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Microscopic calculation of precompound excitation energies for heavy-ion collisions
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We introduce a microscopic approach for calculating the excitation energies of systems formed during heavy-
ion collisions. The method is based on time-dependent Hartree-Fock (TDHF) theory and allows the study of the
excitation energy as a function of time or ion-ion separation distance. We discuss how this excitation energy is
related to the estimate of the excitation energy using the reaction Q-value, as well as its implications for dinuclear
precompound systems formed during heavy-ion collisions.
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During a heavy-ion collision the initial kinetic energy of the
two nuclei is gradually converted into internal excitation. This
excitation may result in exciting various types of collective
modes or intrinsic excitations that lead to the heating of the
combined nuclear system. The excitation of projectile-like and
target-like fragments in deep-inelastic heavy-ion collisions
is a well-known manifestation of this phenomenon, which
has been studied theoretically and experimentally [1]. On
the other hand, for a dinuclear precompound system formed
during a heavy-ion collision, the mode of decay may critically
depend on the excitation energy of the system. Examples
include collisions that may be candidates for the formation
of superheavy elements in hot or cold fusion reactions [2,3].
Excitation energy is also an important ingredient for the
stochastic mean-field approach to nuclear dynamics, which
deals with fluctuations of collective motion in addition to
the average evolution [4,5]. While exclusive measurements
of excitation energy may be possible for equilibrated systems
(e.g., compound nuclei formed in complete fusion or fragments
produced in deep-inelastic collisions), the intermediate states
formed during a collision have a short lifetime and are not
expected to be fully equilibrated thus making the measurement
as well as the interpretation very difficult [6]. For all these
reasons it is desirable to develop a dynamical approach for
calculating the excitation energy of the system as it evolves in
time.

It is generally acknowledged that the TDHF theory provides
a useful foundation for a fully microscopic many-body theory
of low-energy heavy-ion reactions [7,8]. While the long-time
evolution in TDHF theory may not be very reliable, recent
three-dimensional TDHF calculations with no symmetry
assumptions and using modern Skyrme forces have shown
to accurately reproduce phenomena determined by the initial
stages of the heavy-ion dynamics [9–11]. Recently we have
developed the density-constrained TDHF (DC-TDHF) method
[12], which is based on the generalization of the density
constraint method developed earlier [13]. We have shown that
using the DC-TDHF method ion-ion potential barriers can be
accurately produced [14–16] as these calculations also depend
on early stages of the ion-ion dynamics. In addition, one-body
energy dissipation extracted from TDHF for low-energy fusion
reactions was found to be in agreement with the friction

coefficients based on the linear response theory as well as those
in models where the dissipation was specifically adjusted to
describe experiments [17]. All of these new results suggest
that TDHF dynamics provide a good description of the early
stages of heavy-ion collisions.

In this Rapid Communication we outline a microscopic
approach for calculating excitation energies of composite or
dinuclear systems formed during heavy-ion collisions. The
goal of the approach is to divide the TDHF motion into
a collective and intrinsic part. The major assumption in
achieving this goal is to assume that the collective part is
primarily determined by the density ρ(r, t) and the current
j(r, t). Consequently, the excitation energy can be formally
written as

E∗(t) = ETDHF − Ecoll(ρ(t), j(t)), (1)

where ETDHF is the total energy of the dynamical system,
which is a conserved quantity, and Ecoll represents the
collective energy of the system. In the next step we break
up the collective energy into two parts

Ecoll(t) = Ekin(ρ(t), j(t)) + EDC(ρ(t)), (2)

where Ekin represents the kinetic part and is given by

Ekin(ρ(t), j(t)) = m

2

∫
d3r j2(t)/ρ(t), (3)

which is asymptotically equivalent to the kinetic energy of
the relative motion, 1

2µṘ2, where µ is the reduced mass and
R(t) is the ion-ion separation distance. The energy EDC is the
lowest-energy state of all possible TDHF states with the same
density and is required to have zero excitation energy. This
state is found by using the density-constraint method [13,18],
which minimizes the energy while holding the instantaneous
TDHF density constant. We have previously shown [12] that
EDC equals the ion-ion potential, V (R), shifted by the binding
energies of the participating nuclei, which allows us to write

Ecoll(t) = Ekin(ρ(t), j(t)) + V (R(t)) + EA1 + EA2 , (4)

where EA1 and EA2 denote the Hartree-Fock energies calcu-
lated for the two nuclei using the same effective interaction.
The dynamics of the ion-ion separation R(t) can be extracted
from an unrestricted TDHF run. Using E∗(t) and R(t), we
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can deduce the excitation energy as a function of the distance
parameter, E∗(R).

The computation of the excitation energy as outlined
above is numerically very intensive, primarily due to the
density-constraint calculation. Calculations were done in 3-D
geometry and using the full Skyrme force (SLy4) [19] without
the center-of-mass correction as described in Ref. [20]. The
numerical accuracy of the static binding energies and the
deviation from the point Coulomb energy in the initial state
of the collision dynamics is on the order of 50–200 keV.
We have performed density constraint calculations at every
20 fm/c. For the calculation of the ion-ion separation distance
R we use the hybrid method, which relates the coordinate to
the quadrupole moment for small R values, as described in
Ref. [16]. The accuracy of the density constraint calculations
is commensurate with the accuracy of the static calculations.

In order to develop a better insight into the excitation energy
given by Eq. (1) we have first studied two spherical systems,
16O + 16O and 40Ca + 40Ca. In literature one commonly
defines the excitation energy for a particular reaction as

E∗ = Ec.m. + Qgg, (5)

where Qgg is the mass difference between the two initial
nuclei and the combined system in its ground state. While
this expression is correct relative to the ground state of the
composite system, it does not accurately describe the excitation
energy relative to other intermediate transition states formed
during the collision. Our choice of the reactions mentioned
above was motivated by the fact that the former system has a
positive Qgg value (16.6 MeV), whereas the latter system has
a negative one (−14.2 MeV).

In Fig. 1 we show the ion-ion interaction potential V (R)
for the head-on (zero impact parameter) collision of the
16O + 16O system at various center-of-mass energies. These
results are essentially the same as those published in Ref. [12]
except for the energy dependence of V (R). This dependence
arises from the time available for the system to undergo
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FIG. 1. (Color online) Internuclear potential V (R) for the head-on
collision of the 16O + 16O system for various Ec.m. values. The relative
ground-state binding energy of the 32S nucleus is represented by the
−Qgg value. The height of the barriers increase with Ec.m..
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FIG. 2. (Color online) Excitation energy for the head-on collision
of the 16O + 16O system for various Ec.m. values (solid curves) as a
function of the ion-ion distance R. Also shown are the corresponding
collective kinetic energy Ekin values (dashed curves). As can be seen,
both the excitation energy and the collective kinetic energy increase
with Ec.m..

rearrangements and partial equilibration, which approaches
the frozen-density limit at high energies [17].

On the same figure we have also shown the relative location
of the 32S ground-state binding energy as represented by the
−Qgg value. In Fig. 2 the corresponding excitation energies
are shown as a function of R calculated from Eq. (1). The
fact that the excitation energy should be asymptotically zero is
a good test of numerical accuracy, which is reproduced quite
well as can been seen from the figure. The final value of E∗ and
smallest R value are chosen to be the ones corresponding to the
smallest relative velocity or smallest collective kinetic energy
in the vicinity of the potential minimum, which alternately
can be referred to as the capture point. Naturally, some of
these quantities can only be pinned down within the limits of
density-constraint frequency. For the sake of completeness, in
Fig. 3 we also show the long-time behavior of the potential
and the excitation energy for the 16O + 16O system at Ec.m. =
11 MeV. The figure demonstrates very nicely that the majority
of the entrance energy is absorbed into intrinsic motion such
that the compound stage is stuck in the vicinity of a certain
R value with rather small oscillations. In the entrance phase of
the collision, the excitation energy E∗ increases monotonically
with decreasing R. After the point of closest approach has
been reached, the system is stuck close to that distance and the
dynamical evolution turns abruptly to irregular oscillations in
E∗ as seen in Fig. 3, which the typical energy fluctuations of
an excited ensemble. These fluctuations are here rather large
due to the small particle number. The statistical estimate for
the energy width is �E ≈

√
16εFE∗/(Nπ2) ≈ 6 MeV, which

fits nicely to the observed fluctuations.
Next we wanted to demonstrate the conjecture that the value

of the excitation energy measured at the capture point in TDHF
is the excitation relative to the composite or dinuclear system
formed during the collision. In Fig. 4 we plot the excitation
energy as a function of the center-of-mass energy for both the
analytic expression of Eq. (5) (solid red line) and the TDHF
results at the capture point as discussed above (solid blue line).
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FIG. 3. (Color online) Long-time evolution of the excitation
energy, E∗, and the ion-ion potential, V (R), for the head-on collision
of the 16O + 16O system at Ec.m. = 11 MeV as a function of the
ion-ion distance R.

As expected the TDHF result is below the one generated from
Eq. (5). The difference between the two curves is shown by
the dotted line. We have also calculated the energy difference
of the composite system relative to the ground state, which
is simply the EDC at the point of capture minus the ground-
state energy of the 32S system obtained by an unconstrained
Hartree-Fock calculation. This is shown by the black dashed
curve. If we shift the TDHF result by these differences we
obtain the blue dashed curve, which is in agreement with the
result obtained from Eq. (5). We should emphasize at this point
that for many reactions the excitation energy at the capture
point is of great interest as opposed to the ground state to
ground state value, since after the capture point many different
reaction possibilities exist.

We have repeated the above study for the 40Ca + 40Ca
system, for which the Qgg value is −14.2 MeV. In Fig. 5 we
show the ion-ion potentials calculated using the DC-TDHF
method at a set of center-of-mass energies. The energy
dependence is analogous to the 16O + 16O case. Figure 6
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FIG. 4. (Color online) Excitation energy for the head-on collision
of the 16O + 16O system for various Ec.m. values at the point of
capture (solid blue line) and the excitation energy calculated from
Eq. (5) (solid red curve). Other curves are described in the text.
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FIG. 5. (Color online) Internuclear potential for the head-on
collision of the 40Ca + 40Ca system for various Ec.m. values. The
relative ground state binding energy of the 80Zr nucleus is represented
by the −Qgg value. The height of the barriers increase with Ec.m..

shows the corresponding excitation energies calculated via
TDHF using Eq. (1). Again, the excitation energies gradually
rise as the nuclei enter the interaction regime while the
collective kinetic energies show a rise when the nuclei first
experience the nuclear attraction but eventually fall due to
slowdown of the composite system. Finally, we again plot the
center-of-mass energy dependence of the excitation energy
at the point of capture in Fig. 7 (blue solid curve) together
with the one obtained from Eq. (5), except this time using
the negative Qgg value (solid red line). Again the two curves
run parallel to each other and their difference is shown by the
dotted line. The long dashed line shows the difference in energy
between the density constrained energy EDC at the point of
capture minus the ground-state energy of the 80Zr nucleus.
The two curves are almost exactly the same and shifting the
TDHF excitation curve by this energy difference produces
the blue dashed curve, which is in excellent agreement with
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FIG. 6. (Color online) Excitation energy for the head-on collision
of the 40Ca + 40Ca system for various Ec.m. values (solid curves) as a
function of the ion-ion distance R. Also, shown are the corresponding
collective kinetic energy Ekin values (dashed curves). As can be seen,
both the excitation energy and the collective kinetic energy increase
with Ec.m..
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FIG. 7. (Color online) Excitation energy for the head-on collision
of the 40Ca + 40Ca system for various Ec.m. values at the point of
capture (solid blue line) and the excitation energy calculated from
Eq. (5) (solid red curve). Other curves are described in the manuscript.

the one obtained using Eq. (5). Thus, we can safely say that
the microscopically calculated excitation energy represents the
excitation energy at the point of capture.

It is also possible to obtain an approximate temperature
by relating the excitation energy to the temperature using the
Fermi gas model, E∗ = aT 2, where a ≈ A/8 MeV−1 is the
level density parameter. For the above reactions and the Ec.m.

values used, this translates into a temperature range of 2.0–
3.5 MeV for the 16O + 16O system and a temperature range
of 1.4–2.5 MeV for the 40Ca + 40Ca system. The reliability of
the above approximation should be higher for heavier systems.

In order to examine how deformation influences the
excitation energy during a heavy-ion collision we have
chosen to investigate the 16O + 34Ne system. In Hartree-Fock
calculations the neutron-rich 34Ne nucleus has a large axially
symmetric deformation. In the past we have examined the
effects of deformation on the ion-ion potentials due to the
different initial alignments of the deformed nucleus [12,21].
We have performed TDHF collisions of 16O + 34Ne at various
center-of-mass energies and for the two extreme alignments
of the 34Ne nucleus, one in which the elongation axis is along
the collision axis and the other for which it is perpendicular. In
Fig. 8 we show the ion-ion potentials obtained for this system
using the DC-TDHF method. We observe that at Ec.m. =
11 MeV the vertical alignment case does not fuse, whereas the
horizontal alignment does. Furthermore, the centroids of the
potentials are different for the two alignments since the nuclei
start to come into contact earlier/later for horizontal/vertical
alignments. Otherwise the energy dependence of the potentials
is commensurate with the spherical systems. The fact that
different orientations of the deformed nucleus lead to a
difference in the time of contact between the target and
the projectile is expected to manifest itself in the evolution
of the excitation energy as well. Indeed, in Fig. 9 we see
that the excitation for the horizontal alignment of the 34Ne
nucleus starts earlier but somehow does not reach as large a
value as the vertical alignment case. This is a very interesting
observation since it would indicate that due to the differences
in the excitation energy at the point of capture different
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FIG. 8. (Color online) Internuclear potential for the head-on
collision of the 16O + 34Ne system for various Ec.m. values and two
alignments of the 34Ne nucleus. The solid lines denote the potential
for vertical alignment whereas the dashed curves are for the horizontal
alignment of the 34Ne nucleus with respect to the collision axis. The
height of the barriers increase with Ec.m..

alignments will likely have different probabilities for various
exit channels. For example, this could be a very important
consideration for superheavy formations.

In summary, we have outlined a microscopic approach
for calculating excitation energies of composite or dinuclear
systems formed during heavy-ion collisions. The goal of the
approach is to provide estimates for excitation energies at the
initial point of capture, after which a multitude of exit-channel
possibilities may exist and will be strongly influenced by the
amount of excitation. The premise of our approach depends
on the reliability of TDHF theory for describing the early
stages of heavy-ion reactions. As discussed in the manuscript,
there is mounting evidence that TDHF does provide a reliable
description of heavy-ion dynamics and dissipation in this stage
whereas the long-time evolution may be questionable. In order
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FIG. 9. (Color online) Excitation energy for the head-on collision
of the 16O + 34Ne system for various Ec.m. values as a function of the
ion-ion distance R. The solid lines denote the excitation energy for
vertical alignment whereas the dashed curves are for the horizontal
alignment of the 34Ne nucleus with respect to the collision axis. As
can be seen, the excitation energy increase with Ec.m..
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to elucidate the above arguments we have performed a number
of calculations involving both spherical and deformed nuclei.
It is our long-term goal to extend these calculations to heavier
systems and in particular to superheavy nuclei.
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