock Bogoliubov (PHFB) model, the
role of deformation effects due to quadrupolar [22–25] and
multipolar correlations [26] has been also studied.

The shell model is the best choice for calculating the
NTMEs as it attempts to solve the nuclear many-body problem
as exactly as possible. However, the first explanation about the
observed suppression of M2ν was provided in the quasiparticle
random phase approximation (QRPA) model by Vogel and
Zirnbauer [27] and Civitarese et al. [28]. Further, the QRPA
and its extensions have emerged as the most successful models
in correlating single-β Gamow-Teller (GT) strengths and
half-lives of the (β−β−)2ν mode. In spite of the spectacular
success of the QRPA in the study of ββ decay, the necessity to
include the deformation degrees of freedom in its formalism
led to the development of the deformed QRPA model for
studying the ββ decay of spherical as well as deformed
nuclei. The effect of the deformation on the (β−β−)2ν mode
for the ground state transition 76Ge → 76Se was studied
in the framework of deformed QRPA with separable GT
residual interaction [29] and, very recently, by employing
realistic forces [30]. A deformed QRPA formalism to describe
simultaneously the energy distributions of the single-β GT

strength and the (β−β−)2ν mode matrix elements for 48Ca,
76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe, and 150Nd
isotopes using the deformed Woods-Saxon potential and the
deformed Skyrme Hartree-Fock mean field was developed
[31]. Rodin and Faessler [32] have studied the β−β− decay of
76Ge, 100Mo, and 130Te isotopes and it has been reported that
the effect of the continuum on the NTMEs of the (β−β−)2ν

mode is negligible whereas the NTMEs of the (β−β−)0ν mode
are regularly suppressed.

In the PHFB model, the interplay of pairing and defor-
mation degrees of freedom are treated simultaneously and on
equal footing. However, the structure of the intermediate odd
Z-odd N nuclei, which provide information on the single-β
decay rates and the distribution of GT strengths, cannot be
studied in the present version of the PHFB model. In spite
of this limitation, the PHFB model, in conjunction with the
pairing plus quadrupole-quadrupole (PQQ) [33] interaction
has been successfully applied to study the 0+ → 0+ transition
of the (β−β−)2ν mode, where it was possible to describe
the lowest excited states of the parent and daughter nuclei
along with their electromagnetic transition strengths, as well
as to reproduce their measured β−β− decay rates [22,24].
The main purpose of using the PQQ interaction is to study
the interplay between sphericity and deformation. In this way,
the PHFB formalism, employed in conjunction with the PQQ
interaction, is a convenient choice to examine the explicit role
of deformation on the NTMEs. The existence of an inverse
correlation between the quadrupole deformation and the size
of NTME M2ν has been also confirmed [22–24]. In addition,
it has been observed that the NTMEs for β−β− decay are
usually large in the absence of quadrupolar correlations. With
the inclusion of the quadrupolar correlations, the NTMEs
are almost constant for small admixture of the QQ inter-
action and suppressed substantially in realistic situation. It
was also shown that the NTMEs of β−β− decay have a
well-defined maximum when the deformation of parent and
daughter nuclei are similar and they are suppressed for a
difference in deformations in agreement with previous QRPA
calculations [29]. The deformation effects are also of equal
importance in the case of (β−β−)2ν and (β−β−)0ν modes
[25,26].

Moreover, the PHFB model along with the PQQ inter-
action in conjunction with the summation method has been
successfully applied to study the (e+ββ)2ν decay of 96Ru,
102Pd, 106,108Cd, 124,126Xe, 130,132Ba [23,24], and 156Dy [34]
isotopes for the 0+ → 0+ transition, not in isolation but
together with other observed nuclear spectroscopic properties,
namely yrast spectra, reduced B(E2:0+ → 2+) transition
probabilities, quadrupole moments Q(2+), and gyromagnetic
factors g(2+). This success of the PHFB model has prompted
us to apply the same to study the 0+ → 0+ transition
of (β+β+)0ν and (εβ+)0ν modes for the above-mentioned
nuclei. It has been observed that, in general, there exists
an anticorrelation between the magnitude of the quadrupolar
deformation and the NTMEs M2ν of (e+ββ)2ν decay. In the
case of (e+ββ)2ν decay, we observed that the deformation plays
an important role in the suppression of M2ν by a factor of 2–
13.6 approximately [23,24,34]. Therefore, we aim to study the
variation of NTMEs of (β+β+)0ν and (εβ+)0ν modes vis-a-vis

044303-2



DEFORMATION EFFECTS AND NEUTRINOLESS . . . PHYSICAL REVIEW C 80, 044303 (2009)

the change in deformation by changing the strength of the QQ

interaction.
The present paper is organized as follows. The theoretical

formalism for calculating the half-lives of (β+β+)0ν and
(εβ+)0ν modes has been given by Doi et al. [6]. Hence, we
briefly outline steps of the detailed derivations in Sec. II. In
Sec. III, we present the results and discuss them vis-a-vis
the existing calculations done in other nuclear models. In the
study of (ββ)0ν decay, the practice is to either extract limits
on various gauge theoretical parameters from the observed
limits on half-lives of the (ββ)0ν decay or predict half-lives
assuming a certain value for the neutrino mass. Presently, the
available experimental limits on the half-lives of (β+β+)0ν

and (εβ+)0ν modes are not large enough to provide stringent
limits on the effective gauge theoretical parameters 〈mν〉 and
〈MN 〉. Therefore, we also predict half-lives T 0ν

1/2(0+ → 0+)
of (β+β+)0ν and (εβ+)0ν modes for 96Ru, 102Pd, 106Cd,
124Xe, 130Ba, and 156Dy isotopes, which will be helpful in the
future experimental studies of (e+ββ)0ν decay. In addition,
we study the deformation effect on NTMEs of (β+β+)0ν and
(εβ+)0ν modes and show that the NTMEs have a well-defined
maximum for similar deformations of parent and daughter
nuclei and they are suppressed for a difference in deformations.
Finally, the conclusions are given in Sec. IV.

II. THEORETICAL FORMALISM

In the Majorana neutrino mass mechanism, the effective
charged current weak interaction Hamiltonian density HW

for β+ decay due to W -boson exchange including hadronic
currents can be written as

HW = G√
2
jLµJ

µ†
L + h.c. (1)

The left handed V − A leptonic and hadronic currents for
β+ decay are given by

j
µ

L = νeLγ µ(1 − γ5)e, (2)

J
µ†
L = gvdγ µ(1 − γ5)u, (3)

where gv = cos θc and θc is the Cabibbo-Kobayashi-Maskawa
(CKM) mixing angle for the left and right handed d and s

quarks. Further,

νeL =
∑

i

UeiNiL. (4)

The Majorana neutrino field Ni has mass mi and the mixing
matrices U of left handed neutrinos are normalized, i.e.,∑

i |Uei |2 = 1.

Usually, the decay rates for the 0+ → 0+ transition of(
β+β+)

0ν
and (εβ+)0ν modes are derived by making the

following assumptions:

(i) The light and heavy neutrino species of mass
mi <10 eV and mi > 1 GeV, respectively, are only
considered.

(ii) The nonrelativistic impulse approximation is assumed
for the hadronic currents.

(iii) The recoil current is neglected. However, it has been
shown by Šimkovic et al. [35] and Vergados [36] that
the consideration of pseudoscalar and weak magnetism
terms of recoil current reduce the NTMEs up to 30%,
which needs to be further investigated.

(iv) The s1/2 waves describe the final leptonic states.
(v) The calculation of phase space factors is made easier by

considering no finite de Broglie wave length correction.
(vi) The CP conservation is assumed. Consequently, the

effective light neutrino mass 〈mν〉 and effective heavy
neutrino mass 〈MN 〉 are real.

With these approximations, the inverse half-lives T 0ν
1/2 for

the 0+ → 0+ transition of (β+β+)0ν and (εβ+)0ν modes in the
2n mechanism are given by [6]

[
T 0ν

1/2(β)
]−1 =

( 〈mν〉
me

)2

G01(β)(MGT − MF )2

+
(

mp

〈MN 〉
)2

G01(β)(MGT h − MFh)2

+
( 〈mν〉

me

) (
mp

〈MN 〉
)

G01(β)(MGT − MF )

× (MGT h − MFh), (5)

where β denotes the (β+β+)0ν/(εβ+)0ν mode and

〈mν〉 =
∑′

i
U 2

eimi, mi < 10 eV, (6)

〈MN 〉−1 =
∑′′

i
U 2

eim
−1
i , mi > 1 GeV. (7)

In the closure approximation, NTMEs MF , MGT , MFh, and
MGT h are written as

MF =
(

gV

gA

)2 ∑
n,m

〈0+
F ‖H (r)τ−

n τ−
m ‖0+

I 〉, (8)

MGT =
∑
n,m

〈0+
F ‖σn · σmH (r)τ−

n τ−
m ‖0+

I 〉, (9)

MFh = 4π (Mpme)−1

(
gV

gA

)2 ∑
n,m

〈0+
F ‖δ(r)τ−

n τ−
m ‖0+

I 〉,

(10)

MGT h = 4π (Mpme)−1
∑
n,m

〈0+
F ‖σn · σmδ(r)τ−

n τ−
m ‖0+

I 〉. (11)

The neutrino potential H (r) arising due to the exchange of
light neutrino is defined as

H (r) = 4πR

(2π )3

∫
d3q

exp (iq · r)

ω(ω + A)
, (12)

with

A = 〈EN 〉 − 1
2 (EI + EF ). (13)

In addition, the inclusion of effects due to the finite size
of nucleons (FNS) and short-range correlations (SRC) is
required. The FNS is usually taken into account by a dipole
type of form factor making the replacement

gV → gV

(
�2

�2 + k2

)2

and gA → gA

(
�2

�2 + k2

)2

(14)
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with � = 850 MeV. In the PHFB model, the configuration
mixing takes care of the long-range correlations. The effect of
SRC, which arise mainly from the repulsive nucleon-nucleon
potential due to the exchange of ρ and ω mesons, is usually
absent. To study the (β−β−)0ν mode, the SRC has been
incorporated by Hirsch et al. through the exchange of the
ω-meson [37], Kortelainen et al. [38] as well as Šimkovic
et al. [39] by using the unitary correlation operator method
(UCOM), and Šimkovic et al. [40] by self-consistent coupled-
cluster method (CCM). This SRC effect can also be incorpo-
rated through phenomenological Jastrow type of correlation
using the Miller and Spencer parametrization by the prescrip-
tion 〈

jπ
1 jπ

2 J
∣∣O∣∣jν

1 jν
2 J

′ 〉 → 〈
jπ

1 jπ
2 J

∣∣f Of
∣∣jν

1 jν
2 J

′ 〉
, (15)

where

f (r) = 1 − e−ar2
(1 − br2) (16)

with a = 1.1 fm−2 and b = 0.68 fm−2 [41]. It has been shown
by Wu and co-workers [42] that for the

(
β−β−)

0ν
mode of

48Ca, the phenomenologically determined f (r) has strong two-
nucleon correlations in comparison to the effective transition
operator f̂ Of̂ derived using Reid and Paris potentials.

In the PHFB model, the calculation of the NTMEs Mα

(α = F, GT, Fh, and GTh) of the (β+β+)0ν and (εβ+)0ν

modes is carried out as follows. The two basic ingredients
of the PHFB model are the existence of an independent
quasiparticle mean field solution and the projection technique.
To start with, amplitudes (uim, vim) and expansion coefficients
Cij,m required to specify the axially symmetric HFB intrinsic
state |�0〉 with K = 0 are obtained by carrying out the
HFB calculation through the minimization of the expectation
value of the effective Hamiltonian. Subsequently, states with
good angular momentum J are obtained from |�0〉 using the
standard projection technique [43] given by

∣∣�J
00

〉 = (2J + 1)

8π2

∫
DJ

00(�)R(�)|�0〉d�, (17)

where R(�) and DJ
00(�) are the rotation operator and the

rotation matrix, respectively. Further,

|�0〉 =
∏
im

(uim + vimb
†
imb

†
im̄)|0〉 (18)

with the creation operators b
†
im and b

†
im̄ defined as

b
†
im =

∑
α

Ciα,ma†
αm and b

†
im̄ =

∑
α

(−1)l+j−mCiα,ma
†
α,−m.

(19)

Finally, the NTMEs Mα of the
(
β+β+)

0ν
and

(
εβ+)

0ν
modes

are given by

Mα = 〈
�

Jf =0
00

∣∣|Oατ−τ−|∣∣�Ji=0
00

〉
= [

n
Ji=0
Z,N n

Jf =0
Z−2,N+2

]−1/2

×
π∫

0

n(Z,N),(Z−2,N+2)(θ )
∑
αβγ δ

〈αβ|Oατ−τ−|γ δ〉

×
∑
εη

(
f

(ν)∗
Z−2,N+2

)
εβ[

1 + F
(ν)
Z,N (θ )f (ν)∗

Z−2,N+2

]
εα

×
(
F

(π)∗
Z,N

)
ηδ[

1 + F
(π)
Z,N (θ )f (π)∗

Z−2,N+2

]
γ η

sin θdθ, (20)

where

nJ =
π∫

0

{det[1 + F (π)(θ )f (π)†]}1/2

×{det[1 + F (ν)(θ )f (ν)†]}1/2dJ
00(θ ) sin(θ )dθ (21)

and

n(Z,N),(Z−2,N+2)(θ ) = {
det

[
1 + F

(π)
Z,N (θ )f (π)†

Z−2,N+2

]}1/2

× {
det

[
1 + F

(ν)
Z,N (θ )f (ν)†

Z−2,N+2

]}1/2
.

(22)

The π (ν) represents the proton (neutron) of nuclei involved in
the (β+β+)0ν/(εβ+)0ν mode. The matrices fZ,N and FZ,N (θ )
are given by

[fZ,N ]αβ =
∑

i

Cijα,mα
Cijβ ,mβ

(vimα
/uimα

)δmα,−mβ
(23)

and

[FZ,N (θ )]αβ =
∑
m

′
αm

′
β

d
jα

mα,m
′
α

(θ )d
jβ

mβ,m
′
β

(θ )fjαm
′
α,jβm

′
β
. (24)

To calculate NTMEs Mα of the (β+β+)0ν and (εβ+)0ν

modes, the matrices [fZ,N ]αβ and [FZ,N (θ )]αβ are evaluated
using expressions given by Eqs. (23) and (24), respectively.
The required NTMEs Mα are obtained using Eq. (20) with
20 gaussian quadrature points in the range (0, π ).

III. RESULTS AND DISCUSSIONS

The model space, single particle energies (SPE’s) and
parameters of the effective two-body interaction are the same
as our earlier calculations on the (e+ββ)2ν decay of 96Ru,
102Pd, 106,108Cd [23], 124,126Xe, 130,132Ba [24], and 156Dy [34]
isotopes for the 0+ → 0+ transition. We briefly present a
discussion about them for the sake of completeness as well
as convenience. The doubly even 76Sr (N = Z = 38) and
100Sn (N = Z = 50) nuclei were treated as inert cores for
the nuclei in the mass region A = 96–108 and A = 124–156,
respectively. The change of model space was forced upon
because the number of neutrons increase to about 40 for nuclei
occurring in the mass region A = 130, and with the increase in
neutron number, the yrast energy spectra was compressed due
to an increase in the attractive part of the effective two-body
interaction. In Table I, we have given the single particle orbits,
which span the valence space and corresponding SPEs. In
the model space with 76Sr core, the 1p1/2 orbit was included
to examine the role of the Z = 40 proton core vis-a-vis the
onset of deformation in the highly neutron rich isotopes. For
156Dy and 156Gd isotopes, the SPE’s used for 0h11/2, 1f7/2,
and 0h9/2 orbits were 4.6 MeV, 11.0 MeV, and 11.6 MeV,
respectively.
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TABLE I. Single particle orbits of the model
space and SPEs for protons and neutrons.

A = 96–108 A = 124–156

Orbits ε (MeV) Orbits ε (MeV)

1p1/2 −0.8 2s1/2 1.4
2s1/2 6.4 1d3/2 2.0
1d3/2 7.9 1d5/2 0.0
1d5/2 5.4 1f7/2 12.0
0g7/2 8.4 0g7/2 4.0
0g9/2 0.0 0h9/2 12.5
0h11/2 8.6 0h11/2 6.5

The HFB wave functions were generated by using an
effective Hamiltonian with a PQQ type of effective two-body
interaction [33] given by

H = Hsp + V (P ) + ζqqV (QQ), (25)

where Hsp, V (P ), and V (QQ) represent the single particle
Hamiltonian, the pairing, and quadrupole-quadrupole part of
the effective two-body interaction, respectively. The arbitrary

parameter ζqq was introduced to study the role of deformation
by varying the strength of the QQ interaction and the final
results were obtained by using ζqq = 1. Following Heestand
et al. [44], who have used Gp = 30/A MeV and Gn =
20/A MeV to explain the experimental g(2+) data of some
even-even Ge, Se, Mo, Ru, Pd, Cd, and Te isotopes in
Greiner’s collective model [45], we used the same strengths
for A = 96–108 nuclei. In the case of A = 124–132 isotopes,
the strengths of the pairing interaction were fixed as Gp =
Gn = 35/A MeV. However, we used Gp = Gn = 30/A MeV
for 156Dy and 156Gd isotopes.

The parameters of the QQ interaction were fixed as follows.
The strengths of the like particle components χpp and χnn were
taken as 0.0105 MeV b−4, where b is the oscillator parameter.
The strength of the proton-neutron (pn) component χpn was
varied so as to obtain the spectra of considered nuclei A =
96–156 in optimum agreement with the experimental data.
The theoretical spectra was taken to be the optimum one if the
excitation energy of the 2+ state E2+ was reproduced as closely
as possible to the experimental value. All the parameters
were kept fixed throughout the subsequent calculations. The
reliability of HFB wave functions was tested by obtaining
an overall agreement between theoretically calculated results
for the yrast spectra, reduced B(E2:0+ → 2+) transition
probabilities, static quadrupole moments Q(2+) as well as

TABLE II. Calculated NTMEs for the 0+ → 0+ transition of (β+β+)0ν and (εβ+)0ν modes in the mass mechanism.

Nuclei NTMEs Point Point+SRC Extened Extended+SRC

A A/2

96Ru MF 0.4983 0.5372 0.3969 0.4309 0.3757
MGT −2.4780 −2.6826 −2.0000 −2.1591 −1.8992
MFh 35.8917 0 22.4117 11.4829
MGT h −169.321 0 −106.353 −54.7130

102Pd MF 0.6464 0.6995 0.5233 0.5632 0.4965
MGT −2.7663 −2.9861 −2.1863 −2.3785 −2.0631
MFh 43.3140 0 28.1494 14.7508
MGT h −204.336 0 −129.721 −67.0114

106Cd MF 0.9583 1.0394 0.7704 0.8319 0.7299
MGT −4.3495 −4.7284 −3.4635 −3.7594 −3.2769
MFh 66.1196 0 42.5989 22.1888
MGT h −311.922 0 −197.061 −101.408

124Xe MF 0.4865 0.5333 0.3915 0.4233 0.3717
MGT −2.1387 −2.3299 −1.6905 −1.8416 −1.5978
MFh 33.7569 0 21.1455 10.8449
MGT h −159.250 0 −98.9817 −50.4944

130Ba MF 0.4183 0.4593 0.3338 0.3623 0.3163
MGT −1.8626 −2.0325 −1.4633 −1.5986 −1.3812
MFh 30.0461 0 18.7025 9.5438
MGT h −141.744 0 −87.8418 −44.6828

156Dy MF 0.2461 0.2698 0.2022 0.2160 0.1926
MGT −1.1281 −1.2319 −0.9208 −0.9867 −0.8754
MFh 15.7014 0 10.3729 5.4997
MGT h −74.0722 0 −48.6696 −25.6980
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g-factors g(2+) of the above-mentioned nuclei, and the
available experimental data. The same PHFB wave functions
were employed to calculate NTMEs M2ν and half-lives
T 2ν

1/2(0+ → 0+) of (e+ββ)2ν decay for 96Ru, 102Pd, 106,108Cd
[23], 124,126Xe, 130,132Ba [24], and 156Dy [34] isotopes. It was
also shown that the proton-neutron part of the PQQ interaction,
which is responsible for triggering deformation in the intrinsic
ground state, plays an important role in the suppression of
M2ν .

A. Results of (β+β+)0ν and (εβ+)0ν modes

The phase space factors G01 of (β+β+)0ν and (εβ+)0ν

modes have been evaluated by Doi et al. with gA = 1.261 [6].
We use the phase space factors after reevaluating them for
gA = 1.254. The phase space factors of β+β+ (εβ+) modes
(in yr−1) used in the present calculation are 2.243 × 10−18

(2.664 × 10−17), 2.532 × 10−18 (3.635 × 10−17), 3.048 ×
10−18 (5.654 × 10−17), and 5.114 × 10−19 (4.901 × 10−17)
for 96Ru, 106Cd, 124Xe, and 130Ba nuclei, respectively [6].
For 102Pd and 156Dy nuclei, we calculate G01 following
the notations of Doi et al. [6] in the approximation C1 =
1.0, C2 = 0.0, C3 = 0.0, and R1,1(ε) = R+1(ε) + R−1(ε) =
1.0. The calculated G01 of the εβ+ mode for 102Pd and
156Dy isotopes are 6.0 × 10−19 yr−1 and 3.250 × 10−17 yr−1,
respectively.

In Table II, the NTMEs MF , MGT , MFh, and MGT h

required to study the (β+β+)0ν and (εβ+)0ν modes of 96Ru,
102Pd, 106Cd, 124Xe, 130Ba, and 156Dy nuclei are compiled.
Following Haxton’s prescription [46], the average energy
denominator is taken as A = 1.2A1/2 MeV. We calculate the
four NTMEs in the approximation of point nucleons, point
nucleons plus Jastrow type of SRC with Miller and Spencer
parametrization [41], finite size of nucleons with dipole form
factor, and finite size plus SRC. In the case of point nucleons,
the NTMEs MF and MGT are calculated for A and A/2
in the energy denominator. It is observed that the NTMEs
MF and MGT change by 7.8–9.8% for A/2 in comparison
to A in the energy denominator. Therefore, the dependence
of NTMEs on average excitation energy A is small and the
closure approximation is quite good in the case of (β+β+)0ν

and (εβ+)0ν modes as expected. In the approximation of light
neutrinos, the NTMEs MF and MGT are reduced by 17.8–
21.4% and 12.2–14.2% for point nucleon plus SRC, and finite
size of nucleons, respectively. Finally, the NTMEs change by
21.7–25.8% with finite size plus SRC. In the case of heavy
neutrinos, the MFh and MGT h get reduced by 33.9–38.0% and
65.0–68.5% with the inclusion of finite size and finite size
plus SRC.

The radial dependence of C0ν(r) defined by

M0ν =
∞∫

0

C0ν(r) dr (26)

has been studied in the QRPA by Šimkovic et al. [39] and
ISM by Menéndez et al. [47]. In both QRPA and ISM
calculations, it has been established that the contributions of
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FIG. 1. Radial dependence of CF (r), CGT (r) and C0ν(r) with FNS
and SRC effects for the (β+β+)0ν and (εβ+)0ν decay modes of 96Ru,
102Pd, 106Cd, 124Xe, 130Ba and 156Dy isotopes.

decaying pairs coupled to J = 0 and J > 0 almost cancel
beyond r ≈ 3 fm and the magnitude of C0ν(r) for all nuclei
undergoing (β−β−)0ν decay are the maximum about the
internucleon distance r ≈ 1 fm. In Fig. 1, we plot the radial
dependence of the total matrix elements C0ν(r) as well
as their Fermi and Gamow-Teller components due to the
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TABLE III. Upper and lower bounds on light and heavy neutrino effective masses 〈mν〉 and 〈MN 〉, respectively, for the
(β+β+)0ν and (εβ+)0ν modes of 96Ru, 106Cd, 124Xe and 130Ba isotopes.

Nuclei T 0ν
1/2 (yr) Ref. 〈mν〉 (eV) 〈MN 〉 (GeV)

β+β+ εβ+ β+β+ εβ+ β+β+ εβ+

96Ru >3.1 × 1016 >6.7 × 1016 [48] 8.52 × 105 1.68 × 105 16.38 82.98
106Cd >1.4 × 1019 >7.0 × 1019 [49] 2.14 × 104 2.53 × 103 6.90 × 102 5.85 × 103

124Xe >4.2 × 1017 >1.2 × 1018 [50] 2.29 × 105 3.15 × 104 65.12 4.74 × 102

130Ba >4.0 × 1021 >4.0 × 1021 [51] 6.66 × 103 6.80 × 102 2.30 × 103 2.25 × 104

exchange of light neutrinos. It is noticed that the maximum
value of CF (r), CGT (r), and C0ν(r) is at r = 1.25 fm in
agreement with the works done by Šimkovic et al. [39] and
Menéndez et al. [47].

In Table III, we tabulate the extracted limits on the effective
light neutrino mass 〈mν〉 as well as heavy neutrino mass 〈MN 〉
using presently available experimentally observed limits on
half-lives of (β+β+)0ν and (εβ+)0ν modes. It is observed
that limits on 〈mν〉 and 〈MN 〉 are not so much stringent as
in the case of the (β−β−)0ν mode. Further, better limits are
obtained in the case of the (εβ+)0ν mode even for equal
limits on half-lives of (β+β+)0ν and (εβ+)0ν modes. In

the case of the (εβ+)0ν mode, the best limits obtained for
130Ba nuclei are 〈mν〉 < 6.8 × 102 eV and 〈MN 〉 > 2.25 ×
104 GeV.

In Table IV, we compile available theoretical results in
other nuclear models along with ours. To the best of our
knowledge, no theoretical result and experimental half-life
limit is available for 102Pd and 156Dy isotopes. Staudt et al. [52]
have reported only NTMEs |M0ν | = |MGT − MF | in the mass
mechanism. In the QRPA calculations of Hirsch et al. [13]
and Staudt et al. [52], the former used two major oscillator
shells, whereas the latter used a model space consisting
of 3h̄ω + 4h̄ω + 0h9/2 + 0h11/2 orbits. The used SPEs are

TABLE IV. Predicted half-lives T 0ν
1/2 〈mν〉2 of (β+β+)0ν and (εβ+)0ν modes due to the exchange of light neutrino and

extracted limits on effective heavy neutrino mass 〈MN 〉 from the same predicted half-lives for 〈mν〉 = 1 eV. The † and ‡ denote
WS and AWS basis respectively in reference [55].

Nuclei Model Ref. MF MGT |M0ν | T 0ν
1/2 〈mν〉2 (yr eV2) MFh MGT h |M0N | 〈MN 〉 (GeV)

β+β+ εβ+

96Ru PHFB 0.376 −1.899 2.275 2.249 × 1028 1.894 × 1027 11.483 −54.713 66.196 1.40 × 107

MCM [54] −0.705 1.678 2.383 2.050 × 1028 1.726 × 1027

QRPA [13] −0.98 2.62 3.60 8.981 × 1027 7.563 × 1026

QRPA [52] 4.228 6.511 × 1027 5.483 × 1026

102Pd 0.497 −2.063 2.560 6.643 × 1028 14.751 −67.011 81.762 1.53 × 107

106Cd PHFB 0.730 −3.277 4.007 6.424 × 1027 4.474 × 1026 22.189 −101.408 123.597 1.48 × 107

MCM [54] −1.191 2.203 3.394 8.953 × 10 27 6.236 × 1026

SQRPA(l) [53] −2.12 5.73 7.85 1.674 × 1027 1.166 × 1026

SQRPA(s) [53] −2.18 5.99 8.17 1.545 × 1027 1.076 × 1026

QRPA [13] −1.22 3.34 4.56 4.960 × 1027 3.455 × 1026

QRPA [52] 4.778 4.517 × 1027 3.146 × 1026

124Xe PHFB 0.372 −1.598 1.970 2.208 × 1028 1.191 × 1027 10.845 −50.494 61.339 1.49 × 107

MCM [54] −2.572 5.729 8.301 1.243 × 1027 6.703 × 1025

QRPA† [55] −2.236 5.128 7.364 1.580 × 1027 8.517 × 1025

QRPA‡ [55] −2.574 5.733 8.307 1.241×1027 6.693 × 1025

QRPA [13] −1.35 3.92 5.27 3.084 × 1027 1.663 × 1026

QRPA [52] 2.975 9.678 × 1027 5.218 × 1026

130Ba PHFB 0.316 −1.381 1.697 1.772 × 10 29 1.849 × 1027 9.544 −44.683 54.227 1.53 × 107

MCM [54] −1.748 3.382 5.130 1.940 × 1028 2.025 × 1026

QRPA [13] −1.50 4.02 5.52 1.676 × 1028 1.749 × 1026

QRPA [52] 5.579 1.641 × 1028 1.712 × 1026

156Dy PHFB 0.193 −0.875 1.068 7.044 × 1027 5.500 −25.698 31.198 1.40 × 107
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identical. Both the calculations use a realistic effective two-
body interaction using the Paris potential. The NTMEs |M0ν |
are almost identical in both the QRPA calculations but for
124Xe, where a difference by a factor of 1.8 approximately
is noticed. In the SQRPA model, Stoica et al. [53] have
studied (β+β+)0ν and (εβ+)0ν modes of the 106Cd isotope
using two model spaces, namely small basis (oscillator shells
of 3h̄ω − 5h̄ω + i13/2 orbits) and a large basis (oscillator
shells of 2h̄ω − 5h̄ω + i13/2 orbits) with two-body effective
interactions derived from the Bonn-A potential. The NTMEs
calculated in the SQRPA [53] do not depend much on the
model space and differ by a factor of 1.8 approximately
from those of Hirsch et al. [13]. In the MCM, Suhonen
et al. [54] have studied the (β+β+)0ν and (εβ+)0ν modes
of 96Ru, 106Cd, 124Xe, and 130Ba nuclei. It is worth men-
tioning that besides the model space, SPEs, and effective
two-body interaction, different values of gA, specifically
gA = 1.254 [13,52,53] and 1.0 [54,55], are also used in these
calculations.

The calculated NTMEs |M0ν | in the PHFB model for the
96Ru and 106Cd isotopes are very close to those obtained in the
MCM, and in the latter case also to the QRPA results. For 124Xe
and 130Ba isotopes, the NTMEs are smaller than those in other
models and this is reflected in half-lives which are up to one
order of magnitude longer. As the extracted limits on the effec-
tive neutrino masses 〈mν〉 and 〈MN 〉 are not stringent enough,
it is more meaningful to calculate half-lives of (β+β+)0ν and
(εβ+)0ν modes, which will be useful for the design of future ex-
perimental setups. Hence, we calculate half-lives of (β+β+)0ν

and (εβ+)0ν modes for 〈mν〉 = 1 eV and extract corresponding
limits on heavy neutrino mass 〈MN 〉, which are given in
Table IV.

In the mass mechanisms, there are two noteworthy observa-
tions. The equality in NTMEs of (β+β+)0ν and (εβ+)0ν modes
implies that

T 0ν
1/2(β+β+)

T 0ν
1/2(εβ+)

= G01(εβ+)

G01(β+β+)
. (27)

Therefore, the experimental observation of the (εβ+)0ν mode
will provide the half-life T 0ν

1/2(β+β+) of (β+β+)0ν mode
as the phase space factors are exactly calculable. Further,
it is noticed that the ratios of |M0ν | and |M0N | given
in Table II are almost constant for different nuclei and
|M0N |/|M0ν | ≈ 29–32 approximately. A similar behavior
of the ratios |M0N |/|M0ν | ≈ 28–30 is also observed for
the NTMEs of the (β−β−)0ν mode [25]. This implies that
in the mass mechanism, the half-lives for different nuclei due
to the exchange of light and heavy neutrinos are also in constant
ratio

T 0ν
1/2(mν)

T 0ν
1/2(MN )

∝ |M0N |2
|M0ν |2 . (28)

It will be interesting to verify whether the observed constancy
of |M0N |/|M0ν | in different nuclei is a generic feature or
artifact of the present calculation.

TABLE V. Ratios Dα for 96Ru, 102Pd, 106Cd, 124Xe,
130Ba and 156Dy isotopes.

Ratios 96Ru 102Pd 106Cd 124Xe 130Ba 156Dy

DF 2.92 2.52 1.91 3.83 4.68 10.42
DGT 2.48 2.73 1.96 3.88 4.72 10.68
DFh 2.61 2.34 1.72 3.42 4.11 10.20
DGT h 2.49 2.36 1.72 3.45 4.13 10.20
D2ν 3.13 3.40 2.06 3.63 4.66 13.64

B. Quadrupolar correlations and deformation effects

As already mentioned, the quadrupolar correlations are
mainly responsible for the deformation of nuclei. To un-
derstand the role of the deformation on NTMEs Mα (α =
F,GT, Fh,GT h) of (β+β+)0ν and (εβ+)0ν modes, we
investigate the variation of the latter by changing the strength
of the QQ interaction ζqq for the case in which NTMEs are
calculated with finite size and short-range correlations. It is
observed that in general, there is an inverse correlation between
the magnitudes of NTMEs and quadrupole moments Q(2+)
as well as deformation parameters β2. Further, the effect of
deformation on Mα is quantified by defining a quantity Dα

as the ratio of Mα at zero deformation (ζqq = 0) and full
deformation (ζqq = 1). The Dα is given by

Dα = Mα(ζqq = 0)

Mα(ζqq = 1)
. (29)

The tabulated values of Dα in Table V for 96Ru, 102Pd,
106Cd, 124Xe, 130Ba, and 156Dy nuclei suggest that the
NTMEs Mα are suppressed by factor of 1.7–10.7 in the

TABLE VI. Calculated [23,24] and experimen-
tal [56] deformation parameters β2 of parent and
daughter nuclei participating in (β+β+)0ν and
(εβ+)0ν modes.

Nuclei β2

Theory Experiment

96Ru 0.161 0.1579 ± 0.0031
96Mo 0.191 0.1720 ± 0.0016
102Pd 0.185 0.196 ± 0.006
102Ru 0.232 0.2404 ± 0.0019
106Cd 0.176 0.1732 ± 0.0042
106Pd 0.203 0.229 ± 0.006
124Xe 0.210 0.212 ± 0.007
124Te 0.164 0.1695 ± 0.0009
130Ba 0.234 0.2183 ± 0.0015
130Xe 0.166 0.169 ± 0.007
156Dy 0.300 0.2929 ± 0.0016
156Gd 0.316 0.3378 ± 0.0018
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FIG. 2. NTMEs of (β+β+)0ν and (εβ+)0ν modes for 96Ru, 102Pd, 106Cd isotopes due to the exchange of light (left hand side) and heavy
(right hand side) neutrinos as a function of the difference in the deformation parameters �β2. “×” denotes the NTME for calculated �β2 at
ζqq = 1.

mass range A = 96–156 due to deformation effects. We also
give the same deformation ratio D2ν for comparison in the
last row of the same table, which also change by almost
the same amount due to the deformation effects. Hence,
it is clear that the deformation effects are important for
(β+β+)0ν and (εβ+)0ν modes as well as (e+ββ)2ν decay
so far as the nuclear structure aspect of e+ββ decay is
concerned.

In the left and right panels of Figs. 2 and 3, we present
the variation of NTMEs |M0ν | and |M0N | due to the light
and heavy neutrino exchange, respectively, with respect to
�β2 = β2(parent) − β2(daughter) for the above-mentioned
e+ββ emitters. The theoretically calculated deformation pa-

rameters β2 for parent and daughter nuclei have been given
in Refs. [23,24] and we present them in Table VI for
convenience. It can be noticed that the variation in |M0ν |
with changing �β2 is similar to that of |M0N |. Moreover,
it can be observed in Figs. 2 and 3 that the NTMEs remain
constant even when one of the nuclei is spherical or slightly
deformed. With further increase in deformation, the NTMEs in
general become the maximum for �β2 = 0 and then decrease
with an increase in the difference between the deformation
parameters. To summarize, the independent deformations of
initial and final nuclei are important parameters to describe
the NTMEs M0ν and M0N of the (β+β+)0ν and (εβ+)0ν

modes.
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FIG. 3. NTMEs of (β+β+)0ν and (εβ+)0ν modes for 124Xe, 130Ba and 156Dy isotopes. Further details are given in Fig. 2.

IV. CONCLUSIONS

We have calculated the NTMEs MF , MGT , MFh, and MGT h

required to study the (β+β+)0ν mode of 96Ru, 106Cd, 124Xe,
and 130Ba as well as the (εβ+)0ν mode of 96Ru, 102Pd, 106Cd,
124Xe, 130Ba, and 156Dy nuclei for the 0+ → 0+ transition in
the Majorana neutrino mass mechanism using the set of HFB
wave functions, the reliability of which was tested by obtaining
an overall agreement between theoretically calculated results
for the yrast spectra, reduced B(E2:0+ → 2+) transition
probabilities, static quadrupole moments Q(2+), g-factors
g(2+), and NTMEs M2ν as well as half-lives T 2ν

1/2 of (e+ββ)2ν

decay and the available experimental data [23,24,34]. The
existing experimental data on (β+β+)0ν and (εβ+)0ν modes
fail to provide stringent limits on the extracted effective mass
of the light neutrino 〈mν〉 and heavy neutrino 〈MN 〉. Hence,

we calculate half-lives T 0ν
1/2 of these modes for the light

neutrino and extract limits on 〈MN 〉. In the mass mechanism,
the half-lives T 0ν

1/2(β+β+) and T 0ν
1/2(εβ+) are related through

the exactly calculable phase space factors G01(β+β+) and
G01(εβ+). In addition, it is observed that the ratio of NTMEs
|M0N |/|M0ν | ≈ 30 is a constant for different nuclei so that
half-lives due to the exchange of light and heavy neutrinos
are also in constant ratio. Further, the role of deformation
on NTMEs MF , MGT , MFh, and MGT h for (β+β+)0ν and
(εβ+)0ν modes is investigated by changing the strength ζqq

of the QQ interaction. It is noticed that there is an inverse
correlation between the magnitudes of NTMEs and quadrupole
moments Q(2+) as well as deformation parameters β2. The
NTMEs are suppressed by factors of 1.7–10.7 in the considered
mass range A = 96–156 implying that the nuclear structure
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effects are also important for the (β+β+)0ν and (εβ+)0ν

modes. The deformation of the individual nucleus is an
important parameter for calculating NTMEs M0ν and M0N

of the (β+β+)0ν and (εβ+)0ν modes.
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[29] F. Šimkovic, L. Pacearescu, and A. Faessler, Nucl. Phys. A733,

321 (2004); L. Pacearescu, A. Faessler, and F. Šimkovic, Phys.
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