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Can one measure nuclear matrix elements of neutrinoless double β decay?
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By making use of the isospin conservation by strong interaction, the Fermi 0νββ nuclear matrix element M0ν
F

is transformed to acquire the form of an energy-weighted double Fermi transition matrix element. This useful
representation allows reconstruction of the total M0ν

F provided a small isospin-breaking Fermi matrix element
between the isobaric analog state in the intermediate nucleus and the ground state of the daughter nucleus could
be measured, e.g., by charge-exchange reactions. Such a measurement could set a scale for the 0νββ nuclear
matrix elements and help to discriminate between the different nuclear structure models in which calculated M0ν

F

may differ by as much as a factor of 5 (that translates to about 20% difference in the total M0ν).
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Neutrino is the only known spin-1/2 fermion which may be
truly neutral, i.e., identical with its own antiparticle. In such a
case one speaks about Majorana neutrino, to be contrasted with
Dirac neutrino which is different from its antiparticle [1,2].
Majorana neutrinos naturally appear in many extensions of the
standard model (see, e.g., [3]). Also, the smallness of neutrino
masses (more than five orders of magnitude smaller than the
electron mass) finds an elegant explanation within the see-saw
model which assumes neutrinos to be Majorana particles [4].

The fact that neutrinos have mass has firmly been estab-
lished by neutrino oscillation experiments (for reviews see,
e.g., Ref. [5]). However, the observed oscillations cannot
in principle pin down the absolute scale of the neutrino
masses. A study of nuclear neutrinoless double beta (0νββ)
decay A

ZElN −→ A
Z+2ElN−2 + 2e− offers a mean to probe the

absolute neutrino masses at the level of tens of meV.
ββ decay is a rare decay process which may occur in the

second order of weak interaction. It offers the only feasible
way to test the charge-conjugation property of neutrinos.
The existence of the 0νββ decay would immediately prove a
neutrino to be a Majorana particle as assured by the Schechter-
Valle theorem [6]. The 0νββ decay is strictly forbidden in the
standard model of an electroweak interaction in which the
lepton number is conserved, thus its observation would be of
paramount importance for our understanding of particle
physics beyond the standard model [7–9].

The next generation of 0νββ-decay experiments (CUORE,
GERDA, MAJORANA, SuperNEMO, etc., see, e.g., Ref. [9]
for a recent review) has a great discovery potential. Provided
the corresponding decay lifetimes are accurately measured,
knowledge of the relevant nuclear matrix elements (m.e.) M0ν

will become indispensable to reliably deduce the effective
Majorana mass from the experimental data.

Two basic theoretical approaches are used to evaluate
M0ν , the quasiparticle random phase approximation (QRPA)
[10,11], including its continuum version [12], and the nuclear
shell model (NSM) [13]. There has been great progress in the

*vadim.rodin@uni-tuebingen.de

calculations over the last five years, and now the QRPA 0νββ

nuclear m.e. of different groups seem to converge. However,
the NSM M0ν are systematically and substantially (up to a
factor of 2) smaller than the corresponding QRPA ones. There
is now an active discussion in literature on what could be
the reason of such a discrepancy, a too small single-particle
model space of the NSM or a neglect of complex nuclear
configurations within the QRPA. Even more striking is the
difference in the Fermi contribution to the total M0ν which
can be up to a factor of 5 larger in the QRPA calculations than
in the NSM ones.

In view of this situation, it would be extremely important
to find a possibility to determine M0ν experimentally. There
have been attempts to reconstruct the nuclear amplitude of two-
neutrino ββ decay (which experimentally is very accurately
known from the direct counting ββ-decay experiments [9])
from partial one-leg transition amplitudes to the intermediate
1+ states measured in charge-exchange reactions [14]. How-
ever, such a procedure can consistently determine M2ν only if
a transition via a single intermediate 1+ state dominates M2ν

(the so-called single-state dominance). In the case of compa-
rable contributions of several intermediate 1+ states the results
from charge-exchange reactions cannot directly provide M2ν ,
since relative phases of the contributions cannot be measured.
Pursuing the same way to reconstruct M0ν seems even more
hopeless, since many intermediate states of all multipolarities
(with a rather moderate contribution of the 1+ states) are
virtually populated in the 0νββ decay due to a large momentum
of the virtual neutrino.

The aim of this Rapid Communication is to suggest a
way by which at least the Fermi component of M0ν can
directly be measured, e.g., in charge-exchange reactions. For
the derivation of the master expressions (4), (5) below the
well-known property of the Coulomb interaction to be the
leading source of the isospin breaking in nuclei is exploited
[15,16]. Such a measurement of M0ν

F could set a scale for the
0νββ nuclear m.e. and help to discriminate between different
nuclear structure models in which calculated M0ν

F may differ
by as much as a factor of 5.

We start our derivation by writing down the 0νββ nuclear
m.e. in the closure approximation in which it acquires the

0556-2813/2009/80(4)/041302(4) 041302-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.041302
mailto:vadim.rodin@uni-tuebingen.de


RAPID COMMUNICATIONS

VADIM RODIN AND AMAND FAESSLER PHYSICAL REVIEW C 80, 041302(R) (2009)

form M0ν = 〈0f |Ŵ 0ν |0i〉 of the m.e. of a two-body scalar
operator Ŵ 0ν between the parent and daughter ground states
|0i〉 and |0f 〉, respectively.1 The total 0νββ-decay operator
Ŵ 0ν ≡ g2

AŴ 0ν
GT − g2

V Ŵ 0ν
F is the sum of the Gamow-Teller and

Fermi transition operators [7]:

Ŵ 0ν =
∑

ab

Pν(rab)
(
g2

Aσ a · σ b − g2
V

)
τ−
a τ−

b . (1)

Here, the vector and axial vector coupling constants are
gV = 1 and gA = 1.25, respectively, and Pν(rab ≡ |�ra − �rb|)
is the neutrino potential which in the simplest Coulomb
approximation is just reciprocal of the distance between the
nucleons: Pν(rab) = 1

rab
(for the sake of simplicity we have

taken out the nuclear radius R from the usual definition of
Pν [7]). In this approximation

Ŵ 0ν
F =

∑

ab

Pν(rab)τ−
a τ−

b = 1

e2
[T̂ −, [T̂ −, V̂C]], (2)

where T̂ − = ∑
a τ−

a is the isospin lowering operator, and V̂C =
e2

8

∑
a �=b

(1−τ
(3)
a )(1−τ

(3)
b )

rab
is the operator of Coulomb interaction

between protons. Actually, only the isotensor component

of the Coulomb interaction V̂ t
C = e2

8

∑
a �=b

T
(2)
ab

rab
, with T

(2)
ab ≡

τ (3)
a τ

(3)
b − τ aτ b

3 , survives in the double commutator (2). This
isotensor Coulomb interaction does contribute to the mean
Coulomb field in the nucleus, but it is easy to see that
any mean-field single-particle operator drops out of the
double commutator (2). Thus, the expression (2) is essentially
determined by the residual (after separating out the mean-field
contribution) two-body isotensor Coulomb interaction.

The total nonrelativistic nuclear Hamiltonian Ĥtot consists
of the total kinetic energy of nucleons and the strong and
Coulomb two-body interactions between them: Ĥtot = T̂ +
Ĥstr + V̂C . Assuming Ĥstr to be exactly isospin-symmetric
[T̂ −, Ĥstr] = 0 (we shall quantify later the accuracy of this
assertion but it is well known that the isospin-breaking terms
in Ĥstr are in fact fairly small [15,16]), one has

Ŵ 0ν
F = 1

e2
[T̂ −, [T̂ −, Ĥtot]], (3)

and, correspondingly [17],

M0ν
F = − 2

e2

∑

s

ω̄s〈0f |T̂ −|0+
s 〉〈0+

s |T̂ −|0i〉. (4)

Here, the sum runs over all 0+ states of the intermediate
(N − 1, Z + 1) isobaric nucleus, ω̄s = Es − (E0i

+ E0f
)/2

represents the excitation energy of the sth intermediate 0+ state
relative to the mean energy of the ground states of the initial
and final nuclei. To account for the isospin-breaking part of
Ĥstr, δM0ν

F = 1
e2 〈0f |[T̂ −, [T̂ −, Ĥstr]]|0i〉 should be subtracted

from the right-hand side (r.h.s.) of Eq. (4).

1Using closure of the states of the intermediate nucleus A
Z+1ElN−1

which are virtually excited in ββ decay would be an exact procedure
if there were no energy dependence in the 0νββ transition operator. A
weak energy dependence of the operator leads in reality to a “beyond-
closure” correction to the total M0ν of less than 10%.

Among all the intermediate 0+ states, the isobaric analog
state (IAS) dominates the sum (4). In fact, 〈IAS|T̂ −|0i〉 ≈√

N − Z is the largest first-leg transition m.e. [a few percent
of the total Fermi strength N − Z may go to the highly-
excited isovector monopole resonance (IVMR) since the
IAS and IVMR get mixed mainly by the Coulomb mean
field]. Similarly, the second-leg Fermi transition dominantly
populates the double IAS (DIAS) in the final nucleus. Due to
the isotensor part of the Coulomb interaction [which also gives
the only contribution to the double commutator (2)], the final
g.s. gets an admixture of the DIAS where the corresponding

mixing m.e. is 〈0f |DIAS〉 = −〈0f |V̂ t
C |DIAS〉

EDIAS
, with EDIAS ≈

2ω̄IAS. Thereby, one gets 〈0f |T̂ −|IAS〉 �= 0.
Other quantitative arguments for the dominance of the IAS

in the sum (4) follow from the representation of the double
commutator:

[
T̂ −,

[
T̂ −, V̂ t

C

]] = V̂ t
C(T̂ −)2 + (T̂ −)2V̂ t

C − 2T̂ −V̂ t
CT̂ −.

It is clear that the first term V t
C(T −)2 dominates the m.e.

〈0f |[T̂ −, [T̂ −, V̂ t
C]]|0i〉, since the other m.e., because of

T̂ +|0f 〉 ≈ 0 (with a small deviation from zero originating
from an isospin symmetry violation effect, caused mainly
by the Coulomb mean field), contain additional suppres-
sion as compared with the leading term 〈0f |V̂ t

C(T̂ −)2|0i〉 =
〈0f |V̂ t

C |DIAS〉〈DIAS|(T̂ −)2|0i〉.
Thus, M0ν

F is determined by the amplitude of the dou-
ble Fermi transition via the IAS in the intermediate nu-
cleus into the ground state of the final nucleus where
the second Fermi transition amplitude is due to an ad-
mixture of the DIAS in the final nucleus to the ground
state of the parent nucleus: 〈0f |T̂ −|IAS〉〈IAS|T̂ −|0i〉 =
〈0f |DIAS〉〈DIAS|T̂ −|IAS〉〈IAS|T̂ −|0i〉. Finally, one can
write

M0ν
F ≈ − 2

e2
ω̄IAS〈0f |T̂ −|IAS〉〈IAS|T̂ −|0i〉. (5)

Therefore, the total M0ν
F can be reconstructed according

to Eq. (5), if one is able to measure the �T = 2 isospin-
forbidden m.e. 〈0f |T̂ −|IAS〉, for instance in charge-exchange
reactions of the (n, p)-type (also the same m.e. determines
M2ν

F , but it would be much more difficult to extract it). Using
the QRPA calculation results for M0ν

F [10,11], this m.e. can
roughly be estimated as 〈0f |T̂ −|IAS〉 ∼ 0.005, i.e., about a
thousand times smaller than the first-leg m.e. 〈IAS|T̂ −|0i〉 ≈√

N − Z. This strong suppression of 〈0f |T̂ −|IAS〉 reflects the
smallness of the isospin violation in nuclei. The IAS has been
observed as a prominent and extremely narrow resonance and
its various features have well been studied by means of (p,n),
(3He,t) and other charge-exchange reactions, see, e.g., [18].
This gives us hope that a measurement of 〈0f |T̂ −|IAS〉 in
the (n,p) charge-exchange channel might be possible. More
generally, a measurement by whichever experimental mean of
the �T = 2 admixture of the DIAS in the final ground state
would be enough to determine M0ν

F .
A qualitative analysis of the physics involved in calculations

of M0ν
F can be conducted further. One can define an operator

V̂ t
C = e2

8R̄

∑
ab T

(2)
ab which is obtained by the substitution of 1

rab
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by a constant 1
R̄

in the definition of the isotensor Coulomb inter-
action. Such an operator V̂ t

C is diagonal in the basis of isospin
eigenstates and does not mix in the first order the DIAS and
the final ground state, 〈DIAS|V̂ t

C |0+
f 〉 = 0. The matrix element

1
e2 〈0f |[T̂ −, [T̂ −, V̂ t

C]]|0i〉 = 1
2R̄

∑
s〈0f |T̂ −|0+

s 〉〈0+
s |T̂ −|0i〉 is

by a large factor e2

4R̄ω̄IAS

 1 smaller than the absolute value of

the r.h.s in Eq. (5). Thus, by subtracting V̂ t
C from V̂ t

C in Eq. (2)
only a small change in M0ν

F is introduced. Such a subtraction
with an appropriate choice of R̄ ∼ R allows to cut off the
contribution to M0ν

F from the long internucleon distances,
where 1

rab
has a smooth behavior and which are relevant for the

Coulomb mean field. Therefore, the major contribution to M0ν
F

should come from the short distances where the gradient of 1
rab

is the largest. This provides a natural qualitative explanation
of the numerical results of both the QRPA and NSM [10,13]
which consistently show the short-range character of the partial
r-dependent contribution to M0ν .

Of course, by measuring only M0ν
F one does not get the

total m.e. M0ν but rather its subleading contribution. However,
knowledge of M0ν

F itself brings a very important piece of
information. For instance, it will allow to investigate the A

dependence of M0ν
F . Also, it can help a lot to discriminate

between different nuclear structure models in which calculated
M0ν

F may differ by as much as a factor of 5. In addition,
the ratio M0ν

F /M0ν
GT may be more reliably calculable in

different models than M0ν
F and M0ν

GT separately. Let us put
forward here some simple arguments in support of the latter
statement. Since only small internucleon distances determine
M0ν , then only nucleon pairs in the spatial relative s-wave
must dominantly contribute to the m.e. The isotensor Coulomb
interaction only couples T = 1 pairs which must then be in
the state with the total spin S = 0 to assure antisymmetry
of the total two-body wave function. Because of this and
the fact that σ 1 · σ 2|S = 0, T = 1〉 = −3|S = 0, T = 1〉, a
natural estimate for the Gamow-Teller m.e. is M0ν

GT = −3M0ν
F

provided the neutrino potential is the same in both F and GT
cases. The high-order terms of the nucleon weak current which
are present in the case of the GT m.e., but absent in the F m.e.,
change this simple estimate a bit to M0ν

GT /M0ν
F ≈ −2.5. Also,

an uncertainty of few percent may come from the difference
in the mean nuclear excitation energies in the F and GT cases.
It is worth noting that the recent QRPA results [10–12] are in
good correspondence with these simple estimates.

Here, we want to estimate possible corrections to the
simplest closure approximation discussed above. Due to
universality and conservation of the vector current, all the
corrections of the vector current vertices should be the same
independently of which virtual particle, neutrino or photon,

is exchanged between them. This is true for the effects of
short-range correlations and the finite nucleon size. A small
difference of a few percent in the realistic potentials may
arise from different mean nuclear excitation energies while
exchanging the neutrino or photon but this effect seems to be
rather reliably calculable. Another difference can arise from
those corrections to the propagator of the virtual photon, as for
instance the vacuum polarization correction, that are missing
in the case of the virtual neutrino. The effect of the vacuum
polarization is about 0.5% and can simply be accounted for by
a proper renormalization of the electron charge.

The effect of isospin nonconservation in the strong two-
body interaction can be estimated to be at the level of 2%–3%
[15,16]. One can then directly compare the radial dependencies
of the isospin-breaking part of the two-body strong interaction
in the S = 0, T = 1 channel and the Coulomb interaction
within the relevant short range of 1–2 fm to find the dominating
source of the isospin breaking. Following Ref. [19], one can
approximate the radial dependence of the isospin-breaking
strong two-body central potential as (0.02–0.03) × f 2

π

4π
e−mπ r

r

(h̄ = c = 1). With f 2
π

4π
≈ 0.08 one arrives at the conclusion

that this source of the isospin nonconservation must be about
20%–30% of that caused by the Coulomb interaction. Though
there are rather large relative uncertainties in calculating the
isospin-breaking part of the two-body strong interaction, by
assuming that this correction could in principle be evaluated
with a moderate accuracy of 30%, a residual uncertainty of
only 10% in M0ν

F is thereby induced.
Thus, the main message of this Rapid Communication

that, at least in principle, M0ν
F is measurable remains intact

in the most realistic situation (though minor corrections may
be needed).

To conclude, we have shown in this Rapid Communication
that the Fermi 0νββ nuclear m.e. can be reconstructed if one is
able to measure the isospin-forbidden Fermi m.e. between the
ground state of the final nucleus and the isobaric analog state
in the intermediate nucleus, for instance by means of charge-
exchange reactions of the (n, p)-type. Knowledge of M0ν

F

would bring a quite important piece of information on the total
0νββ nuclear m.e. Simple arguments show that the estimate
M0ν

GT /M0ν
F ≈ −2.5 should hold. Also, such a measurement

can help to discriminate between different nuclear structure
models in which calculated M0ν

F may differ by as much as a
factor of 5.
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