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p-wave pion production from nucleon-nucleon collisions
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We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in
chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave
amplitudes in the pn → ppπ−, pp → pnπ+, pp → dπ+ channels by adjusting a single low-energy constant
accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the
applicability of chiral effective field theory to reactions of the type NN → NNπ .
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I. INTRODUCTION

With the advent of chiral perturbation theory (ChPT),
the low-energy effective field theory (EFT) of QCD, high-
accuracy calculations for hadronic reactions with a controlled
error estimation have become possible [1,2]. In that frame-
work, ππ - [3] and πN -scattering [4] observables and nuclear
forces [5] are calculated based on a perturbative expansion
in q/�χ with q referring to either a generic momentum of
external particles or the pion mass mπ , and �χ ∼ 1 GeV
being the chiral symmetry breaking scale. An extension of
this scheme to pion production in nucleon-nucleon (NN)
collisions turned out to be considerably more difficult. A
straightforward application of the power counting proposed
by Weinberg [6,7] to the reactions NN → NNπ [8,9] failed
badly (see also Ref. [10] where it was pointed out that the
naive power counting using the heavy baryon formalism is not
applicable above the pion production threshold). Indeed, for
neutral pion production in pp collisions, the corrections due
to the next-to-leading order (NLO) increased the discrepancy
with the data and, moreover, the next-to-next-to-leading order
(NNLO) contributions turned out to be even larger than the
NLO terms [11]. The origin of these difficulties was identified
quite early by Cohen et al. [12] (see also Ref. [13]), who
stressed that the additional new scale, inherent in reactions of
the type NN → NNπ , needs to be accounted for in the power
counting. Because the two nucleons in the initial state need to
have sufficiently high kinetic energy to produce the on-shell
pion in the final state, the initial center-of-mass momentum
needs to be larger than

pthr =
√

MN mπ , with
pthr

�χ

� 0.4 , (1)

where mπ and MN refer to the the pion and nucleon mass,
respectively. The proper way to include this scale was pre-
sented in Ref. [14] and implemented in Ref. [15]; see Ref. [16]
for a review article. As a result, pion p-wave production
is governed by the tree-level diagrams up to NNLO in the
modified power counting scheme of Ref. [14]. However, for

pion s-wave production, pion loops start to contribute already
at NLO. It was demonstrated in Ref. [17] that all irreducible
loop contributions at NLO cancel altogether, and the net effect
of going to NLO was shown to increase the most important
operator for charged pion production, first investigated in
Ref. [18], by a factor of 4/3. This was sufficient to overcome
the apparent discrepancy with the data in that channel. But the
neutral pion channel is more challenging—it still calls for a
calculation of subleading loop contributions. First steps in this
direction were taken in Refs. [19]. We further emphasize that
the �(1232) isobar should be taken into account explicitly as
a dynamical degree of freedom [12] because the �-nucleon
mass difference, �M , is also of the order of pthr. This general
argument was confirmed numerically in phenomenological
calculations [20–22].

Pion p-wave production in NN collisions receives an
important contribution from the leading (N̄N )2π contact term
in the effective Lagrangian, which also figures importantly in
the three-nucleon force [14,23]. In addition, the same operator
also contributes to the processes γ d → πNN [24,25] and
πd → γ NN [26,27], as well as to weak reactions such as,
e.g., tritium β decay and proton-proton (pp) fusion [28,29],
as visualized in Fig. 1. Note that this operator appears in the
above reactions in very different kinematics, ranging from very
low energies for both incoming and outgoing NN pairs in pd

scattering and the weak reactions up to relatively high initial
energies for the NN induced pion production. In Ref. [30] it
was shown that both the 3H and 3He binding energies and the
triton β decay can be described with the same contact term.
However, an apparent discrepancy between the strength of the
contact term needed in pp → pnπ+ and in pp → de+νe was
reported in Ref. [31]. If the latter observation were true, it
would certainly question the applicability of chiral EFT to the
reactions NN → NNπ .

To better understand the discrepancy reported in Ref. [31],
in this article we simultaneously analyze different pion
production channels. In particular, we calculate the p-wave
amplitudes for the reactions pn → ppπ−, pp → pnπ+, and
pp → dπ+. Note that even in these channels the contact term
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FIG. 1. Illustration of the various reactions, where the leading
(NN̄ )2π contact term contributes.

occurs in entirely different dynamical regimes. For the first
channel p-wave pion production goes along with the slowly
moving protons in the 1S0 final state, whereas for the other two
channels the 1S0 pp state is to be evaluated at the relatively
large initial momentum. Notwithstanding, all three channels
of the reaction NN → NNπ seem to give consistent results for
the low-energy constant (LEC) d that represents the strength
of the contact term, as we will show in the present article. We
discuss which additional data are needed to further support
this conclusion. We argue that the origin of the discrepancy
reported in Ref. [31] is not due to the different kinematics of
NN → NNπ and pp fusion but rather in the inconsistency in
the partial-wave amplitudes used in the analysis. In addition,
we also comment on technical issues related to the work of
Ref. [31].

Our manuscript is organized as follows: In Sec. II we
discuss the general features and the relevant observables for
p-wave pion production. In Sec. III the power counting is
outlined with special emphasis on the p-wave amplitudes. Our
results for the various pion production channels are presented
in Sec. IV. Here, we also discuss the role of the leading
πN -scattering parameters, c3 and c4, for the p-wave pion
production amplitudes. We close with a short summary.

II. GENERAL REMARKS

It is not obvious, a priori, that with just a single contact term,
which contributes to the various reactions shown in Fig. 1, a
consistent description of all these channels can be achieved.
The purpose of the contact term is twofold: it should, on the
one hand, absorb any sensitivities to the employed NN wave
functions and in this way remove the model dependence in the
evaluation of the observables. On the other hand, it provides
a parametrization of the short-range physics that contributes
to the process being considered. Thus, the strength of the
contact term is necessarily dependent on the method applied
to regularize the integrals (typically a cutoff) and also on the
NN interaction that is used for generating the wave functions.

For the case at hand the contact term connects NN S

waves in the initial state with NN S waves in the final state.
Because the contact term is a local four-nucleon operator,
after including the NN distortions its contribution scales as the
product of the initial and final NN wave functions at the origin.
Each of these wave functions, in turn, may be represented by
the inverse of the corresponding Jost function [32]. The reason

why it is expected to be possible that the same contact term
can be used in all reactions listed above is that the energy
dependence of the Jost function is fixed by the on-shell NN
data and is therefore independent of the unknown short-range
physics. Specifically, the NN distortions can be represented
as an integral over the relevant phase shifts by means of the
so-called Omnès function [33]—see also the discussion in
Ref. [34]. This is correct up to contributions from the left-hand
cuts and the high-energy behavior of the NN interaction;
both are expected to be of higher order in the expansion.
As opposed to the energy dependence, the overall scale of
the distortions can be shown to be sensitive to things like the
NN interaction and the cutoff employed [35]. Clearly, what
needs to be assumed in the argument given is that there is
a proper separation of scales in the problem. Note that the
expansion parameter pthr/�χ ∼ 0.4 is quite large. In this sense
a consistent description of all mentioned reactions with the
same contact term provides a nontrivial test of the applicability
of the chiral expansion to pion production in NN collisions.

One might ask why we take the effort of this study,
because in Ref. [31] it was already shown that a consistent
description is not possible. The answer is twofold: first, we
found that the partial-wave decomposition of Ref. [36], the
result of which was used in Ref. [31], is not correct (see
Sec. IV C). This is why we decided to directly compare to
the data in the present work. Second, there is also a conceptual
problem in the work of Ref. [31]: as was outlined above, as
long as different phase-equivalent NN interactions are used,
it should be possible to absorb the model dependence of
the calculation in a single counterterm up to higher-order
corrections. However, in Ref. [31] pion production from initial
NN and N� states is not treated on equal footing. Rather, the
contribution from the � isobar excitation is added on top of
and independent of the employed NN interactions. Thus, it is
quite possible that the utilized NN → N� transition potential
is too strong. Specifically, it is not constrained by the empirical
NN phase shifts as is the case when considering the NN
and N� amplitudes consistently within a coupled-channels
(Lippmann-Schwinger-like) scattering equation [20]. In this
sense, it should not come as a surprise that it was not possible to
absorb the model dependencies in a single counterterm within
the scheme used in Ref. [31]. To avoid this problem, in this
work we employ the coupled-channels NN model of Ref. [37]
that involves the NN → N� transition potential.

Eventually all reactions shown in Fig. 1 should be analyzed
consistently. This would, however, require a calculation to
third order in the chiral expansion of the process γ d → πNN
and πd → γ NN or a rather involved three-nucleon calculation
for the tritium β decay that goes beyond the scope of this
work. Instead, as a next step in this ambitious program, we
analyze here in detail various pion production channels. Note
that although these reactions appear to have similar kinematics,
the relevant transition for the reaction pn → ppπ− involves
very low momenta in the NN 1S0 state and considerably higher
momenta (∼pthr) in the 3S1 channel while the situation is
just opposite for the reactions pp → (d/pn)π+. Thus, a
simultaneous description of these reaction with a single short-
range operator indeed provides a highly nontrivial consistency
test of our approach. Note further that the (NN̄)2π short-range
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operator we are interested in here does not contribute to
the pp → ppπ0 transition that is, therefore, not considered
in the present work. Thus, the only reactions of interest
for this study are pp → (pn/d)π+ and pn → ppπ−. Here
the relevant transitions are 1S0 → 3S1p for the former and
(3S1 − 3D1) → 1S0p for the latter, where the small letter labels
the pion angular momentum. Because the main focus of this
work is on the role of the contact term, we will concentrate on
observables where the final NN system is in an S wave, which
largely simplifies the numerical work. However, as outlined
below, the contribution of NN P waves to observables might be
relevant for the reaction pp → pnπ+. This potential problem
renders this channel not very convenient for the extraction of
the counterterm, as will be discussed in Sec. IV.

To be specific, we calculate in this work the differential
cross sections and analyzing powers for the reactions pp →
dπ+, pp → pnπ+, and pn → (pp)1S0π

−. Here the symbol
(pp)1S0 indicates that in the corresponding measurement the
final pp relative momentum was restricted kinematically to
be less than 38 MeV/c (Mpp − 2MN � 1.5 MeV) that leads
to a projection on the 1S0 pp final state. For all the mentioned
observables experimental data are available or will be available
soon in the energy range of relevance here. In addition to the
anisotropy of the pion angular distributions, all observables
are sensitive to both s- and p-wave pion production. Although
there exists an NLO calculation for s-wave pion production
in pp → dπ+ using ChPT, its theoretical uncertainty is still
sizable [17]. For s-wave pion production accompanied by a
transition of an isospin-1 NN pair to an isospin-1 NN pair (e.g.,
in pp → ppπ0), no sufficiently accurate ChPT calculation is
available at present. Because we focus here on the p-wave
amplitudes, we extract the s-wave amplitudes directly from
the data to minimize the uncertainties of our calculation. The
phase of these amplitudes is then imposed using the Watson
theorem [32]; see the discussion in Sec. IV.

It is well known that p-wave pion production in pp → dπ+
and in pp → pnπ+ is strongly dominated by the transition
1D2 → 3S1p due to a strong coupling of the initial NN state
to the 5S2 N� state [38]. Therefore, the amplitude we are
interested in has only a minor impact on the observables.
In other words, the uncertainty for the extraction of the
counterterm from these reactions will be significant. The
situation is much more promising for the reaction pn →
ppπ−: here the amplitude of interest is the leading p wave.
In addition, the strength of the s-wave amplitude can be taken
from the reaction pp → ppπ0 using isospin symmetry and
correcting for the final-state interaction (FSI) as discussed in
Sec. IV D. Unfortunately, no data are presently available for
pn → ppπ− at sufficiently low energies. Nevertheless, as will
be shown below, already the higher-energy data provide some
insights. In addition, data at lower excess energies will be
available soon [39].

The goal of the present investigation is to explore whether
it is possible to obtain a simultaneous description of all
NN → NNπ channels. A more quantitative study including
a statistical analysis of the data and an estimation of the
theoretical uncertainty is postponed until accurate experi-
mental data will become available for pn → ppπ− at low
energies.

III. FORMALISM

Our calculations are based on the effective chiral La-
grangian with explicit � degrees of freedom. The leading πN

and πN� interaction terms read [40,41]

L(0) = N †
[

1

4f 2
π

τ · (π̇ × π ) + gA

2fπ

τ · �σ · �∇π

]
N

+ hA

2fπ

[N †(T · �S · �∇π )	� + h.c.] + · · · (2)

while the first corrections have the form

L(1) = 1

8MNf 2
π

[iN †τ · (π × �∇π ) · �∇N + h.c.]

− 1

f 2
π

N †
[
c3( �∇π )2 + 1

2

(
c4 + 1

4MN

)

× εijkεabcσkτc∂iπa∂jπb

]
N

− d

fπ

N †(τ · �σ · �∇π )N N †N + · · · . (3)

The ellipses stand for further terms that are not relevant for the
present study. In the equations above fπ denotes the pion decay
constant in the chiral limit, gA is the axial-vector coupling of
the nucleon, hA is the �Nπ coupling, N and 	� correspond
to the nucleon and � fields, respectively, and �S and T are the
transition spin and isospin matrices, normalized according to:

SiS
†
j = 1

3 (2δij − iεijkσk) TiT
†
j = 1

3 (2δij − iεijkτk). (4)

We also emphasize that the effective Lagrangian of Ref. [40]
contains another (N̄N )2π contact operator that can be shown
to be redundant as a consequence of the Pauli principle [14,
23,28].

We are now in the position to discuss the relevant scales
and counting rules for p-wave pion production. We assign the
outgoing two-nucleon relative momentum p′ and the outgoing
pion momentum kπ to be of order of mπ and introduce the
expansion parameter

χ � kπ

p
� p′

p
� mπ

p
� p

MN

� �M

MN

, (5)

where p � pthr is the initial two-nucleon relative momentum.
The counting rules for the time-dependent vertices, such
as, e.g., the Weinberg-Tomosawa (WT) vertex in L(0), are
discussed in detail in Refs. [17,42]. At leading order one finds
that the WT vertex is ∝ 2ωπ with ωπ being the energy of
the outgoing (on-shell) pion. The diagrams contributing to the
production operator at LO and at NLO are shown in Fig. 2,

LO NLO

FIG. 2. (Color online) Leading and next-to-leading diagrams for
the p-wave amplitudes of NN → NNπ . Single (double) solid lines
denote nucleons (�s), dashed lines denote pions, and green ellipses
correspond to the NN wave functions in the initial and final states.
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2
N LO

FIG. 3. (Color online) Diagrams that contribute at NNLO to the
p-wave amplitudes of NN → NNπ . Subleading vertices are marked
as �.

whereas the corresponding graphs at NNLO are depicted in
Fig. 3. At NLO there are only diagrams in which the pion
is produced through the excitation of the � resonance. The
relative suppression of these diagrams as compared to the ones
involving the nucleon is accounted for by the � propagator that
is suppressed by 1/p as compared to 1/mπ in the nucleon case.
To see that the diagrams in Fig. 3 indeed contribute at NNLO
for p-wave pion production consider, as an example, the first
graph in this figure. Its contribution can be estimated using
dimensional analysis as follows:

ωπ

f 2
π

1

p2

kπ

fπ

� 1

f 3
π

kπ

mπ

mπ

MN

. (6)

Here we used that the outgoing pion momentum kπ enters the
πNN vertex to allow for the p-wave amplitude. To understand
the suppression factor this operator should be compared with
the LO contribution kπ/(f 3

π mπ ). Thus, one gets an order χ2

suppression for the first diagram of Fig. 3. Similarly, using the
ππNN vertex from L(1) in combination with the p/fπ scaling
for the πNN vertex one arrives again at a χ2 suppression for
the second diagram in Fig. 3. Further details can be found in
Appendix A that contains explicit expressions for the diagrams
shown in Figs. 2 and 3. Once the amplitudes are evaluated
they need to be convoluted with proper NN wave functions.
Ideally, one would use wave functions derived from the same
formalism, namely ChPT. However, up to now these are only
available for energies below the pion production threshold
[5]. We therefore use the so-called hybrid approach, first
introduced by Weinberg [7], based on the transition operators
derived within the effective field theory and convoluted with
realistic wave functions [37]. This procedure should also
provide reasonable results; however, a reliable uncertainty
estimate is possible only at the level of the transition
operator.

IV. RESULTS AND DISCUSSION

A. Parameters of the calculation

To the order we are working, the following low-energy
constants (LECs) appear in the calculation: fπ , gA, hA, c3,
c4, and d. Only the last LEC cannot be taken from other
sources, for its value strongly depends on the NN wave
functions employed. We adopt the following values of the
parameters: fπ = 92.4 MeV, gA = 1.32, hA � 2.1gA = 2.77,
c3 = −0.79 GeV−1, and c4 = 1.33 GeV−1. The values of
the LECs c3 and c4 are taken from Ref. [43]. From the fit
to πN threshold parameters, two solutions for the ci are

given in Ref. [43] corresponding to the different choices of
hA (hA � 2.1gA and hA � 2.1). The sensitivity of the results
to the different values of c3 and c4 will be also discussed.
As already mentioned in the Introduction, the power counting
scheme calls for a dynamical treatment of the � isobar as a
result of the comparable numerical value of the �-nucleon
mass difference and pthr. The implications of integrating out
the � degrees of freedom for the processes at hand are
discussed in Appendix B.

The deuteron wave function and the NN-scattering ampli-
tudes used in the calculation are generated from the CCF
NN potential [37]. As described above, we do not calculate
the s-wave pion amplitudes in this work but rather take both
their strength and the phases directly from experiment. To
be specific, for the reaction pn → ppπ− we aim at the
description of the double differential cross sections and the
analyzing power measured at TRIUMF [44,45] and PSI [46].
Following the Watson theorem to parametrize the relevant
3P0 → 1S0s amplitude, we use the ansatz C̃e

iδ3P0 	
(+)
p′ (r = 0),

where the inverse Jost function in the 1S0 partial wave,
	

(+)
p′ (r = 0), and the initial phase shift δ3P0 are calculated from

the NN model used, and the parameter C̃ is fitted to reproduce
the corresponding amplitude extracted from the TRIUMF data
using a partial-wave analysis [45,47]. It is interesting to note
that the 3P0 → 1S0s amplitude from the TRIUMF analysis
at1 η = 0.66 (Tlab = 353 MeV) is about 25% larger than that
extracted from the pp → ppπ0 measurement at CELSIUS
[48]. A similar inconsistency is discussed in Ref. [49], where
it is argued that the total cross sections at low energies for
pp → ppπ0 recently measured at COSY are about 50% larger
than those at CELSIUS and IUCF as a result of the missing
acceptance at small angles for both CELSIUS and IUCF.

For the reaction pp → dπ+ the s-wave amplitude occurs
in the 3P1 → 3S1s partial wave and can be related to the
total cross section at threshold. The most precise way of
getting this quantity is to extract it from the width of pionic
deuterium atom, measured at PSI with high accuracy [50,51].
This procedure gives the following value of α, the total cross
section divided by η : α = 252+5

−11 µb [52]. Thus, we adjust
the magnitude of the 3P1 → 3S1s amplitude to be in agreement
with this observable.

As mentioned above the value of d depends on the NN
interaction employed and on the method used to regularize the
overlap integrals. Indeed, in Refs. [14,28] a strong sensitivity
of the LEC d to the regulator is reported. It therefore does
not make much sense to compare values for d as found
in different calculations. What makes sense, however, is to
compare results on the level of observables and this is what we
will do below. We will adjust the value of d in such a way to
get the best simultaneous qualitative description of all channels
of NNπ .

1Traditionally, the energy in the pion production reactions is given
in terms of η, the (maximum) pion momentum allowed in units of the
pion mass.
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FIG. 4. (Color online) Results for A2/A0 [see Eq. (7)] (left panel) and the analyzing power at 90◦ (right panel) for the reaction pp → dπ+

for different values for the strength of d [in units 1/(f 2
π MN )]. Shown are d = 3 (red solid line), d = 0 (black dashed line), and d = −3 (blue

dot-dashed line). The data are from Refs. [53–57]. The strength and phase of the s-wave amplitude is fixed from data.

B. Reaction p p → dπ+

We begin with a discussion of the results for the reaction
pp → dπ+. In Fig. 4, we compare our calculation for
various values of d with the experimentally available angular
asymmetry parameter A2/A0. The coefficients Ai are related
to the unpolarized differential cross section via

dσ

d�
= A0 + A2P2(cos θπ ) (7)

with P2(x) being the second Legendre polynomial and θπ

the pion angle in the center-of-mass frame. We also show
results for the analyzing power at 90◦. In both cases the
observables are plotted as functions of the parameter η. Here
and in what follows, the value of the LEC d is always given
in units 1/(f 2

π MN ). Notice that at low energies, it is sufficient
to just show the analyzing power at 90◦ because its angular
dependence is proportional to sin θπ . To illustrate this we
also present in Fig. 5 the analyzing power as a function of
the scattering angle for two different energies η = 0.14 and
η = 0.21. At η � 0.5 the angular dependence of the analyzing
power starts to deviate significantly from sin θπ due to the onset
of d waves. Clearly, at these (and higher) energies we cannot
expect our calculation to agree with the data anymore. As can
be seen from the figures, the data at small η, especially the
analyzing power, prefers a positive value for d; our fit resulted
in d = 3 for the best value. To demonstrate the effect of the
LEC d on the observables, in Fig. 5 and in subsequent figures
we also give the results with d = 0 and with the negative LEC
d = −3.

C. Reaction pn → ppπ−

We now turn to the reaction pn → ppπ−. As it was
explained in Sec. II, for this reaction channel the relevant
pion p wave occurs in conjunction with the two-nucleon pair
in the 1S0 state. It is known experimentally that in the isospin-1
channel the final P -wave diproton contributions (Pp and Ps)
start growing with the energy rather rapidly so that already for
excess energies around 30 MeV they provide about 50% of
the total cross section [48]. Therefore, to be sensitive to our
particular amplitude one needs to isolate experimentally the
S-wave diproton state by putting kinematical cuts on the two-

nucleon relative momentum. This is exactly what was done in
the experimental study of pn → ppπ− at TRIUMF [44,45].
In particular, they measured the differential cross section
d2σ/(d�dm2

pp) and analyzing power Ay for Tlab = 353 MeV
(η = 0.66), where the final diproton relative momentum p′
was restricted to be not larger than 38 MeV/c (Mpp − 2MN �
1.5 MeV). A similar measurement for the analyzing power
was also performed at PSI [46] for Tlab = 345 MeV and pp

invariant masses Mpp − 2MN < 6 MeV. It is interesting to
note that the positions of the peaks in Ay seem to differ
somewhat in these experiments (see Fig. 6), although the
data of Ref. [46] have much larger uncertainties than those of
Ref. [44]. Unfortunately, presently data for pn → ppπ− are
available only at such high energies where our corresponding
results in the pp → dπ+ channel already start to deviate
considerably from the experiment. Therefore, for the reaction
pn → ppπ− we expect likewise only a qualitative description.

-0.2

-0.1

0

A
y

0 45 90 135 180
θπ (deg)

-0.3

-0.2

-0.1

0

A
y

FIG. 5. (Color online) Results for the analyzing power at η =
0.14 (upper panel) and η = 0.21 (lower panel) as functions of the
angle θπ for the reaction pp → dπ+ for different values of d . Shown
are d = 3 (red solid line), d = 0 (black dashed line), and d = −3
(blue dot-dashed line). The data are from Ref. [56]. The strength and
phase of the s-wave amplitude is fixed from data.
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FIG. 6. (Color online) Results for d2σ/d�πdM2
pp (left panel) and Ay (right panel) for pn → pp(1S0)π−. Shown are the results for d = 3

(red solid line), d = 0 (black dashed line), and d = −3 (blue dot-dashed line). The data are from TRIUMF [44,45] (black squares) and from
PSI [46] (blue circles).

Nevertheless, a comparison with the experimental data in this
channel is also quite instructive and shows a preference for a
positive value of d as visualized in Fig. 6. Fortunately, there
will soon be a measurement for the same observables at lower
energies at COSY [39]. Once these data will be available we
should be able to draw more quantitative conclusions on the
value of the parameter d needed for the reaction pn → ppπ−.

D. Reaction p p → pnπ+

The reaction pp → pnπ+ is the most difficult and the
least convenient one for the extraction of the contact term. In
addition to the fact that here, as in pp → dπ+, pion p-wave
production is mainly driven by the 1D2 initial state, in addition
NN P waves contribute for isospin-1 as well as for isospin-zero
NN final states. At the energies considered in the experimental
investigation, η = 0.22, 0.42, and 0.5, the Pp amplitudes may
contribute significantly [48,58,59]. They should be particularly
important in view of the smallness of the 1S0 amplitude—even
small contributions to A2, see Eqs. (7) and (9), can affect
the partial-wave analysis considerably. In the partial-wave
analysis performed in Ref. [36], these Pp contributions were
not taken into account at all. Also there are contributions to A0

from the isospin-1 NN final states that potentially increase the
uncertainty of the analysis, especially in view of the differences
in the experimental results in pp → ppπ0 as already discussed
above. These arguments alone cast serious concerns on the
partial-wave analysis performed in Ref. [36]. But there is an
even more direct evidence of problems with the extraction of
the partial-wave amplitudes of Ref. [36] that we now discuss
in detail. The observables measured for the reaction �pp →
pnπ+ in Ref. [36] include the coefficients A0 and A2 in the
differential cross section, see Eq. (7) and the analyzing power
Ay(90◦). Neglecting the Pp contributions these observables
can be expressed in terms of the three partial-wave amplitudes
with the isospin-zero pn-state a0(1S0 → 3S1p) (the single
amplitude, where the (NN̄ )2π contact term contributes),
a1(3P1 → 3S1s), and a2(1D2 → 3S1p) and the contribution of
the isospin-1 channel denoted as AI=1

0 via

A0 = |a0|2 + |a1|2 + |a2|2
4

+ AI=1
0 , (8)

A2 = |a2|2
4

− 1√
2

Re[a0a
∗
2 ], (9)

Ay(90◦)

(
A0 − A2

2

)
= 1

4
(
√

2Im[a1a
∗
0 ] + Im[a1a

∗
2 ]), (10)

where (A0 − A2/2) is just dσ/d�(90◦) from Eq. (7). Using
the system of Eqs. (8)– (10) one can determine the amplitudes
a0, a1, and a2 provided one knows the isospin-1 piece AI=1

0 .
The latter was extracted in Ref. [36] from the measurement
of the total cross section in the reaction pp → ppπ0 reported
in Ref. [60]. However, the FSI in the pp → ppπ0 reaction is
very different to that in the pp → pnπ+ channel. To estimate
the difference note that in the energy region studied, which
is less than 20 MeV, the dominant partial wave is the one
where the final two-nucleon state is in the S wave. In this
case the correction factor would be proportional to the ratio
of the inverse Jost functions squared integrated over the phase
space

R =
∫

d3p′kπ |Fpn(p′)|2∫
d3p′kπ |F CC

pp (p′)|2 , (11)

where Fpn(p′) and F CC
pp (p′) are the inverse Jost functions for

the pn and pp 1S0 states, respectively. As discussed above,
although the Jost function itself depends on the NN model
used, its energy dependence does not. We may, therefore,
evaluate R using any sensible model for the NN interaction.
For a separable NN potential there exists an analytic expression
for the Jost function in the pp system in the presence of the
Coulomb interaction [61,62]. Using it one finds that the ratio R

is about 1.5 for η = 0.22 and about 1.2 for η = 0.42. Similar
results are obtained using the CCF NN interaction [37]. Thus,
compared to the original analysis performed in Ref. [36],
the isospin-1 contribution at η = 0.22 should be enhanced
by more than a factor of two if, in addition, one utilizes the
new, larger experimental data from COSY for the total cross
section for pp → ppπ0 [49]. This change, of course, will
significantly affect the results of the partial-wave analysis.
Given the above difficulties with the partial-wave analysis
of Ref. [36], we decided to compare our results directly to
the experimentally measured quantities. Aiming presently at a
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FIG. 7. (Color online) Results for the magnitude of A2 (left panel)
and Ay(90◦)(A0 − A2/2) (right panel) for the reaction pp → pnπ+

for different values of the contact term. The notation of curves is the
same as in Fig. 4. The data are from Ref. [36].

qualitative description of the data, we will not include the Pp
states in this work.

The results of our calculation for A2 are shown in Fig. 7.
Again, positive values of the contact term with d ∼ 3 seem
to be preferred. We emphasize, however, that these results
should be treated with care because the calculations at higher
energies can be affected by P -wave contributions, whereas
the lowest point is not very sensitive to the value of d due
to the large experimental uncertainty. We can also check
whether our results are consistent with the measurement of
the analyzing power that is related to our amplitudes via
Eq. (10). To allow for this comparison, however, we need to
know the pion s-wave amplitude a1. At present, this quantity is
known theoretically only up-to-and-including terms at NLO.
Therefore, to minimize the uncertainty of the current study,
we extract this amplitude directly from data on the total
cross section in pp → pnπ+ through Eq. (8). We employ the
amplitude AI=1

0 consistent with the data at COSY and correct
for the FSI factor as described above and take the amplitudes
a0 and a2 from our NNLO calculation. In the right panel of
Fig. 7 we compare our results for Ay(90◦)(A0 − A2/2) with
the corresponding data. Because we use the experimental total
cross sections to extract a1, our results, given by red (d = 3),
black (d = 0), and blue (d = −3) squares in the right panel of
Fig. 7, can be presented at specific energies only. The squares
include the experimental uncertainty in the total cross section
A0 used to extract a1. To guide the eye, we also show the
results of interpolations between the three energies. It is seen
that the magnitude Ay(90◦)(A0 − A2/2) is much less sensitive
to the value of the LEC d than, e.g., A2. Note further that the
experimental points do not include a 12% uncertainty due to
systematic errors in A0 and A2.

Because we do not know the contribution of the NN P

waves to the pp → pnπ+ observables at present, and an
improved partial-wave analysis would require a careful study
of various uncertainties, we do not try to extract a0 from the
data. However, to illustrate the potential effect of the changes
discussed above (up to NN P waves) on a0, in Fig. 8 we show
the results of our calculation for a0 in comparison to the old
extraction of Ref. [36]. Evidently, although all data presented
in Ref. [36] are in a good agreement with our calculation (as
demonstrated in Fig. 7), the partial-wave amplitude is not at
all described; see the solid curve for our results with d = 3 in

0.2 0.3 0.4 0.5
η

-0.6

-0.4

-0.2

0

0.2

a 0  (
µb

1/
2 )

FIG. 8. (Color online) Comparison of a0 as it results from our
analysis in comparison to the partial-wave amplitude extracted in
Ref. [36]. The notation of curves is the same as in Fig. 4. Because
our calculations well describe all observables of Ref. [36], this figure
nicely illustrates the problem of the partial-wave decomposition of
this reference.

Fig. 8, which illustrates clearly that the partial-wave solution
given in Ref. [36] should be abandoned. It is interesting to
note that in Ref. [31] it was stressed that a positive value for
a0 is necessary to achieve a result for pion production that is
consistent with the ones for the weak rates. This is in accord
with our findings based solely on the data for NN → NNπ .
Here we do not aim at a more quantitative comparison
with Ref. [31], because of the technicalities discussed in the
beginning of Sec. II.

Finally, we would like to discuss the sensitivity of our
results to the parameters ci . As shown in Appendix A, for
the 1S0 → 3S1 or 3S1 → 1S0 NN transitions the parameters ci

occur in the combination C
3S1
i = c3/2 + c4 + 1/(4MN ). This

combination appears to be largely constrained by the πN data
because the different sets of ci from the recent analysis [43]
give basically the same value for C

3S1
i . In addition, to the

order we are working at, this combination is fully absorbed
in the counterterm because the corresponding potential for
NN → NNπ , see the second diagram in Fig. 3, is just a constant
up to higher-order terms

V
ci

1S0,3S1
∼ C

3S1
i

( �p − �p ′)2

( �p − �p ′)2 + m2
π

= C
3S1
i [1 + O(χ2)]. (12)

Due to a coupled-channels effect, the same combination of ci

also contributes in the 3D1 → 3S1 → 1S0p partial wave. The
situation is different when D waves contribute at the level of the
transition operator. The combinations of ci in the 3D1 → 1S0p

amplitude for pn → ppπ− and in the 1D2 → 3S1p amplitude
for pp → (d/pn)π+ will influence the observables, for at the
order we are working at there is no contact term that can
absorb the resulting dependence on the LECs ci . It is worth
mentioning that the combinations of ci in these partial waves
are constrained only weakly by πN data. In particular, the
combination of ci in the 3D1 partial wave, C

3D1
i = c3 − c4 −

1/(4MN ), changes from 2 to 7 depending on which of the
sets of ci given in Ref. [43] is used. Thus, we conclude that
the reaction NN → NNπ may serve as an additional source
of information to constrain the ci’s, complementary to the
πN [43,63] and NN [64] data (see, however, Ref. [65] for
some criticism). However, for a more quantitative study of
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the constraints implied by pion production, and by πN - and
NN-scattering data, a more complete and consistent analysis
is necessary, which we postpone to a future work.

V. SUMMARY AND OUTLOOK

We performed a calculation of p-wave pion production
amplitudes in NN collisions in three different channels (pn →
ppπ−, pp → dπ+, and pp → pnπ+) in the framework
of chiral effective field theory. The relevant partial-wave
transition that depends on the (NN̄ )2π low-energy constant
d is 3S1 → 1S0p for the first channel and 1S0 → 3S1p for the
others. Therefore, it is clear that the study of different channels
of the pion production reaction NN → NNπ probes the
corresponding operator in very different kinematical regimes
and, thus, provides a nontrivial test for the validity of the
employed approach. Our analysis of all the three channels
resulted in values for the LEC d that are consistent with
each other. In addition, we also point out an inconsistency
in the partial-wave analysis for pp → pnπ+ carried out in
Ref. [36]. Our findings can be interpreted as an indication
that the source of the discrepancy reported in Ref. [31] is not
due to the difference in the kinematics between NN → NNπ

and tritium β decay but rather caused by the inconsistency in
the partial-wave analysis for pp → pnπ+ as well as by some
technicalities with respect to the work of Ref. [31] that we also
discussed in our article.

Our investigation implies that calculations within effective
field theory yield reliable results for pion production in NN
collisions utilizing the same value for d even though the cor-
responding contact term enters at very different kinematics in
the reactions pn → ppπ−, pp → dπ+, and pp → pnπ+. To
confirm this conjecture, (i) one needs to reanalyze the reaction
pp → pnπ+ using the complete experimental information
available for pp → ppπ0 as input and (ii) one needs new data
for the process pn → ppπ− at lower energies. We would like
to stress that the near-threshold measurement of the reaction
pn → (pp)1S0π

−, where (pp)1S0 signifies that the final pp

state is constrained to be in the S wave by a kinematical
cut, is the cleanest way to extract information on the contact
term from pion production processes. Such measurements
are already under way at COSY. Indeed, in the near future
both pp → (pp)1S0π

0 and pn → (pp)1S0π
− will be measured

even with polarized initial state [39]. In addition, a consistent
calculation for both tritium β decay as well as low-energy
pd scattering should be performed. We plan to perform these
calculations in the future.
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APPENDIX A: REACTION AMPLITUDES

In this Appendix we present expressions for the matrix
elements for the reactions we consider. To calculate them, we
used the technique developed in Ref. [66].

1. General considerations

Let us consider pionic reactions involving the NN system,
for example NN → NNπ, πd → NN, and so on. In the most
general case, an amplitude corresponding to the matrix element
of a particular production and/or absorption operator between
states with given initial (j, l, s) and final (j ′, l′, s ′) total angular
momentum of a nucleon pair, its orbital momentum and total
spin2 is written as

Afull[j ls, j ′l′s ′] = Atree[j ls, j ′l′s ′] + AFSI[j ls, j ′l′s ′]
+AISI[j ls, j ′l′s ′] + AISI+FSI[j ls, j ′l′s ′],

(A1)

where “tree” stands for the tree production amplitude, i.e.,
where there is no NN (or N�) interaction both in the initial
and in the final state, and FSI, ISI, ISI + FSI refer to the
amplitudes with final state, initial state, and both final- and
initial-state interaction included, in order. In this equation we
imply that the spin-angular part (as well as the isospin part) of
the amplitudes are factored out. Note that because there is a
third particle that carries angular momentum, the pion, the total
angular momentum j of the initial two-nucleon state can differ
from that of the final two-nucleon state, j ′. Obviously, the total
angular momentum of the final particles has to be equal to that
of the initial ones. Given the tree amplitude as a function of the
initial p and final p′ relative momenta,Atree[j ls, j ′l′s ′](p, p′),
the remaining amplitudes are given by the following formulas:

AFSI[j ls, j ′l′s ′]

=
∑
l′′,s ′′

∫
d3q

(2π )3

Atree[j ls, j ′l′′s ′′](p, q) M[j ′, l′′s ′′, ls](q, p′)
4M1′M2′[q2/(2µ1′2′) − E′ − i0]

,

(A2)

2To unambiguously specify the partial wave, the pion angular
momentum should, in general, also be given. We, however, omit
it because it is only the p-wave pion production that is considered
here.
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AISI[j ls, j ′l′s ′] =
∑
l′′,s ′′

∫
d3q

(2π )3

M[j, ls, l′′s ′′](p, q) Atree[j l′′s ′′, j ′l′s ′](q, p′)
4M1M2[q2/(2µ12) − E − i0]

, (A3)

AISI+FSI[j ls, j ′l′s ′] =
∑
l′′,s ′′

∑
l′′′,s ′′′

∫
d3q

(2π )3

d3�

(2π )3

M[j, ls, l′′s ′′](p, q) Atree[j l′′s ′′, j ′l′′′s ′′′](q, �) M[j ′, l′′′s ′′′, l′s ′](�, p′)
4M1M2

[
q2/(2µ12) − E − i0

] × 4M1′M2′
[
�2/(2µ1′2′) − E′ − i0

] , (A4)

where M1,2(M1′,2′ ) are the masses of the particles in the
intermediate state that are related via the NN interaction to the
initial (final) state, µ12(µ1′2′ ) are the corresponding reduced
masses, E(E′) is the energy of the initial (final) two-nucleon
state in its center-of-mass frame, M[j, lisi , lf sf ] is the NN
half–off-shell M matrix corresponding to a transition from
the state (j lisi) to the state (j lf sf ), and the sums are over
all the intermediate states with given j, j ′, l, l′, s, and s ′.
We use the following relation between the M matrix and
the commonly used T matrix: M = −8π2

√
M1M2M3M4T ,

where the Mi are the masses of interacting particles.
The formulas given above also hold for the case when there

is a transition through an intermediate N� state going to a final
(from an initial) state via an NN-N� interaction. In this case
the NNM matrices have to be replaced by the appropriate
NN-N� matrices, and the propagators entering Eqs. (A2)–
(A4) that correspond to the N� intermediate state have to be
modified according to

1

4M1M2[q2/(2µ12) − E − i0]

−→ 1

4
√

2M1M2[q2/(2µ12) − (E − �M) − i0]
, (A5)

where �M is the nucleon-� mass difference (note also the
factor 1/

√
2). Of course, a tree diagram with a N� initial or

final state gives a nonzero contribution only when it is inserted
as a building block into those of FSI and ISI diagrams that
have N� as an intermediate state.

In case of a deuteron in the final state, the corresponding
Mmatrices should be replaced by the deuteron wave functions
according to

AFSI[j ls, 1]

= 1√
2MN

∑
l′′

∫
d3q

(2π )3
Atree[j ls, 1l′′s ′′](p, q)il

′′
ψl′′(q),

(A6)

where ψl′′ (q) are the deuteron wave functions corresponding
to the angular momentum l′′, normalized by the condition∫

d3q

(2π )3
{[ψ0(q)]2 + [ψ2(q)]2} = 1. (A7)

Thus, the two-nucleon propagator for the deuteron in the final
state is absorbed in the wave functions and the normalization
has changed. Analogous expressions can be written down for
the deuteron in the initial state and also for the deuteron in the
initial and final states. Note that in the case of the deuteron in
the inital and/or final state the tree diagrams appear only as
building blocks for the calculation of the ISI/FSI and ISI + FSI

diagrams according to Eqs. (A2)–(A4) and (A6), respectively.
They do not contribute independently because then there are
no free nucleons in the initial and/or final state.

2. The reaction pn → ppπ−

Here and below we use the spectroscopic notation 2S+1LJ

for the NN and N� partial waves rather than the [j ls] notation
used in the previous section. The transitions that contribute
to the reaction pn → ppπ− at energies close to threshold
are 3S1 → 1S0p, 3D1 → 1S0p in the isospin-zero initial state,
and 3P0 → 1S0s in the isospin-1 initial state. The spin-angular
structure of the amplitude reads

Mpn→ppπ−

= {
A1( �Sp̂) + C1( �S k̂π ) + C2 �S[

(p̂k̂π )p̂ − 1
3 k̂π

]}
I ′†,

(A8)

where �S = χT
2

σ2√
2
�σχ1, I ′ = χT

2′
σ2√

2
χ1′ denote normalized spin

structures corresponding to the initial spin-triplet and final
spin-singlet states, in order. Here and below, p̂, p̂ ′, k̂π denote
unit vectors of initial and final relative momenta of two
nucleons and that of the pion momentum, respectively,
and the χ ’s with corresponding indices stand for the spinors
of the initial and final nucleons. In turn, A1, C1, and C2 are
the amplitudes corresponding to the 3P0 → 1S0s, 3S1 → 1S0p,
and 3D1 → 1S0p transitions, in order. They are related to the
corresponding amplitudes in the JLS basis via

A1 = 1√
3
Afull

[3
P0,

1S0
]
, (A9)

C1 = Afull[3
S1,

1S0
]
, (A10)

C2 = 3√
2
Afull

[3
D1,

1S0
]
. (A11)

The observables we consider are expressed in terms of these
amplitudes in the following way:

d2σ

d�dm2
pp

= 1

4�M2
pp

1

(4π )4MNsp

∫ pcut

0
kπ (p′)p′2dp′

×
{
|A1|2 +

∣∣∣∣C1 − C2

3

∣∣∣∣
2

+ 2Re

[
A∗

1

(
C1 + 2C2

3

)]
cos θπ

+
[

2Re (C∗
2C1) + |C2|2

3

]
cos2 θπ

}
, (A12)
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Ay × d2σ

d�dm2
pp

= 1

4�M2
pp

1

(4π )4MNsp

∫ pcut

0
kπ (p′)p′2dp′

×
{

sin 2θπ Im (C∗
1C2)

− 2 sin θπ Im

[
A∗

1

(
C1 − C2

3

)]}
, (A13)

where pcut is the maximum relative momentum of the final
protons in the measurements at TRIUMF [44,45], �M2

pp =
(2MN + p2

cut/MN )2 − (2MN )2 ≈ 4p2
cut, kπ (p′) is the momen-

tum of the final pion, and s and p are the invariant energy
squared and the relative momentum of the initial nucleons, in
order.

Below we give the expressions for the tree amplitudes
A[3S1,

1S0],A[3D1,
1S0] resulting from various pion production

mechanisms as well as those for the relevant production
amplitudes involving the � isobar. Note that from here on we
suppress the label “tree” on the tree-level transition amplitudes.
We also explain how we extract A1 from experimental
data.

a. Direct production

A[3S1,
1S0](p, p′) = C

∫
d��kπ

4π

[
−kπ + ωπ

MN

( �p ′k̂π )

]
× (2π )3δ(3)( �p ′− �p + �kπ/2) , (A14)

A[3D1,
1S0](p, p′) = C√

2

∫
d��kπ

4π

[
−kπ [3(p̂k̂π )2−1]

+ ωπ

MN

[3(p̂k̂π )(p̂ �p ′)−( �p ′k̂π )]

]
× (2π )3δ(3)( �p ′− �p + �kπ/2) , (A15)

where C = −i 8M2
N gA

fπ

√
2

and ωπ = √
k2
π + m2

π is the energy of the
final pion. Here we included both the leading πNN vertex and
its recoil correction that enters at NNLO.

b. Production via the �(1232) isobar

The �(1232) contribution comes from the N� intermediate
states. In the reaction pn → ppπ− with the initial isospin of
the pn system being I = 0, the N� ↔ NN transitions are
allowed only in the final-state interaction. As we consider
those kinematical configurations where the relative kinetic
energy of the final protons is small, it is only the 1S0 final
state that contributes. Therefore, the only coupled channels
where the �(1232) contributes is 5D0(N�) → 1S0(NN ). For
p-wave pions the relevant amplitudes that correspond to the
3S1(NN ) → 5D0(N�) and 3D1(NN ) → 5D0(N�) transitions
in the production operator read:

A
[

3S1,
5D0

]
(p, p′) = C�

∫
d��kπ

4π
{−kπ [3(p̂ ′k̂π )2 − 1]}

× (2π )3δ(3)( �p ′− �p + �kπϑ), (A16)

A
[

3D1,
5D0

]
(p, p′) = C�√

2

∫
d��kπ

4π

{− kπ [9(p̂ ′p̂)(p̂ ′k̂π )(p̂k̂π )

− 3(p̂k̂π )2−3(p̂ ′k̂π )2 + 1]
}

× (2π )3δ(3)( �p ′− �p + �kπϑ) , (A17)

where C� = −i 8MN M�hA

3fπ

√
2

√
MN

M�
, and ϑ = MN

MN +M�
and p′ is the

relative momentum of the N� state.

c. Rescattering via the s-wave WT vertex

A[3S1,
1S0](p, p′) = −C ωπkπ

2f 2
π

∫
d� �p
4π

1

( �p − �p ′)2 + m2
π

×
[

1 − 2( �p − �p ′)2

3
[
( �p − �p ′)2 + m2

π

]
]

, (A18)

A[3D1,
1S0](p, p′) = C ωπkπ

3f 2
π

√
2

∫
d� �p
4π

× 3( �p ′p̂ − p)2 − ( �p − �p ′)2[
( �p − �p ′)2 + m2

π

]2 . (A19)

Note that in these expressions, and also in the expressions
for the amplitudes that stem from operators with c3, c4, and
recoil corrections to the WT vertex (see below), we keep only
the leading term in the expansion in powers of kπ/p. The
same is true for the corresponding amplitudes in the reactions
pp → dπ+ and pp → pnπ+.

d. Operators with c3, c4, and recoil corrections to the WT vertex

A[3S1,
1S0](p, p′) = 4C kπ

3f 2
π

∫
d� �p ′

4π

[
C

3S1
i

( �p − �p ′)2

( �p − �p ′)2 + m2
π

+ 1

8MN

p′2 − p2

( �p − �p ′)2 + m2
π

]
, (A20)

A[3D1,
1S0](p, p′) = 2C kπ

3f 2
π

√
2

∫
d� �p ′

4π

×
{
C

3D1
i

3( �p ′p̂ − p)2 − ( �p − �p ′)2

( �p − �p ′)2 + m2
π

+ 1

4MN

3[( �p ′p̂)2 − p2] − p′2 + p2

( �p − �p ′)2 + m2
π

}
,

(A21)

where C
3S1
i = c3

2 + c4 + 1
4MN

, C
3D1
i = c3 − c4 − 1

4MN
.

e. Contact term

A
[

3S1,
1S0

]
(p, p′) = 2C kπ

gA

d , (A22)

A
[

3D1,
1S0

]
(p, p′) = 0. (A23)
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f. Coulomb interaction

Because the final two protons are at low relative momenta,
there are sizable effects from the Coulomb interaction between
the two protons. The effect of the Coulomb interaction was
taken into account along the lines of Refs. [67,68]. To be
specific, we multiply all tree diagrams that do not contain the
� isobar by the Gamow-Sommerfeld factor

G(p′) =
[

2πγ (p′)
exp 2πγ (p′) − 1

]1/2

,

(A24)
γ (p′) = MN

2αp′ ,

where α is the electromagnetic fine structure constant. At
the same time, the half–off-shell ppM matrix in the 1S0

partial wave that we use in our calculation is corrected for
the Coulomb interaction according to

MCC(q, p′) = M(q, p′)
G(q)

G(p′)
MCC(p′, p′)
M(p′, p′)

, (A25)

where M(q, p′) and MCC(q, p′) are, in order, the half–off-
shell ppM matrices without and with the inclusion of the
Coulomb interaction, whereas M(p′, p′) and MCC(p′, p′) are
the corresponding pp on-shell M matrices. See Ref. [67] for
more details.

As far as diagrams with the � are concerned, where we have
the transition 5D0(N�) → 1S0(NN ), we apply the following
argument to take into account the Coulomb interaction. First,
we note that the typical relative momenta of the intermediate
N� state are large so that the Coulomb interaction in this
intermediate state is expected to be unimportant. To take into
account the Coulomb interaction between the protons in the
final state, we multiply the amplitude with N� by the ratio of
the inverse Jost functions

GN�(p′) = F CC
pp (p′)

Fpp(p′)
, (A26)

where F CC
pp (p′) and Fpp(p′) are the pp inverse Jost functions

with and without Coulomb interaction, respectively. They are
related to the corresponding M matrices via

F CC
pp (p′) = G(p′) + 1

4MN

∫
d3q

(2π )3

G(q)MCC(q, p′)
q2 − p′2 − i0

,

(A27)

Fpp(p′) = 1 + 1

4MN

∫
d3q

(2π )3

M(q, p′)
q2 − p′2 − i0

. (A28)

Notice that the overall normalization of the Jost functions is
of no relevance, for they occur only in the ratio (however, both
Jost functions have to have the same normalization factors).

g. The contribution of the I = 1 initial state

We write A1 in Eq. (A8) in a form that takes into account
the ISI phase as well as the dependence of the final-state Jost
function on the momenta:

A1 = i X exp(iδ
3P0 )F CC

pp (p′). (A29)

The constant (real) factor X is adjusted in such a way to
reproduce the corresponding amplitude extracted from the
TRIUMF data using a partial-wave analysis [45,47]. The sign
of X is adjusted to the behavior of observables in pn → ppπ−.

3. The reaction p p → dπ+

The transitions that contribute to the reaction pp → dπ+
at energies close to threshold are 1S0 → 3S1p, 1S0 → 3D1p,
1D2 → 3S1p, 1D2 → 3D1p, and 3P1 → 3S1s, 3P1 → 3D1s. The
spin-angular structure of the amplitude reads

Mpp→dπ+ = {
C0 ( �S × p̂ )�ε + C1I(k̂�ε )

+C2 I
[
(p̂k̂)(p̂�ε ) − 1

3 (k̂�ε )
]}

, (A30)

where �ε is the deuteron polarization vector, �S = χT
2

σ2√
2
�σχ1,

I = χT
2

σ2√
2
χ1 are normalized spin structures corresponding to

the initial spin-triplet and spin-singlet states, in order. Here, the
χ ’s refer to spinors of the initial nucleons, and C0, C1, and C2

are the amplitudes corresponding to the 3P1 → �ε s, 1S0 → �ε p,
and 1D2 → �ε p transitions, in order. Further, we denote the
final states as �ε l, where �ε stands for the deuteron final state,
and l is the angular momentum of the final pion relative to
the deuteron. The amplitudes C0, C1, and C2 are related to the
corresponding amplitudes in JLS basis via

C0 =
√

3

2
Afull

[
3P1, 1

]
, (A31)

C1 = Afull
[

1S0, 1
]
, (A32)

C2 =
√

15

2
Afull

[
1D2, 1

]
. (A33)

Note that, as it can be seen from Eq. (A6), the amplitudes of
the transitions to the deuteron state are sums of the amplitudes
where the transition goes to the S-wave component and
those where the transition goes to the D-wave component
of the deuteron wave function. Note also that here the total
amplitudes are distinguished only by the initial state, as
the final state, the deuteron, is the same for all transitions.
However, at the level of tree amplitudes, one has to distinguish
between the ones that correspond to transitions to the S-wave
component and those to the D-wave component.

The observables under consideration are expressed through
the amplitudes C0, C1, and C2 as

dσ

d�
= kπ

256π2sp

[
2|C0|2 + |C1|2 + 1

9
|C2|2(3 cos2 θπ + 1)

+ 2

3
Re (C1C

∗
2 )(3 cos2 θπ − 1)

]
, (A34)
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Ay × dσ

d�
= kπ

256π2sp

× 2 sin θπ cos φ Im

[
C∗

0

(
C1 − C2

3

)]
. (A35)

Below, we give expressions for the tree amplitudes
A[1D2,

3D1], A[1D2,
3S1], A[1S0,

3D1], A[1S0,
3S1], contribut-

ing to C1 and C2, as well as those for the relevant production
amplitudes involving the � isobar. We also provide details of
the determination of C0.

a. Direct production

A
[

1S0,
3S1

]
(p, p′) = C

∫
d��kπ

4π

[
− kπ + ωπ

MN

( �p ′k̂π )

]

× (2π )3δ(3)( �p ′ − �p + �kπ/2), (A36)

A
[

1S0,
3D1

]
(p, p′) = C√

2

∫
d��kπ

4π

{
− kπ [3(p̂ ′k̂π )2 − 1]

+ 2ωπ

MN

( �p ′k̂π )

}
(2π)3δ(3)( �p ′− �p+�kπ/2),

(A37)

A
[

1D2,
3S1

]
(p, p′) = C

√
3

10

∫
d��kπ

4π

{
−kπ [3(p̂k̂π )2 − 1]

+ ωπ

MN

[3(p̂ �p ′)(p̂k̂π ) − �p ′k̂π ]

}

× (2π )3δ(3)( �p ′ − �p + �kπ/2) , (A38)

A
[

1D2,
3D1

]
(p, p′) = C√

2

√
3

10

∫
d��kπ

4π

{
−kπ [9(p̂ ′k̂π )

× (p̂ ′p̂)(p̂k̂π ) − 3(p̂k̂π )2 − 3(p̂ ′k̂π )2

+ 1] + 2ωπ

MN

[3(p̂ �p ′)(p̂k̂π ) − �p ′k̂π ]

}

× (2π )3δ(3)( �p ′ − �p + �kπ/2). (A39)

b. Production via the �(1232) isobar

In the reaction pp → dπ+, the initial isospin of the
pp system is I = 1, so the N� ↔ NN intermediate states
are allowed only in the initial-state interaction. The cou-
pled channels that contribute are3 1S0(NN ) → 5D0(N�),
1D2(NN ) → 5D2(N�), and 1D2(NN ) → 5S2(N�). The rele-
vant transitions in the production operator for p-wave pions are
5D0(N�) → 3S1(NN ), 5D0(N�) → 3D1(NN ), 5D2(N�) →
3S1(NN ), 5D2(N�) → 3D1(NN ), 5S2(N�) → 3S1(NN ), and
5S2(N�) → 3D1(NN ). The expressions for the correspond-
ingxs amplitudes read:

3We do not take into account the channel 1D2(NN ) → 3D2(N�)
because the corresponding NN → N�M matrix is subleading
according to the power counting and it is also numerically small
at the energies considered [37].

A
[

5D0,
3S1

]
(p, p′) = C�

∫
d��kπ

4π
{−kπ [3(p̂k̂π )2 − 1]}

× (2π )3δ(3)( �p ′ − �p + �kπ/2), (A40)

A
[

5D0,
3D1

]
(p, p′) = C�√

2

∫
d��kπ

4π
[−kπ [9(p̂ ′p̂)(p̂ ′k̂π )(p̂k̂π )

− 3(p̂k̂π )2 − 3(p̂ ′k̂π )2 + 1]]

× (2π )3δ(3)( �p ′ − �p + �kπ/2) , (A41)

A
[

5D2,
3S1

]
(p, p′) = C�

√
21

20

∫
d��kπ

4π

[−kπ [3(p̂k̂π )2 − 1]
]

× (2π )3δ(3)( �p ′ − �p + �kπ/2), (A42)

A
[

5D2,
3D1

]
(p, p′) = 3

4
C�

√
6

35

∫
d��kπ

4π[
−kπ

[
9(p̂p̂ ′)2 − 6(p̂p̂ ′)(p̂k̂π )(p̂ ′k̂π )

+ 2(p̂k̂π )2 + 2(p̂ ′k̂π )2 − 11

3

]]

× (2π )3δ(3)( �p ′ − �p + �kπ/2), (A43)

A
[5S2,

3S1
]
(p, p′) = C�

√
6

∫
d��kπ

4π
[−kπ ]

× (2π )3δ(3)( �p ′ − �p + �kπ/2), (A44)

A
[5S2,

3D1
]
(p, p′) =

√
3

10
C�

∫
d��kπ

4π

[ − kπ [3(p̂ ′k̂π )2 − 1]
]

× (2π )3δ(3)( �p ′ − �p + �kπ/2). (A45)

c. Rescattering via the s-wave WT vertex

A
[

1S0,
3S1

]
(p, p′) = C ωπkπ

2f 2
π

∫
d� �p
4π

1

( �p − �p ′)2 + m2
π

×
[

1 − 2( �p − �p ′)2

3
[
( �p − �p ′)2 + m2

π

]
]

,

(A46)

A
[

1S0,
3D1

]
(p, p′) = −C ωπkπ

3f 2
π

√
2

∫
d� �p
4π

× 3( �pp̂′ − p′)2 − ( �p − �p ′)2[
( �p − �p ′)2 + m2

π

]2 ,

(A47)

A
[

1D2,
3S1

]
(p, p′) = −C ωπkπ

f 2
π

√
30

∫
d� �p′

4π

× 3( �p ′p̂ − p)2 − ( �p − �p ′)2[
( �p − �p ′)2 + m2

π

]2 , (A48)
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A
[

1D2,
3D1

]
(p, p′) = 3√

2

C ωπkπ

f 2
π

√
30

∫
d� �p′

4π

1

( �p − �p ′)2 + m2
π

[
3(p̂p̂′)2 − 1

2

− 9(p − �p ′p̂)( �pp̂′ − p′)(p̂p̂′) − 3(p − �p ′p̂)2 − 3(p′ − �pp̂′ )2 + ( �p − �p ′)2

3[( �p − �p ′)2 + m2
π ]

]
. (A49)

d. Operators with c3, c4, and recoil corrections to the WT vertex

A
[1S0,

3S1
]
(p, p′) = 4C kπ

3f 2
π

∫
d� �p′

4π

[
C

3S1
i

( �p − �p ′)2

( �p − �p ′)2 + m2
π

+ 1

8MN

p2 − p′2

( �p − �p ′)2 + m2
π

]
, (A50)

A
[

1S0,
3D1

]
(p, p′) = 2C kπ

3f 2
π

√
2

∫
d� �p′

4π

{
C

3D1
i

3( �pp̂′ − p′)2 − ( �p − �p ′)2

( �p − �p ′)2 + m2
π

+ 1

4MN

3[( �pp̂′)2 − p′2] − p2 + p′2

( �p − �p ′)2 + m2
π

}
, (A51)

A
[

1D2,
3S1

]
(p, p′) = 2C kπ

f 2
π

√
30

∫
d� �p′

4π

{
C

3D1
i

3( �p ′p̂ − p)2 − ( �p − �p ′)2

( �p − �p ′)2 + m2
π

− 1

4MN

3[( �p ′p̂)2 − p2] − p ′2 + p2

( �p − �p ′)2 + m2
π

}
, (A52)

A
[

1D2,
3D1

]
(p, p′) = C kπ

f 2
π

√
15

∫
d� �p′

4π

[
C

3D1
i

{
9(p − �p ′p̂)( �pp̂′ − p′)(p̂p̂′)

( �p − �p ′)2 + m2
π

+ −3(p − �p ′p̂)2 − 3(p′ − �pp̂′ )2 + ( �p − �p ′)2

( �p − �p ′)2 + m2
π

}

− 1

4MN

{
9( �p ′p̂ +p)(p ′− �pp̂′)(p̂p̂′)

( �p − �p ′)2 + m2
π

+ −3(p′ + �pp̂′)(p′ − �pp̂ ′) − 3( �p ′p̂ + p)( �p ′p̂ − p) + p′2 − p2

( �p − �p ′)2 + m2
π

}

+ 3

(
c4 + 1

4MN

)
[3(p̂p̂′)2 − 1]( �p − �p ′)2

( �p − �p ′)2 + m2
π

]
. (A53)

e. Contact term

A
[

1S0,
3S1

]
(p, p′) = 2C kπ

gA

d, (A54)

A
[

1S0,
3D1

]
(p, p′) = 0, (A55)

A
[

1D2,
3S1

]
(p, p′) = 0, (A56)

A
[

1D2,
3D1

]
(p, p′) = 0. (A57)

f. Coulomb interaction

For this reaction, the Coulomb interaction between the
initial protons gives only a small effect because the initial
relative momentum is large. On the contrary, the deuteron
and pion in the final state are at low relative momenta,
and the Coulomb interaction between them is taken into
account at the level of experimental data by factoring out the
Gamow-Sommerfeld factors that stem from the π+d Coulomb
interaction; see, e.g., Ref. [54].

g. Pion production in the s wave

To calculate the amplitude of the s-wave pion production,
that is, the value of C0, we took the result of Refs. [17,69],
where the amplitude of the s-wave pion production was

calculated up to NLO. We correct this amplitude by a constant
factor to get at threshold the value of s-wave production
parameter α = 252 µb. This quantity, α, is the total cross
section divided by the final pion momentum in units of the
pion mass, and the given value is extracted from the width of
pionic deuterium [50,51].

4. The reaction p p → pnπ+

The transitions that contribute to the reaction pp → pnπ+
at energies close to threshold are 1S0 → 3S1p, 1S0 → 3D1p,
1D2 → 3S1p, 1D2 → 3D1p, and 3P1 → 3S1s, 3P1 → 3D1s. At
very low energies, the final 3D1 state does not contribute,
however, the transitions to the 3D1 state contribute via the
3D1 ↔ 3S1 coupled channels. At these low energies, the spin-
angular structure of the amplitude reads

Mpp→pnπ+ = [
C̃0 ( �S × p̂ ) �S ′ + C̃1I(k̂ �S ′)

+ C̃2 I[(p̂k̂)(p̂ �S ′) − 1
3 (k̂ �S ′)]

]
, (A58)

where �S = χT
2

σ2√
2
�σχ1, I = χT

2
σ2√

2
χ1, �S ′ = χ

†
1′ �σ σ2√

2
χ∗

2′ are
normalized spin structures corresponding to the initial spin-
triplet, initial spin-singlet, and final spin-triplet states, in order.
Here, C̃0, C̃1, and C̃2 are the amplitudes corresponding to the
3P1 → 3S1s, 1S0 → 3S1p, and 1D2 → 3S1p transitions, in order.
Their relation with the corresponding amplitudes in the JLS

044003-13



V. BARU et al. PHYSICAL REVIEW C 80, 044003 (2009)

basis is given by

C̃0 =
√

3

2
Afull[3P1,

3S1
]
, (A59)

C̃1 = Afull[1S0,
3S1

]
, (A60)

C̃2 =
√

15

2
Afull

[
1D2,

3S1
]
. (A61)

In addition to these amplitudes, there are also amplitudes that
correspond to the transition to the isospin-1 1S0 final pn state.
However, these amplitudes do not interfere with C̃0, C̃1, and C̃2

because of different spins in the final state and generate only
an additive part in the cross section—see also the discussion
in the text. The observables in the reaction pp → pnπ+ can
be expressed through C̃0, C̃1, and C̃2 in the following way:

dσ

d�
= 1

2(4π )4MNsp

∫ pmax

0
kπ (p′)p′2dp′

×
[

2|C̃0|2 + |C̃1|2 + 1

9
|C̃2|2(3 cos2 θπ + 1)

+ 2

3
Re (C̃1C̃

∗
2 )(3 cos2 θπ − 1)

]
+ dσ

d�

I=1

(A62)

Ay × dσ

d�
= 1

2(4π )4MNsp

∫ pmax

0
kπ (p′)p′2dp′

× 2 sin θπ cos φ Im

[
C̃∗

0

(
C̃1 − C̃2

3

)]
. (A63)

Here, pmax is the maximum relative momentum of the final
nucleons, and dσ

d�

I=1
is the contribution of the final pn state

with isospin 1 to the cross section.
The expressions for the transition matrix elements relevant

for the calculation of C̃1 and C̃2 are the same as for the
reaction pp → dπ+, and therefore we refer the reader to the
corresponding formulas, given in Sec. A3 above. However,
we should make a remark about the value of C̃0. Instead
of calculating it at NLO we extracted C̃0 directly from the
data—see the discussion in the main text.

APPENDIX B: RESONANCE SATURATION VS. EXPLICIT
DELTA

In the chiral limit the masses of both the � and the
nucleon stay finite and differ from each other. Thus, there
is a well-defined limit of QCD where mπ/�M , with
�M = M� − MN , is a small parameter. Consequently, the �

degrees of freedom may be integrated out and the effects of
the � isobar are then absorbed into the LECs of the resulting
Lagrangian. However, when the � degrees of freedom are
included dynamically in the NN system, certain selection
rules apply. In particular, the � is allowed to contribute only if
the NN system has the total isospin equal to 1. It is instructive
to discuss the implications of these selection rules for the
reaction NN → NNπ using both the EFT with and without
explicit � degrees of freedom. The corresponding discussion
for πN scattering can be found in Ref. [41].

For simplicity, let us start from elastic πN scattering. Using
the interactions defined in the main text one finds straightfor-

(a) (b)

FIG. 9. Leading diagrams for πN scattering with intermediate
�. Shown are the s-channel (a) and the u-channel (b) contribution.

wardly for diagram (a) of Fig. 9 in the limit �M → ∞

iAπ elast
(a) = −i

(
2MNh2

A

4f 2
π �M

)
(�S · �q ′)Tb(�S† · �q)T †

a

= −i

(
MNh2

A

18f 2
π �M

)
q ′

iqj (2δij − iεijkσk)

× (2δba − iεbacτc), (B1)

where a (b) and �q (�q ′) denote the isospin quantum number and
momentum of the incoming (outgoing) pion. Analogously,
one finds for the u-channel diagram

iAπ elast
(b) = −i

(
2MNh2

A

4f 2
π �M

)
(�S · �q)Ta(�S† · �q ′)T †

b

= −i

(
MNh2

A

18f 2
π �M

)
q ′

iqj (2δij − iεjikσk)

× (2δba − iεabcτc). (B2)

In the second line of the above equation we used Eqs. (4).
Thus, Figs. 9(a) and 9(b) are individually given by four
terms. However, two of them get canceled when adding the
contributions together. The remaining two terms in the sum
exactly resemble the structure of the c3 and c4 terms of the
effective Lagrangian. One then finds for the � contribution to
the LECs ci the following result [41]:

c�
3 = −2c�

4 = h2
A

9�M
. (B3)

Obviously this matching is only possible after adding the
two diagrams together. However, the above-mentioned
selection rules for NN → NNπ are operative at the level of
the individual diagrams. We now show how these two facts
can be realized simultaneously.

In full analogy to the expressions given above, one finds
for the amplitudes corresponding to the diagrams of Fig. 2
involving the �:

iA(c) = −
(

M2
NgAh2

A

18f 3
π �M

)
τ (2)
a (σ (2) · �q)

1

q2 − m2
π

q ′
iqj

× (
2δij − iεijkσ

(1)
k

) (
2δba − iεbacτ

(1)
c

)
= −

(
M2

NgAh2
A

18f 3
π �M

)
τ (2)
a (σ (2) · �q)

1

q2 − m2
π

q ′
iqj

× ([
4δij δba − εijkσ

(1)
k εbacτ

(1)
c

]
− 2i

{
εijkσ

(1)
k δab + δij εbacτ

(1)
c

})
, (B4)

iA(d) = −
(

M2
NgAh2

A

18f 3
π �M

)
τ (2)
a (σ (2) · �q)

1

q2 − m2
π

q ′
iqj

× (
2δij − iεjikσ

(1)
k

)(
2δba − iεabcτ

(1)
c

)
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= −
(

M2
NgAh2

A

18f 3
π �M

)
τ (2)
a

(
σ (2) · �q) 1

q2 − m2
π

q ′
iqj

× ([
4δij δba − εijkσ

(1)
k εbacτ

(1)
c

]
+ 2i

{
εijkσ

(1)
k δab + δij εbacτ

(1)
c

})
(B5)

where in both amplitudes the momentum of the outgoing
(virtual) pion is labeled as q ′ (q). In both amplitudes the terms
in [. . .] exhibit the same spin-isospin structure as the ci terms
discussed above, while those in {. . .} have a different structure.

Therefore, when Figs. 9(c) and 9(d) are added together,
only the structures of the ci parameters survive. However,
due to the above-mentioned selection rules, the diagrams
contribute individually to different channels of NN → NNπ .
To be specific, the Fig. 9(d) vanishes for the isospin-1 to
isospin-zero transition, i.e., for pp → (d/pnI=0)π+, whereas
the Fig. 9(c) does not. Furthermore, once the isospin matrix
element is evaluated for the Fig. 9(c) it turns out that the
expression in {. . .} gives the same contribution as the one from
[. . .]. The same holds for the isospin-zero to the isospin-1
transition, i.e., for pn → ppπ−: Fig. 9(c) does not contribute,
whereas the terms in brackets {. . .} and [. . .] for Fig. 9(d)
are equal. Therefore, in the limit �M → ∞, one indeed
observes both properties simultaneously, namely that the N�

intermediate state does not contribute if the external NN state is
in the isospin-zero state and that the � effects can be absorbed
in local counter terms, namely c3 and c4.

We are now also in the position to see how the pattern
changes when we start to move away from the limit �M →
∞. Then the factors 1/�M that appear in Eqs. (B1)–(B5)
should be replaced by the dynamical N� propagators. One
finds for the resulting combination of the propagators for both
πN scattering and NN → NNπ

1

�M − ωπ

± 1

�M + ωπ

, (B6)

where we used that ωπ � Etot and dropped terms significantly
smaller than mπ . In this expression the upper (lower) sign
refers to the combination of propagators relevant for the terms
that can (cannot) be mapped onto the ci . Thus, the additional
terms are suppressed by

δ = ωπ/�M. (B7)

Numerically δ is already as large as 0.5 at threshold and grows
as one goes to higher energies. Clearly, near the two-pion
production threshold, δ � 1 and it is necessary to keep the �

as dynamical degrees of freedom. See Ref. [70] for a power
counting that allows one to also study the latter regime.
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C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72,
1982 (1994); Phys. Rev. C 53, 2086 (1996).

[41] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys. E
4, 193 (1995).

[42] V. Baru, J. Haidenbauer, C. Hanhart, A. E. Kudryavtsev,
V. Lensky, and U.-G. Meißner, Proceedings of the 11th
International Conference on Meson-Nucleon Physics and the
Structure of the Nucleon (MENU 2007), Julich, Germany, 10–14
September 2007, arXiv:0711.2748 [nucl-th].

[43] H. Krebs, E. Epelbaum, and U.-G. Meißner, Eur. Phys. J. A 32,
127 (2007).

[44] H. Hahn et al., Phys. Rev. Lett. 82, 2258 (1999).
[45] F. Duncan et al., Phys. Rev. Lett. 80, 4390 (1998).
[46] M. Daum et al., Eur. Phys. J. C 25, 55 (2002).
[47] F. Duncan et al., http://authors.aps.org/eprint/files/1998/Feb/

aps1998feb19 001/pwa algorithm.txt.
[48] R. Bilger et al., Nucl. Phys. A693, 633 (2001).
[49] S. Abd El-Samad et al. (COSY-TOF Collaboration), Eur. Phys.

J. A 17, 595 (2003).
[50] P. Hauser et al., Phys. Rev. C 58, R1869 (1998).
[51] Th. Strauch et al., Talk given in the International Conference

EXA08, September 2008, Vienna, Austria.
[52] Th. Strauch, Ph.D. thesis, Univeristy of Cologne, 2009.

[53] B. G. Ritchie et al., Phys. Rev. C 47, 21 (1993).
[54] P. Heimberg et al., Phys. Rev. Lett. 77, 1012 (1996).
[55] M. Drochner et al. (GEM Collaboration), Nucl. Phys. A643, 55

(1998).
[56] E. Korkmaz et al., Nucl. Phys. A535, 637 (1991).
[57] E. L. Mathie et al., Nucl. Phys. A397, 469 (1983).
[58] H. O. Meyer et al., Phys. Rev. Lett. 83, 5439 (1999);

H. O. Meyer et al., Phys. Rev. C 63, 064002 (2001).
[59] P. N. Deepak, J. Haidenbauer, and C. Hanhart, Phys. Rev. C 72,

024004 (2005).
[60] H. O. Meyer et al., Nucl. Phys. A539, 633 (1992).
[61] H. van Haeringen, Nucl. Phys. A253, 355 (1975); Charged-

Particle Interactions: Theory and Formulas (Coulomb Press
Leyden, Leiden, 1985).

[62] A. E. Kudryavtsev, B. L. Druzhinin, and V. E. Tarasov, JETP
Lett. 63, 235 (1996) [Pis’ma Zh. Eksp. Teor. Fiz. 63, 221
(1996)].

[63] V. Bernard, N. Kaiser, and U. G. Meißner, Nucl. Phys. A615,
483 (1997).

[64] M. C. M. Rentmeester, R. G. E. Timmermans, and J. J. de Swart,
Phys. Rev. C 67, 044001 (2003).

[65] D. R. Entem and R. Machleidt, arXiv:nucl-th/0303017.
[66] V. Lensky, Ph.D. thesis, University of Bonn, 2007.
[67] C. Hanhart, J. Haidenbauer, A. Reuber, C. Schütz, and J. Speth,
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