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Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with
Skyrme functionals in the three-dimensional real space
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The finite amplitude method (FAM), which we have recently proposed [T. Nakatsukasa, T. Inakura, and
K. Yabana, Phys. Rev. C 76, 024318 (2007)], significantly simplifies the fully self-consistent calculation of
the random-phase approximation (RPA). This article presents a computational scheme of FAM suitable for
systematic investigation and shows its performance for realistic Skyrme energy functionals. We adopt the mixed
representation in which the forward and backward RPA amplitudes are represented by index of hole orbitals and
of the spatial grid points for the three-dimensional real space. We solve a linear algebraic problem with a sparse
non-Hermitian matrix, using an iterative method. We show results of the dipole response for selected spherical
and deformed nuclei. The calculated peak energies of the giant dipole resonance well agree with experiments for
heavy nuclei. However, they are systematically underestimated for light nuclei. We also discuss the width of the
giant dipole resonance in the fully self-consistent RPA calculation.
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I. INTRODUCTION

Nuclear density-functional theory has been successful for
a systematic description of ground-state properties such as
binding energies, density distributions, deformations, and
so on. In the past decade, systematic calculations for the
whole nuclear chart become feasible and a variety of energy
functionals are tested [1,2]. One of the major goals of such
systematic investigations is an assessment and an improvement
of the energy functional. A rapid progress of experimental
research on unstable nuclei also necessitates a development
of an accurate and universal energy functional that describes
nuclei far from the stability line. These efforts are aiming
at an ultimate theory with high predictive power and high
accuracy.

The nuclear density-functional theory is also capable
of describing excited state properties. The random-phase
approximation (RPA), which is derived by linearizing the
time-dependent mean-field equation [3], describes the nu-
clear excitation as a small-amplitude oscillations around the
ground state. It has been successful for describing both giant
resonances and low-lying modes of excitations. In practical
calculations, the RPA equation has been solved mostly in the
matrix diagonalization scheme. In these calculations, it was
common to ignore a part of the residual interaction, sacrificing
the full self-consistency. This is because the inclusion of the
full residual interaction for a realistic interaction involves a
cumbersome and complicated task. Recently, several groups
have reported fully self-consistent RPA calculations [4–8].
However, they are mostly restricted to spherical nuclei. There
are a few recent attempts for deformed nuclei [9–14].

Recently, we have proposed a new method to solve the
RPA equation, the finite amplitude method (FAM) [15]. The
FAM allows us to evaluate the fully self-consistent residual
fields as a finite difference, employing a computational code
for the static mean-field Hamiltonian alone with a minor
modification. In Ref. [15], the FAM was successful in solving

the linear-response equation for a deformed nucleus 20Ne with
a simplified interaction.

In most cases, the RPA forward and backward amplitudes
are expressed in the particle-hole representation [3]. In the
present work, we employ the mixed representation in which
the particle index is replaced by the three-dimensional (3D)
real space. In this representation, the RPA equation becomes a
linear algebraic equation with a sparse, non-Hermitian matrix.
The typical matrix dimension is order of 106. We will show
that such a large-scale linear algebraic problem can be solved
using an iterative method and then demonstrate that the FAM
excellently works for realistic calculations with complicated
energy functionals.

At present, we ignore the pairing terms. The pairing effects
will not be important for high-lying negative-parity excitations
such as the dipole excitation we investigate in this article.
However, the pairing may have significant effects on the
low-lying modes such as quadrupole excitations. An extension
to inclusion of the pairing is now under study. To treat the
particle escape properly, we need to impose the continuum
boundary condition [16]. Although it can be managed in the
present scheme [14], the accurate description requires a heavy
computational task. For our systematic investigation, we must
make a compromise with the computational feasibility at the
sacrifice of the exact treatment of the continuum. We will
approximately take into account the continuum effects by
solving the RPA equation inside the large 3D space.

We are undertaking the systematic investigation of nuclear
response for a wide mass region (A � 100). The purpose of
this article is to explain the implementation of the FAM with
the realistic Skyrme functional and to show that the FAM is
suitable for the systematic investigation. The results of the sys-
tematic calculations will be reported in a forthcoming article.

We summarize here main features of our calculations:

(i) Fully self-consistent RPA calculation. The identi-
cal Skyrme energy functional is used for both
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ground-state and linear response calculations, including
spin-orbit, Coulomb, and time-odd-density terms.

(ii) 3D mixed representation applicable to nuclei with any
kind of deformation. No truncation of the particle space
is introduced.

(iii) Use of the iterative method for the large-scale linear
response equation with the fixed frequency.

This article is organized as follows. In Sec. II, we review
formalism of the FAM. The numerical details and the related
techniques are discussed in Sec. II C. To show the accuracy
of the method, the FAM results are compared with the fully
self-consistent RPA results in the conventional diagonalization
scheme. Calculated results are shown in Sec. III for selected
nuclei in light and heavy mass regions. Convergence with
respect to the model space and to the smoothing factor (imagi-
nary part of the frequency), dependence on the functionals will
be discussed. Finally, our fully self-consistent RPA results are
compared with experimental data. Conclusions are presented
in Sec. IV.

II. LINEAR-RESPONSE CALCULATION WITH A
SKYRME FUNCTIONAL

A. Linear response equation in the mixed representation

Under a weak, time-dependent external field Vext(t), the
transition density δρ(t) follows the equation (h̄ = 1)

i
d

dt
δρ(t) = [h0, δρ(t)] + [Vext(t) + δh(t), ρ0] , (1)

where ρ0 and h0 = h[ρ0] are the ground-state density and the
single-particle Hamiltonian, respectively. The residual field
δh(t) is induced by density fluctuation, h[ρ(t)] = h0 + δh(t).
Assuming that δρ(t), Vext(t), and δh(t) oscillate with a
frequency ω like δρ(t) = δρ(ω)e−iωt + δρ†(ω)eiωt , Eq. (1) is
recast to

ωδρ(ω) = [h0, δρ(ω)] + [Vext(ω) + δh(ω), ρ0] . (2)

Because δρ(ω) is not necessarily Hermitian, we need forward
and backward amplitudes, |Xi(ω)〉 and |Yi(ω)〉, to express the
transition density δρ(ω).

δρ(ω) =
A∑

i=1

{|Xi(ω)〉〈φi | + |φi〉〈Yi(ω)|} , (3)

where A = N + Z is the mass number of the nucleus and the
orbitals |φi〉 are occupied orbitals in the ground state, h0|φi〉 =
εi |φi〉 (i = 1, . . . , A). Substituting this expression into Eq. (2),
we obtain the RPA linear-response equation:

ω|Xi(ω)〉 = (h0 − εi) |Xi(ω)〉 + P̂ {Vext(ω) + δh(ω)} |φi〉,
(4)

−ω〈Yi(ω)| = 〈Yi(ω)| (h0 − εi) + 〈φi | {Vext(ω) + δh(ω)} P̂ ,

(5)

where P̂ denotes the projector onto the particles space,
P̂ = 1 − ∑A

i=1 |φi〉〈φi |. In Eqs. (4) and (5), if we expand
δh(ω) with respect to the forward and backward amplitudes
in the linear order, we obtain the well-known A − B matrix
form of the RPA equations [3,15]. When the single-particle

Hamiltonian and the external field are both local in coordinate
space, Eqs. (4) and (5) may be conveniently expressed in the
coordinate representation,

ωXi(ξ, ω) = [h0(ξ ) − εi] Xi(ξ, ω)

+ P̂ {Vext(ξ, ω) + δh(ξ, ω)}φi(ξ ), (6)

−ωY ∗
i (ξ, ω) = [(h0(ξ ) − εi)Yi(ξ, ω)

+ P̂ {V †
ext(�ξ, ω) + δh†(ξ, ω)}φi(ξ )]∗, (7)

where the coordinate ξ may contain the spin index σ as well
as the spatial coordinate �r , ξ = (�r, σ ). This is often referred
to the mixed representation [12,13,17]. It should be noted
that because δh(ω) has a linear dependence on Xi(ω) and
Y ∗

i (ω), this is an inhomogeneous linear algebraic equation of
the form A�x = �b, where �x ≡ [Xi(ξ, ω), Y ∗

i (ξ, ω)] [15]. In our
implementation, we employ the grid representation of the 3D
Cartesian-coordinate space. Denoting the number of the spatial
grid points as N�r , the dimension of the vector �x is N�r × A ×
2 × 2 (a factor of two for the forward and backward amplitudes
and another factor of two for the spin degrees of freedom). N�r is
order of 10,000 (see Sec. II C1). For systems described by local
potentials, we need not introduce any further truncations in the
particle space. In the 3D grid representation, the particle escape
is better treated than in other representations, for example, the
harmonic-oscillator-basis representation.

B. Finite amplitude method

If we expand the residual field δh(ξ, ω) explicitly with
respect to the forward Xi(ξ, ω) and backward Yi(ξ, ω) am-
plitudes, it requires us to calculate the residual two-body
kernel, v(ξ, ξ ′) = δh(ξ, ω)/δρ(ξ ′). However, if one employs
a realistic energy functional, the explicit construction of
the residual two-body kernel involves a complicated coding
and a large numerical task. For this reason, it has been a
common procedure to approximate or ignore a part of the
residual interaction in most RPA calculations. For example,
the velocity-dependent terms are sometimes replaced with the
Landau-Migdal interaction. The spin-spin, the spin-orbit, and
the Coulomb residual interactions are often neglected.

To achieve a fully self-consistent RPA calculation, we
believe that the FAM [15] is one of the simplest methods, at
least, with respect to programming. In the FAM, we evaluate
δh(ξ, ω) directly from the single-particle Hamiltonian h[ρ] by
means of the finite difference method, thus avoiding an explicit
construction of the residual two-body kernel. In this section,
we recapitulate the essence of the FAM. Readers are referred
to Ref. [15] for details.

The residual field δh(ξ,ω) depends linearly on δρ(ω):
δh(ω) = ∂h/∂ρ|ρ=ρ0 · δρ(ω). In the first order with respect
to a small parameter η, we have

h0 + ηδh(ω) = h[ρ0 + ηδρ(ω)] ≡ h[ρ̃η(ω)]. (8)

Here, the one-body pseudodensity operator ρ̃η(ω) ≡ ρ0 +
ηδρ(ω) is a non-Hermitian operator expressed with bra and
ket vectors as follows:

ρ̃η(ω) =
∑

i

(|φi〉 + η|Xi(ω)〉) (〈φi | + η〈Yi(ω)|) . (9)
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In the linear order in η, Eq. (8) is expressed as

δh(ω) = 1

η
(h[ρ̃η(ω)] − h0). (10)

This is the basic result of the FAM. In Eq. (10), h[ρ̃η(ω)]
can be evaluated in the same manner as in h0 = h[ρ0], with a
replacement of the ordinary densities with the pseudodensities.
For instance, the pseudolocal density, pseudokinetic density,
and pseudocurrent density are given by

ρ̃η(�r) =
∑

i

∑
σ

ψ∗
i (ξ )ϕi(ξ ),

τ̃η(�r) =
∑

i

∑
σ

∇ψ∗
i (ξ ) · ∇ϕi(ξ ), (11)

�̃jη(�r) = 1

2i

∑
i

∑
σ

{ψ∗
i (ξ )∇ϕi(ξ ) − (∇ψ∗

i (ξ ))ϕi(ξ )},

respectively, where ϕi = φi + ηXi(ω) and ψi = φi + ηYi(ω).
The spin-dependent pseudodensities are also defined in the
same manner. Once Xi(ω), Yi(ω), and η are given, the
pseudodensities are calculated as in Eq. (11).

Equations (6) and (7) are the linear algebraic equation of
the form, A�x = �b. Here,

�x =
[
Xi(ξ, ω)

Y ∗
i (ξ, ω)

]
, �b =

[
−Vext(ξ, ω)φi(ξ )

−{Vext(ξ, ω)φi(ξ )}∗
]

. (12)

To solve Eqs. (6) and (7), we utilize the iterative scheme, as
described below. In the iterative scheme, we need not construct
the matrix elements of A explicitly but only to evaluate A�x for
a given vector �x:

A�x =
[

(h0(ξ ) − εi − ω)Xi(ξ, ω) + δh(ξ, ω)φi(ξ )

{(h0(ξ ) − εi + ω∗)Yi(ξ, ω) + δh†(ξ, ω)φi(ξ )}∗
]

,

(13)

where δh(ξ, ω)φi(ξ ) is calculated using Eq. (10) and
δh†(ξ, ω)φi(ξ ) using the same equation but ρ̃η replaced by ρ̃†

η.
To find a solution of Eqs. (6) and (7), we employ extensions of
the conjugate gradient method for linear algebraic equations
involving a non-Hermitian matrix. In the literature, quite a few
solvers for this purpose have been developed. However, we
find only a few methods work for the present problem. We
will discuss it in Sec. II C.

To calculate the strength function for a given one-body
operator F , we adopt an external field of Vext(t) = ηFe−iωt +
η∗F †eiωt . Then, the transition strength is expressed with the
forward and backward amplitudes,

dB(E; F )

dE
≡

∑
n

|〈n|F |0〉|2 δ(E − En)

= − 1

π
Im

∑
i

{〈φi |F †|Xi(ω)〉 + 〈Yi(ω)|F †|φi〉}

(14)

for a real frequency ω = E. Here, |n〉 are energy eigenstates of
the total system. In the following calculations, we use complex
frequencies with a finite imaginary part, ω = E + iγ /2. Then,

the transition strength becomes

dB(E; F )

dE
= γ

2π

∑
n

{ |〈n|F |0〉|2
(E − En)2 + (γ /2)2

− |〈n|F †|0〉|2
(E + En)2 + (γ /2)2

}
. (15)

The second term in the right-hand side is not important, if
γ � E + En. For a Hermitian operator F this leads to

dB(E; F )

dE
= 2Eγ

π

∑
n

Ẽn|〈n|F |0〉|2(
E2 − Ẽ2

n

)2 + E2γ 2
, (16)

where Ẽ2
n ≡ E2

n + γ 2/4.
In this article, we consider an electric dipole operator

for F :

DE1
z = N

A
e

Z∑
p=1

zp − Z

A
e

N∑
n=1

zn, (17)

and similar operators for DE1
x and DE1

y . The photoabsorption
cross section in the dipole approximation is given as follows
[18],

σabs(E) = 4π2E

3c

∑
µ=x,y,z

dB
(
E; DE1

µ

)
dE

. (18)

C. Numerical details

1. Adaptive 3D grid representation

We employ a model space of 3D grid points inside a
sphere of a radius Rbox. All the single-particle wave functions
and potentials except for the Coulomb potential are assumed
to vanish outside the sphere. For the calculation of the
Coulomb potential, we follow the prescription in Ref. [19].
The differentiation is approximated by a finite difference with
the nine-point formula.

To obtain nuclear response with a reasonable accuracy,
we need a large model space, typically Rbox >∼ 15 fm (see
Sec. III B1). This is much larger than the typical nuclear size
R0. Outside the nuclear radius R0, we do not need to use a fine
mesh. Thus we adopt an adaptive coordinate system to reduce
the number of grid points in the outer region, R0 < r < Rbox.
We use the following coordinate transformation, (u,v,w) →
(x,y,z), which was also adopted in Ref. [14],

x(u) = ku

[
1 + (k − 1)

{
u

x0 sinh(u/x0)

}n]−1

, (19)

and the same form for y(v) and z(w). In this transformation,
we have x(u) ≈ u for spatial region of u � x0, and x(u) ≈ ku

for u � x0. We adopt a uniform mesh spacing of �h = 0.8 fm
in the (u,v,w) space. The parameters k = 5.0, x0 = 8 fm, and
n = 2 are used in the following calculations. The number of
grid points in the sphere of r � Rbox is significantly reduced;
27, 609 → 11, 777 for Rbox = 15 fm and 221, 119 → 39, 321
for Rbox = 30 fm.

044301-3



INAKURA, NAKATSUKASA, AND YABANA PHYSICAL REVIEW C 80, 044301 (2009)

2. Choice of iterative algorithms

In this section, we discuss performance of different iterative
solvers to solve the linear response equations. We first discuss
the calculation for the ground state. To obtain ground-state
solutions, the imaginary-time iterative method is used [20]. We
impose constraints in the iteration process so that the center of
mass always coincides with the origin of the coordinate system
and the principal axes of the density distribution coincide with
three Cartesian axes of x, y, and z. It is important to obtain a
well-converged ground-state solution because the convergence
properties of the linear-response calculation crucially depend
on this. To assure the strict convergence in the ground-state
calculation, we impose the convergence condition not only for
the total energy but also for the deformation parameters (β, γ ),
single-particle energies εi , single-particle angular momenta,
and so on.

For the Skyrme energy functional, the RPA matrix A that
appears in Eqs. (6) and (7) is sparse in the �r-space grid
representation. Therefore, the iterative methods, such as the
conjugate gradient (CG) method [21], should work efficiently.
The CG method is very powerful for the Hermitian matrix.
However, because we calculate for the complex frequency
ω, the matrix A is no longer Hermitian. Therefore, a simple
CG method is not applicable. There are a lot of variants of
the CG method extended for non-Hermitian problems. We
test some of them: biconjugate gradient (Bi-CG) method
[21], generalized conjugate residual (GCR) method [22],
generalized product-type biconjugate gradient (GPBi-CG)
method [23], Bi-CGSTAB method [24], and Bi-CGSTAB2
method [25]. In the original GCR method, it is necessary to
store all the vectors �x0, . . . , �xn−1 to calculate the vector at the
n-th iteration. Because this is rather impractical, we restart
the GCR procedure every 20 iterations. In Fig. 1, we show the
convergence behavior of the different iterative solvers. The
magnitude of the relative residue,

rn = |�b − A �xn|/|�b|, (20)

is plotted against the number of iterations.

At very low energies (ω = 0 + 0.5i MeV), all the solvers
except for the Bi-CG method quickly reach the convergence.
However, at higher energies (ω = 10 + 0.5i MeV), only the
GCR and the GPBi-CG methods lead to the convergence.
In most cases, the convergence of the GPBi-CG method is
faster than that of the GCR. However, after the convergence,
the residue by the GPBi-CG method start to increase again.
Therefore, only the result of the GCR method shows a stable
convergence property in Fig. 1. We thus employ the GCR in
the following calculations, although it has a disadvantage that
it requires larger computer memory size than other methods
based on the Bi-CG.

In the iteration procedure, we need to set up the initial vector
�x0. It turns out that the convergence property depends very little
on the selection of the initial vector. We simply take the initial
vector of �x0 = 0. We stop the GCR iteration procedure if the
relative residue becomes smaller than a threshold, rn < 10−6.
We find the typical number of the iteration necessary to reach
the convergence is about 103 around the excitation energy
region of giant dipole resonance (GDR), while the convergence
is much faster for smaller energy, E = Reω. The necessary
iteration number also depends on the imaginary part of the
frequency, γ = 2Imω, and is roughly proportional to 1/γ .

In Sec. III, the calculation is performed with the following
settings, unless otherwise specified: The energy range of
0 � E � 38.1 MeV, discretized in spacing of �E = 0.3 MeV
(128 points). The imaginary part of the frequency is fixed
at 0.5 MeV, corresponding to γ = 1.0 MeV. The calculated
strength is interpolated using the cubic spline function. We
find that the computational time scales linearly both with the
number of grid points and with the particle number A. Utilizing
PC cluster systems with either 64 or 128 processors in parallel,
we can obtain the photoabsorption cross section for A ≈ 20
nuclei within a few hours.

3. Choice of the FAM parameter η

The FAM parameter η in Eq. (10) should be as small
as possible to validate the linearity. In practice, there is a

iteration #
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FIG. 1. Convergence properties of different iterative methods to solve the linear response Eqs. (6) and (7) for electric dipole response in
16O calculated at complex frequencies of ω = 0 + 0.5i MeV (a) and 10 + 0.5i MeV (b). Relative residue, rn, is shown as a function of iteration
number n.
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lower limit to avoid the round-off error. In the numerical
computation, we use real variables with double precision
(8 bytes) and complex variables with 8 × 2 bytes. We use the
following value for η that differs for every iteration to ensure
the linearity [15]:

η = ηLin

max{N (X), N (Y )} , N (ψ) = 1

A

√√√√ A∑
i=1

〈ψi |ψi〉 (21)

with ηLin = 10−4. The convergence property of the GCR
iteration is not sensitive to the value of ηLin, as far as the
value is in the range of ηLin = 10−2–10−6. However, if we
use too small a value, rn oscillates in the iteration and never
reaches the convergence.

III. CALCULATED RESULTS

A. Numerical accuracy

In this section, we demonstrate that the FAM, described in
Sec. II, really works as a simple and accurate method for the
fully self-consistent linear-response calculation with realistic
Skyrme functionals. In Ref. [15], we have already done it for
a simple Bonche-Koonin-Negele interaction [26].

In the following calculations, we adopt the same functional
form as that of Ref. [27] (Appendix A). In Ref. [27], every
single-particle orbital is assumed to have a definite parity and
z-signature symmetries. However, we assume none of these in
this article. The functional depends on densities ρτ (�r), kinetic
densities ττ (�r), spin-orbit densities �Jτ (�r), current densities
�jτ (�r), and spin densities �ρτ (�r), where τ = n and p. The
exchange part of the Coulomb energy is evaluated by the Slater
approximation. The center-of-mass correction is achieved by
using the recoil nucleon mass, M → AM/(A − 1).

In Fig. 2, we show photoabsorption cross section for 16O
calculated with two different methods: The dots are obtained
by solving the linear response Eqs. (6) and (7) in which the
FAM is employed to evaluate the residual fields. The vertical
lines are obtained by the matrix diagonalization method
[12,13] in which the residual interactions, second derivatives of
the Skyrme energy functional, are constructed explicitly. The
positions of the vertical lines indicate the energy eigenvalues,
while the heights show the calculated cross section. The solid
curve is obtained by smoothing the vertical lines with the
energy-weighted Lorentzian. In both calculations of the linear
response and the matrix diagonalization, the same Skyrme
functional and the same grid representation of the �r space
are used. The width parameter is set common, γ = 2 MeV.
In the matrix diagonalization method, the spurious solutions
corresponding to the center-of-mass motion appear around a
few tens keV. They do not carry E1 strength.

This figure clearly demonstrates that the linear response
calculation with the FAM completely agrees with the fully self-
consistent RPA calculation with an explicit construction of the
residual interaction. We should note that the computer program
of the diagonalization method requires heavy and complicated
coding for the residual interaction, while that of the FAM can
be achieved with the static mean-field calculation alone, with

σ a
bs

(E
) 

[m
b]

E [MeV]

0

10

20

30

40

16O

0 5 10 15 20 25 30 35 40 45 50

FIG. 2. Comparison of the results for electric dipole response of
16O calculated by the present linear response formalism with FAM
(dots) and by the eigenvalue formalism with an explicit construction
of the residual interaction (curve). Both calculations use the cubic box
of (21 fm)3 and the SIII functional. See text for details. The vertical
lines indicate eigenenergies and strengths of the RPA normal modes
calculated by the matrix diagonalization method, whose vertical
magnitude is in units of mb MeV.

a minor modification. The accuracy and the simplicity of the
FAM is clearly demonstrated.

Let us next consider the merit of the linear response
calculation for a fixed frequency in comparison with the
matrix diagonalization method, apart from the FAM. In
the matrix diagonalization method, the number of normal
modes increases rapidly as the excitation energy becomes
higher. Even when we assume the parity and the z-signature
symmetries, the number of excited states is an order of
1000 in the energy range below 50 MeV. If we achieve
matrix diagonalization in the mixed representation, we must
calculate eigenvalues and eigenvectors of the RPA solution
one by one. Then the calculations of a thousand of eigenstates
require huge computational time. Therefore, to calculate
responses for a wide energy region, the computation time
with the linear response method is much smaller than that
of the diagonalization method. Furthermore, we can easily
parallelize the calculation in the linear response calculation,
assigning different processors to solve the equation at different
frequencies ω.

Combining these features, we consider the linear response
calculation with the FAM is the best choice for the systematic,
fully self-consistent calculations over a periodic table.

B. Light nuclei

1. Dependence on box size and smoothing parameter

In this section, we show how the results depend on the
box size Rbox and the smoothing parameter γ . In the present
mixed representation, the model space is specified with Rbox

and the 3D mesh size �h. The dependence on the mesh size is
discussed in details in Ref. [12] for spurious and low-energy
excitations in 16O and 208Pb. According to this study, �h ≈
0.8 fm produces a converged result. In addition, we have also
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FIG. 3. (Color online) Photoabsorption cross sections in (a) 16O and (b) 40Ca calculated with the FAM in a spherical box of different sizes:
Rbox = 10, 15, 20, and 30 fm. “ABC” indicates a result with the absorbing boundary condition that properly treats the continuum effect [14].
The SkM∗ interaction and the smoothing parameter γ = 1 MeV are used. Convergence properties as a function of the CPU time for (c) 16O
and (d) 40Ca, at E = 19.2 MeV and E = 18.0 MeV, respectively.

carefully examined the convergence with respect to the grid
spacing in the adaptive-coordinate, Eq. (19).

In Fig. 3, results of the calculations with Rbox = 10, 15,
20, 25, and 30 fm are shown. Small peaks in higher energies
(E > 20 MeV) are disappearing with increasing Rbox. These
small peaks at high energies are all spurious, due to the
discretization of the continuum. In fact, the calculation with the
proper continuum boundary condition [14], which is denoted
as “ABC,” shows only a smooth tail in this energy region
above the main GDR peak. With the energy resolution of
γ = 1 MeV, the effect of the discretized continuum is still
visible at E > 20 MeV, even for the case of Rbox  30 fm.
To remove the spurious effect, we need to increase either
Rbox or γ . In Fig. 4, we show results for 40Ca calculated
with different box sizes and with different magnitudes of the
smoothing parameter γ . Using γ > 2 MeV, the calculation
roughly converges with Rbox > 15 fm. Thus, in the calculation
with the vanishing (box) boundary condition, it is difficult to

distinguish small physical peaks from unphysical ones in the
high-energy continuum region, E > 20 MeV. In this article,
we concentrate our discussion on gross structure of the main
GDR peaks.

Next, in Fig. 5, we show results for 24Mg. Because the
ground state of 24Mg is deformed with a prolate shape (β2 =
0.39), the GDR splits into two major peaks, K = 0 mode
(dashed line) and K = 1 mode (long dashed line). The K = 0
mode corresponds to the oscillation parallel to the symmetry
axis (z direction) and K = 1 mode to that perpendicular to
the symmetry axis (x and y directions). In the calculations
with Rbox = 10 and 15 fm, we observe a peak at E = 25 MeV
for the K = 1 mode. However, this peak becomes smaller for
larger Rbox. This suggests that the peak at 25 MeV comes from
the effect of the box discretization and is spurious.

Although the calculated profile functions of cross section
in the high-energy continuum region are affected by the
box discretization, the gross property of the GDR is less
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FIG. 4. (Color online) Photoabsorption
cross sections in spherical nucleus 40Ca cal-
culated with different Rbox and with different
γ values. The functional parameter set of SkM∗

is used.
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FIG. 5. Photoabsorption cross sections in
deformed nucleus 24Mg calculated with a spher-
ical box of (a) Rbox = 10 fm, (b) 15 fm,
(c) 20 fm, and (d) 30 fm. Dashed, long dashed,
and solid lines correspond to cross sections of
K = 0 mode, K = 1 mode, and the total one,
respectively. The functional parameter set of
SkM∗ and the smoothing parameter γ = 1 MeV
are used.

sensitive to the value of Rbox. We estimate the GDR peak
energy and the width according to the electric dipole (E1)
strength distribution and the photoabsorption cross section
(oscillator strength distribution). For spherical nuclei, the
nuclear response does not depend on the direction of the
external dipole field. Thus, we can arbitrary choose it, for
instance, F = DE1

z . Then, E1 strength is fitted by a single
Lorentzian function,

dB
(
E; DE1

z

)
dE

≈ Btot × L(E),

L(E) = 1

π

�/2

(E − Epeak)2 + (�/2)2
, (22)

where Epeak and � are fitting parameters and Btot =∫
dEdB(E)/dE. The fitting is also performed for the pho-

toabsorption cross section σabs(E), using the energy-weighted
Lorentzian, ftot × EL(E). The results are shown in Table I.

TABLE I. Rbox dependence of the GDR peak positions
and widths in units of MeV, for 16O and 40Ca. The
smoothing parameter of γ = 1 MeV is used. See text for
details.

dB(E)/dE σabs(E)

Epeak � Epeak �

16O
Rbox = 10 fm 18.993 3.869 18.798 3.876
Rbox = 15 fm 19.063 3.475 19.103 3.944
Rbox = 20 fm 19.141 3.096 19.151 3.435
Rbox = 30 fm 19.162 3.035 19.165 3.330

40Ca
Rbox = 10 fm 17.794 1.545 17.766 1.550
Rbox = 15 fm 17.797 2.334 17.796 2.492
Rbox = 20 fm 17.904 2.789 17.901 2.886
Rbox = 30 fm 17.963 2.956 17.959 3.014

These two definitions of the peak energy and the width lead to
nearly identical results.

The dependence of Epeak on the box size Rbox is very small.
However, the GDR width � shows a substantial dependence
on the box size. For γ = 1 MeV, to estimate the width with
a reasonable accuracy requires Rbox > 20 fm. However, the
width also depends on the smoothing parameter γ , which is
shown in Fig. 6. The value of � is converged at Rbox � 20 fm
for γ = 1 MeV. When we use a larger γ value, the model
space of Rbox = 15 fm is good enough to calculate the width.
From the approximate linear dependence of � on the parameter
γ , we can estimate the width at γ = 0 as �RPA ≈ 2 MeV.
This value can be regarded as the damping width in the
RPA, namely due to the Landau damping and escaping:
�RPA = �Landau + �↑. Because the smoothing parameter γ

can be regarded as the spreading width, γ = �↓, we may
extract �↓ from experimental data. This will be discussed in
the followings.
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FIG. 6. Estimated GDR width for 40Ca as a function of the
parameter γ .
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2. Comparison with experiments and Skyrme-functional
dependence

In Fig. 7 calculated photoabsorption cross sections for
spherical nuclei (16O, 40Ca) and deformed nucleus 24Mg are
compared with experimental data. The calculated energies
of the GDR peaks are underestimated by a few MeV, but
the overall structures are reproduced. For spherical nuclei,
the GDR widths calculated with γ = 1 MeV are narrower
than the corresponding experimental data. This seems to
suggest that the spreading width �↓, which takes account of
effects decaying into compound states, such as two-particle-
two-hole excitations, is slightly larger than γ = 1 MeV. The
cross section at higher energies (E > 25 MeV) is larger in
experiment. This may be due to effect of the ground-state
correlation produced by the tensor and short-range parts in the
two-body nuclear interaction [18]. For 16O, all the calculations
fail to reproduce a double-peak structure of the GDR, present
in experimental data. If we neglect the time-odd spin densities,
the double peaks can be reproduced [14]. The GDR peak
energy in 40Ca is better reproduced compared to the case for
16O. The calculated cross sections in the high-energy region
also becomes closer to the experimental data. It seems that the
discrepancy is more prominent for lighter nuclei.

For the deformed nucleus 24Mg, the GDR peak splitting
caused by the ground-state deformation well agree with the ex-
periments, although the magnitude of the deformation splitting
is slightly too large in the calculation. We may interpret that
the experimental GDR peak around E = 20 MeV is associated
with the K = 0 mode, and those at E = 22 ∼ 25 MeV
correspond to the K = 1 mode. The double-peak structure
of the K = 1 GDR peak is well reproduced. Approximately,
the calculated cross section is shifted to lower energy from the
experimental ones by about 3 MeV.

We next show results obtained with different Skyrme-
parameter sets in Fig. 8; SkM∗ [30], SIII [31], SGII [32],
and SLy4 [33]. Two parameter sets, SkM∗ and SLy4, produce
similar results. In 16O, the GDR peak position is calculated
around E = 19 MeV. In contrast, the SIII functional produces
the GDR peak near E = 21 MeV. The result with the SGII
functional is intermediate, around E = 20 MeV. However,
all the calculations underestimate the experimental GDR

peak energy, E ≈ 22 MeV. These difference in the GDR peak
energy cannot be simply explained only by the symmetry
energy, because the symmetry energy is the largest for SLy4
and the smallest for SGII. The cross section at higher energies
E > 25 MeV is also systematically underestimated in the
calculations. For deformed 24Mg, all the calculations again
underestimate the peak energies. The peak energy obtained
with the SIII functional are located highest among these four
functionals.

3. Transition density

We obtain the forward and backward amplitudes, Xi(ξ, ω)
and Yi(ξ, ω), using the FAM. Then, the local part of the
transition density in the intrinsic frame, Eq. (3), can be
calculated as

δρτ (�r, ω) =
∑
i∈τ

∑
σ

{φ∗
i (ξ )Xi(ξ, ω) + Y ∗

i (ξ, ω)φi(ξ )}, (23)

where τ = n or p. In this section, we adopt the external field of
DE1

z (K = 0). Using δρ(ω) with ω = E + iγ /2, the strength
function can be written as

dB
(
E; DE1

z

)
dE

= − 1

π
Im

∫
d�r[

Ne

A
zδρp(�r, ω) − Ze

A
zδρn(�r, ω)

]

= 2Eγ

π

∑
n

Ẽn

∣∣〈n|DE1
z |0〉∣∣2(

E2 − Ẽ2
n

)2 + E2γ 2
. (24)

Substituting 〈n|DE1
z |0〉 by the following expression

〈n|DE1
z |0〉 =

∫
d�r Ne

A
z〈n|ρ̂p(�r)|0〉 − Ze

A
z〈n|ρ̂n(�r)|0〉,

(25)
we find

Im δρn(p)(�r,ω) ∝
∑

n

Ẽn〈0|DE1
z |n〉〈n|ρ̂n(p)(�r)|0〉(

E2 − Ẽ2
n

)2 + E2γ 2
, (26)
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where ρ̂τ (�r) = ∑
i∈τ δ(�r − �ri). If there is a single state |n〉

that gives a dominant contribution in the vicinity of E = Ẽn

(within the width of γ ), we have Im δρ(ω) ∝ 〈n|ρ̂|0〉.
In Fig. 9, we show the calculated transition densities of

neutrons and protons, at E = 19.4 MeV for 16O [panel (a)] and
at E = 16.1 MeV for the K = 0 mode of 24Mg [panel (b)].
These energies correspond to the peak energies of the GDR. In
the transition density of 16O, one can clearly see the isovector
character. In Fig. 9(c), we show ∂ρ0/∂r for 16O, where the
ρ0(r) is the ground-state density profile. This corresponds to
the transition density predicted by the Tassie model for an
irrotational and incompressible fluid. As is discussed in the
literatures [3], the GDR of light nuclei is approximately rep-
resented by this classical fluid model. However, the transition
density of 24Mg shows more complicated features. We show,
in Fig. 9(d), a contour plot of the transition density in the
Tassie model, δρ ∝ ∇ρ0 · ∇rY10(r̂) ∼ ∂ρ0/∂z. Compared to
the RPA transition density, there is a deviation, especially in
the nodal structure in the interior region. This may suggest the
importance of coupling of the dipole mode to the octupole and
higher-multipole modes.

C. Heavy nuclei

For heavier nuclei, the calculation better agrees with exper-
iments. As is well known, in heavy spherical nuclei, a single
energy-weighted Lorentzian curve can fit the experimental
data of the photoabsorption cross section very well [34]. We
calculate photoabsorption cross sections in spherical nuclei
90Zr, 120Sn, and 208Pb within a box of radius Rbox = 15 fm

and compare them with experimental data in Fig. 10. The
calculated GDR peak shows a splitting, however, this may be
due to the spurious effect coming from the box discretization.
Except for this splitting, the results agree well with the
experimental data. Table II shows the calculated and the
experimental values of the GDR peak positions and the widths.
Both values are extracted from the Lorentzian fit to the
photoabsorption cross section. According to Ref. [34], the
Lorentzian function of the form of Eq. (16),

σabs(E) = σ0

1 + (
E2 − E2

peak

)2
/(E2�2)

, (27)

is used. The GDR peak positions are well reproduced within an
error of 400 keV. The systematic deviation of the peak energies,
seen in calculations for light nuclei, are not observed for these
heavy systems. Therefore, we may conclude that the SkM∗
functional reproduces peak energies of the E1 resonances in
heavy nuclei.

TABLE II. Calculated and experimental [34] GDR peak ener-
gies and widths for 90Zr, 120Sn, and 208Pb. The FAM calculation
was performed with the same parameter set as Fig. 10.

Nucleus Calculation Experiment

Epeak (MeV) � (MeV) Epeak (MeV) � (MeV)

90Zr 16.37 3.85 16.74 4.16
120Sn 15.22 4.52 15.40 4.89
208Pb 13.26 3.47 13.63 3.94
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FIG. 9. (a) Contour maps of the calculated
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the GDR in 16O predicted by the Tassie model.
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maximum value. (d) The transition densities of the
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details.

The calculated widths are slightly smaller than the ex-
periments, by 300 ∼ 700 keV. Because we use γ = 1 MeV
in these calculations, this indicates the spreading width of
�↓ = 1.3 ∼ 1.7 MeV. The total damping width is about
4 MeV for these nuclei. Thus, the spreading width is less
than half of the total width. This is rather surprising because,
for heavy nuclei, the spreading width was supposed to be a
major part of the total damping width [35,36]. However, the
fragmentation of the strength into noncollective 1p-1h states
(Landau damping), which can be described by the RPA theory,
is significant for these heavy systems. Thus, the spreading
width of �↓ ∼ 1.5 MeV is able to reproduce a broadening
of the experimental strength distribution. This observation
seems consistent with recent self-consistent RPA calculations
for spherical nuclei [5,7].

IV. CONCLUSIONS

We have presented an implementation of the FAM to make
a fully self-consistent RPA calculation employing realistic
Skyrme energy functionals. Although the RPA is a well-

established theory and have been widely applied, a fully
self-consistent calculation with a realistic functional is rather
limited. This is mostly because of the complexity to construct
the residual two-body kernels for realistic functionals. The
FAM, which was proposed recently by the present authors,
makes it possible to achieve a fully self-consistent RPA
calculation without an explicit construction of the residual
two-body kernels. Instead, the residual fields are evaluated
by the finite difference, employing a computational code
for the static mean-field Hamiltonian alone with a minor
modification.

We implemented the FAM in the mixed representation
where the particle index is replaced by the three-dimensional
Cartesian grid points. In this representation, the linear response
equation is a linear algebraic problem with a large, sparse, and
non-Hermitian matrix. We have tested several solvers for the
problem and have found that the generalized conjugate residual
method works stably to obtain the solution. We also examined
the accuracy of the FAM employing different values of the
parameters η and have found that the method works robust;
namely accurate results can be obtained for a certain wide
range of the parameter η.
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FIG. 10. Calculated photoabsorption
cross sections for (a) 90Zr, (b) 120Sn, and
(c) 208Pb. The calculation has been
performed with Rbox = 15 fm, the SkM∗

parameter set, and γ = 1 MeV. The
experimental data (symbols) are taken from
Refs. [37–39].
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We show results for the electric dipole responses of several
nuclei of spherical and deformed shapes. For light nuclei, we
have found systematic underestimation of the average excita-
tion energy, irrespective of the energy functional employed. We
further notice the underestimation of the strength at energies
higher than the GDR peak. The discrepancy is significant
only for light nuclei. The average excitation energies of heavy
nuclei are reasonably described. For a deformed nucleus 24Mg,
the calculation shows a deformation splitting of the giant
dipole resonance, which well agrees with measurements. For
spherical heavy nuclei, we have found a substantial part of
the width can be explained within the RPA, leaving less than
half of the total width for the spreading width, in contrast to
the previous studies that reported that most of the width is
attributed to the spreading mechanism for heavy nuclei [36].

We are currently performing a systematic calculation of
the electric dipole responses for light to medium mass nuclei
using the present method and Skyrme energy functionals. In a
forthcoming article, we will report a systematic analysis of the

properties of the giant dipole resonance, including the average
excitation energy, width, and the low-lying dipole mode around
the threshold.
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