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For the β−-decay of the neutron we analyze the continuum-state and bound-state decay modes. We
calculate the decay rates, the electron energy spectrum for the continuum-state decay mode, and angular
distributions of the decay probabilities for the continuum-state and bound-state decay modes. The theoretical
results are obtained for the new value for the axial coupling constant gA = 1.2750(9), obtained recently by
H. Abele [Prog. Part. Nucl. Phys. 60, 1 (2008)] from the fit of the experimental data on the coefficient
of the correlation of the neutron spin and the electron momentum of the electron energy spectrum of the
continuum-state decay mode. We take into account the contribution of radiative corrections and the scalar
and tensor weak couplings. The calculated angular distributions of the probabilities of the bound-state
decay modes of the polarized neutron can be used for the experimental measurements of the bound-state
β−-decays into the hyperfine states with total angular momentum F = 1 and scalar and tensor weak coupling
constants.
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I. INTRODUCTION

The continuum-state β−-decay of the neutron n → p +
e− + ν̃e is experimentally well measured [1,2] (see also [3]
and [4]) and investigated theoretically [5–8]. A theoretical
analysis of the bound-state β−-decay rate has been carried out
in [9,10]. Recently [11,12] Schott et al. have reported new
experimental data on the bound-state β−-decay of the neutron
n → H + ν̃e.

In this paper we recalculate the continuum-state β−-
decay rate of the neutron, the electron energy spectrum,
and angular distribution taking into account the contributions
of V − A, scalar S and tensor T weak interactions, and
radiative corrections [13] (see also [14]). Such a recalculation
is required by the new precise experimental data on the
lifetime of the neutron τβ−

c
= 878.5(8) s [1] and the value

of the axial coupling constant gA = 1.2750(9) [3]. Using
recent experimental data on the lifetime of the neutron [1]
and correlation coefficients [3] we estimate the values of
the scalar gS and tensor gT coupling constants. For the
experimental analysis of the contributions of the scalar and
tensor weak interactions we give angular distributions of the
probabilities of the bound-state β−-decay rates of the polarized
neutron. For the calculation of the bound-state β−-decay rates
we use the technique applied to the analysis of the weak
decays of the H-like, He-like, and bare heavy ions and mesic
hydrogen in [15–17]. In the conclusion we discuss the obtained
results.
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II. V − A WEAK HADRONIC INTERACTIONS

The Hamiltonian of the weak interaction we take in the
form [15–17]

HW (x) = GF√
2

Vud [ψ̄p(x)γµ(1 − gAγ 5)ψn(x)]

× [ψ̄e(x)γ µ(1 − γ 5)ψνe
(x)], (1)

where GF = 1.1664 × 10−11 MeV−2 is the Fermi weak
constant, Vud and gA are the CKM matrix element and the
axial coupling constant [4], ψp(x), ψn(x), ψe(x), and ψνe

(x)
are operators of the interacting proton, neutron, electron,
and antineutrino, respectively. Here and below we use the
Hamiltonian weak interaction operator invariant under time
reversal. This means that we work with the real axial coupling
constant gA, which is positive in our approach, and real scalar
gS and tensor gT coupling constants [see Eq. (11)].

For numerical calculations we will use the most precise
values |Vud | = 0.97419(22) [4] and gA = 1.2750(9) [3], where
gA = 1.2750(9) has been obtained from the fit of the neutron
spin-electron correlation coefficient Aexp = −0.11933(34),
defined in terms of the axial coupling gA in Eq. (28), of the
electron energy spectrum for the continuum-state β−-decay of
the neutron [3].

The value of the CKM matrix element |Vud | = 0.97419(22)
[4] agrees well with |Vud | = 0.9738(4) [3,18], measured from
the superallowed 0+ → 0+ nuclear β−-decays, which are
pure Fermi transitions [18]. It also satisfies the unitarity
condition |Vud |2 + |Vus |2 + |Vub|2 = 1.0000(6) for the CKM
matrix elements [4] well.

Another value of the axial coupling constant gA =
1.2696(29), given in [4] (see also [19]), is determined with the
uncertainty by a factor 3 larger compared with the uncertainty
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of gA = 1.2750(9) [3]. (The theoretical results are adduced in
Table III and discussed in the conclusion.)

The amplitudes of the continuum-state and bound-state
β−-decays of the neutron are defined by

M(n → p + e− + ν̃e) = −〈ν̃ee
−p|HW (0)|n〉,

(2)
M(n → H + ν̃e) = −〈ν̃eH|HW (0)|n〉,

where the interacting particles have four-momenta ka with
a = ν̃e, e, p, H, and n, respectively.

III. BOUND-STATE AND CONTINUUM-STATE β−-DECAY
RATES OF NEUTRON IN V − A THEORY OF

WEAK INTERACTIONS

In the final state of the bound-state β−-decay of the neutron
hydrogen can be produced only in the ns states, where n

is a principal quantum number n = 1, 2, . . . [16,17]. The
contribution of excited n� states with � > 0 is negligibly small.
Due to hyperfine interactions [20,21] hydrogen can be in two
hyperfine states (ns)F with F = 0 and F = 1.

The wave function of hydrogen H in the ns state we take in
the form [22–24]

|H(ns)(�q )〉 = 1

(2π )3

√
2EH(�q )

×
∫

d3ke√
2Ee(�ke)

d3kp√
2Ep(�kp)

δ(3)(�q − �ke − �kp)

×φns

(
mp

�ke − me
�kp

mp + me

)
a†

ns(�ke, σe)a†
p(�kp, σp)|0〉,

(3)

where EH(�q) =
√
M 2

H + �q 2 and �q are the total energy and the
momentum of hydrogen, MH = mp + me + εns and εns are
the mass and the binding energy of hydrogen H in the (ns)F
hyperfine state, φns(�k ) is the wave function of the ns state in
the momentum representation [20] (see also [22–24]). For the
calculation of the bound state β−-decay rate we can neglect the
hyperfine splitting of the energy levels of the ns states [20,21].

For the amplitude of the bound-state β−-decay we obtain
the following expression:

M(n → H(ns) + ν̃e)

= GF Vud

√
2mn2EH2Eν̃e

∫
d3k

(2π )3
φ∗

ns

(
�k − me

mp + me

�q
)

× {[
ϕ†

eχν̃e

]
[ϕ†

pϕn] − gA

[
ϕ†

e �σ χ
ν̃e

] · [ϕ†
p �σ ϕn]

}
, (4)

where ϕp, ϕn, ϕe, and χ
ν̃e

are spinorial wave functions of the
proton, neutron, electron, and antineutrino. The integral over �k
of the wave function φ∗

ns(�k ) defines the wave function ψ∗
ns(0) in

the coordinate representation, equal to ψ∗
ns(0) = √

α3m3
e/n3π ,

where me is the electron mass and α = 1/137.036 is the

fine-structure constant. This gives

M(n → H(ns) + ν̃e)

= GF Vud

√
2mn2EH2Eν̃e

× {[
ϕ†

eχν̃e

]
[ϕ†

pϕn] − gA

[
ϕ†

e �σ χ
ν̃e

] · [ϕ†
p �σ ϕn]

}
ψ∗

(ns)F (0).

(5)

The bound-state β−-decay rate of the neutron is

λβ−
b

= 1

2mn

∫
1

2

∞∑
n=1

∑
σn,σp,σe

|M(n → H(ns) + ν̃e)|2

× (2π )4δ(4)
(
kν̃e

+ q − p
) d3q

(2π )32EH

d3kν̃e

(2π )32Eν̃e

. (6)

Summing over the principal quantum number and polariza-
tions we get

λβ−
b

= (
1 + 3g2

A

)
ζ (3) G2

F |Vud |2 α3m3
e

π2

×
√

(mp + me)2 + Q2
β−

c

Q2
β−

c

mn

, (7)

where ζ (3) = 1.202 is the Riemann function, coming from
the summation over the principal quantum number n, and
Qβ−

c
= 0.782 MeV is the Q-value of the continuum-state

β−-decay [14]. In the literature [9,10] the bound-state
β−-decay rate of the neutron is defined relative to the
continuum-state β−-decay rate of the neutron.

The theoretical value of the continuum-state β−-decay rate
of the neutron is

λβ−
c

= (
1 + 3g2

A

)G2
F |Vud |2
2π3

f (Qβ−
c
, Z = 1)

= 1.0931(14) × 10−3 s−1, (8)

where the error of the decay rate is fully defined by the experi-
mental error of the axial coupling constant gA = 1.2750(9) and
the CKM matrix element |Vud | = 0.97419(22). The numerical
value of the continuum-state β−-decay rate of the neutron
is calculated for the experimental masses of the interacting
particles [4] and the Fermi integral f (Qβ−

c
, Z = 1) equal to

f
(
Qβ−

c
, Z = 1

) =
∫ Q

β
−
c

+me

me

(
Qβ−

c
+ me − Ee

)2

×Ee

√
E2

e − m2
e F (Ee,Z = 1) dEe

= 0.0588 MeV5, (9)

where F (Ee,Z = 1) is the Fermi function [14]. The theoretical
value of the lifetime of the neutron, defined by τβ−

c
= 1/λβ−

c
,

is τβ−
c

= 914.8(1.2) s.
Taking into account the radiative corrections [13], we get

f (γ )(Qβ−
c
, Z = 1) = 0.0611 MeV5 and λ

(γ )
β−

c
= 1.1359(14) ×

10−3 s−1 [14]. This reduces the lifetime to the value τ
(γ )
β−

c
=

880.4.(1.1) s. It agrees well with the experimental value
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τ
exp
β−

c
= 878.5(8) s [1] and differs from the world averaged

experimental value τ
exp
β−

c
= 885.7(8) s [4] by a few seconds

(−5.3 ± 1.4) s.
For the ratio Rb/c = λβ−

b
/λ

(γ )
β−

c
of the bound-state and

continuum-state β−-decay rates of the neutron we get the
following expression:

Rb/c = ζ (3)2π
α3m3

eQ
2
β−

c

mn

√
(mp+me)2+Q2

β−
c

f (γ )
(
Qβ−

c
, Z = 1

)
= 3.92 × 10−6. (10)

Our value for the ratio of the decay rates agrees with the results
obtained in [9] (see also [11,12]): Rb/c = 4.20 × 10−6.

IV. CONTINUUM-STATE AND BOUND-STATE β−-DECAY
RATES OF NEUTRON IN V − A, SCALAR, AND
TENSOR THEORY OF WEAK INTERACTIONS

In this section we consider the continuum-state and bound-
state β−-decays of the neutron by taking into account scalar
and tensor weak interactions [5,8]. The effective low-energy
Hamiltonian of these interactions can be taken in the following
form:

H̃W (x) = GF√
2

Vud

{
gS [ψ̄p(x)ψn(x)][ψ̄e(x)(1 − γ 5)ψνe

(x)]

+ 1

2
gT [ψ̄p(x)σµνγ

5ψn(x)]

× [ψ̄e(x)σµν(1 − γ 5)ψνe
(x)]

}
, (11)

where gS and gT are the constants of scalar and tensor weak
interactions and σµν = 1

2 (γµγν − γνγµ) is the Dirac matrix.
In the nonrelativistic approximation for the neutron and

the proton, the contribution of the scalar and tensor weak
interactions to the amplitude of the continuum-state β−-decay
is

M̃(n → p + e− + ν̃e)

= −GF√
2

Vud

√
4mpmn

×
{
gS

[
ūe(�ke,σe) (1 − γ 5)vν̃e

(
�kν̃e

,+1

2

)]
[ϕ†

pϕn]

+ gT

[
ūe(�ke,σe)γ 0 �γ (1 − γ 5)vν̃e

(
�kν̃e

,+1

2

)]

· [ϕ†
p �σ ϕn]

}
. (12)

The total amplitude of the continuum-state β−-decay of the
neutron, containing the contributions of V − A, S, and T

interactions, is

M(n → p + e− + ν̃e)

= −GF√
2

Vud

√
4mpmn

{[
ūe(�ke, σe) (γ 0 + gS) (1 − γ 5)vν̃e

×
(

�kν̃e
,+1

2

)]
[ϕ†

pϕn]

+
[
ūe(�ke, σe)(gA + gT γ 0) �γ (1 − γ 5)vν̃e

×
(

�kν̃e
,+1

2

)]
· [ϕ†

p �σ ϕn]

}
. (13)

The theoretical value of the continuum-state β−-decay rate
of the neutron, accounting for the contributions of scalar and
tensor weak interactions, is

λ̃β−
c

= G2
F |Vud |2
2π3

{((
1 + 3g2

A

)
+ (

g2
S + 3g2

T

))
f (γ )(Qβ−

c
, Z = 1)

+ 2 (gS + 3gAgT ) f̃ (γ )(Qβ−
c
, Z = 1)

}
, (14)

where f̃ (Qβ−
c
, Z = 1) is the Fermi integral equal to

f̃ (Qβ−
c
, Z = 1)

=
∫ Q

β
−
c

+me

me

meE
2
e (Qβ−

c
+ me − Ee)2F (Ee,Z = 1)

×
(

1 + α

2π
g(Ee)

)
dEe = 0.0404 MeV5, (15)

where we have taken into account the contribution of the
radiative corrections [13]. The function g(Ee) is calculated
in [13] (see also [14]).

Neglecting the contribution of quadratic values of the scalar
gS and tensor gT coupling constants, the continuum-state β−-
decay rate of the neutron is

λ̃
(γ )
β−

c
= λ

(γ )
β−

c
(1 + b �F ), (16)

where �F = f̃ (γ )(Qβ−
c
, Z = 1)/f (γ )(Qβ−

c
, Z = 1) = 0.6612

and b is the Firz term [3] [see Eqs. (26)–(28)] equal to

b = 2
gS + 3gAgT

1 + 3g2
A

= 0.0032(23). (17)

The numerical value of the Fierz term is obtained from the fit
of the experimental value τ

exp
β−

c
= 878.5(8) s [2]. For the linear

combination gS + 3gAgT of the scalar and tensor coupling
constant we get

gS + 3gAgT = 0.0094(70). (18)

The contribution of the scalar and tensor weak interactions
changes the amplitude of the bound-state β−-decay as follows:

M(n → H(ns) + ν̃e)

= GF Vud

√
2mn2EH2Eν̃e

× {
(1 + gS)

[
ϕ†

eχν̃e

]
[ϕ†

pϕn] − (gA + gT )

× [
ϕ†

e �σ χ
ν̃e

] · [ϕ†
p �σ ϕn]

}
ψ∗

(ns)F (0). (19)

The bound-state β−-decay rate of the neutron is equal to

λ̃β−
b

= ((1 + gS)2 + 3(gA + gT )2) ζ (3)G2
F |Vud |2

× α3m3
e

π2

√
(mp + me)2 + Q2

β−
c

Q2
β−

c

mn

. (20)

Neglecting the contribution of the quadratic coupling constants
of the scalar and tensor weak interactions we get

λ̃β−
b

= (1 + b) λβ−
b

= λβ−
b
. (21)
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Thus, the ratio R̃b/c = λ̃β−
b
/λ̃β−

c
of the bound-state and

continuum-state β−-decay rates of the neutron is practically
not changed R̃b/c = 3.92 × 10−6.

V. HELICITY AMPLITUDES AND ANGULAR
DISTRIBUTIONS OF BOUND-STATE β−-DECAY

RATES OF NEUTRON

If the axis of the antineutrino-spin quantization is inclined
relative to the axis of the neutron-spin quantization with a polar
angle ϑ , the wave function χ

ν̃e
can be taken in the following

form:

χ
ν̃e

=
(−e−iϕ sin ϑ

2

cos ϑ
2

)
, (22)

where ϕ is an azimuthal angle. The contributions of different
spinorial states to the helicity amplitudes of the bound-state
β−-decay as functions of the angles ϑ and ϕ are adduced in
Table I.

Using the results in Table I we get the helicity amplitudes
M(n → HFMF

+ ν̃e)σn,+ 1
2
:

M(n → H00 + ν̃e)+ 1
2 ,+ 1

2

= M0
1 + 3gA + gS + 3gT√

2
cos

ϑ

2
,

M(n → H1,+1 + ν̃e)+ 1
2 ,+ 1

2

= −M0(1 − gA + gS − gT )e−iϕ sin
ϑ

2
,

M(n → H10 + ν̃e)+ 1
2 ,+ 1

2

= M0
1 − gA + gS − gT√

2
cos

ϑ

2
,

M(n → H1,−1 + ν̃e)+ 1
2 ,+ 1

2
= 0,

M(n → H00 + ν̃e)− 1
2 ,+ 1

2

= M0
1 + 3gA + gS + 3gT√

2
e−iϕ sin

ϑ

2
,

M(n → H1,+1 + ν̃e)− 1
2 ,+ 1

2
= 0,

TABLE I. The contributions of different spinorial states of the
interacting particles to the amplitudes of the bound-state β−-decay
of the neutron and the antineutrino in the state with the wave
function Eq. (22); f is defined by f = (1 + gS)[ϕ†

eχν̃e
][ϕ†

pϕn] −
(gA + gT )[ϕ†

e �σ χ
ν̃e

] · [ϕ†
p �σ ϕn].

σn σp σe σν̃e
f

+ 1
2 + 1

2 − 1
2 + 1

2 (1 + gS + gA + gT ) cos ϑ

2

+ 1
2 + 1

2 + 1
2 + 1

2 −(1 + gS − gA − gT ) e−iϕ sin ϑ

2

+ 1
2 − 1

2 − 1
2 + 1

2 0

+ 1
2 − 1

2 + 1
2 + 1

2 −2(gA + gT ) cos ϑ

2

− 1
2 + 1

2 − 1
2 + 1

2 2(gA + gT ) e−iϕ sin ϑ

2

− 1
2 + 1

2 + 1
2 + 1

2 0

− 1
2 − 1

2 − 1
2 + 1

2 (1 + gS − gA − gT ) cos ϑ

2

− 1
2 − 1

2 + 1
2 + 1

2 −(1 + gS + gA + gT ) e−iϕ sin ϑ

2

M(n → H10 + ν̃e)− 1
2 ,+ 1

2

= −M0
1 − gA + gS − gT√

2
e−iϕ sin

ϑ

2
,

M(n → H1,−1 + ν̃e)− 1
2 ,+ 1

2

= M0(1 − gA + gS − gT ) cos
ϑ

2
. (23)

The angular distributions of the probabilities of the bound-state
β−-decays of the polarized neutron are equal to

4π
dR

(+)
F=0

d�
= 1

8

(1 + 3gA)2

1 + 3g2
A

1

1 + b

×
(

1 + 2
gS + 3gT

1 + 3gA

)
(1 + cos ϑ),

4π
dR

(−)
F=0

d�
= 1

8

(1 + 3gA)2

1 + 3g2
A

1

1 + b

×
(

1 + 2
gS + 3gT

1 + 3gA

)
(1 − cos ϑ),

(24)

4π
dR

(+)
F=1

d�
= 1

8

(1 − gA)2

1 + 3g2
A

1

1 + b

×
(

1 + 2
gS − gT

1 − gA

)
(3 − cos ϑ),

4π
dR

(−)
F=1

d�
= 1

8

(1 − gA)2

1 + 3g2
A

1

1 + b

×
(

1 + 2
gS − gT

1 − gA

)
(3 + cos ϑ),

where R
(±)
F = (λβ−

b
)(±)
F /λ̃β−

b
and indices (±) stand for the

polarizations of the neutron.
For gS = gT = 0 these angular distributions of the decay

probabilities agree well with those obtained by Song in [9].
Our polar angle ϑ is related to the polar angle θ in Song’s
paper as ϑ = π − θ .

The angular distributions, given in Eq. (24), can be used
for the experimental search for the bound-state β−-decay of
the polarized neutron into hydrogen in the hyperfine state
with F = 1. Since in the directions cos ϑ = ∓1 the angular
distributions of the probabilities of the production of hydrogen
in the hyperfine state with F = 0 vanish, so for cos ϑ = ∓1
one can detect only the bound-state β−-decays of the neutron
into hydrogen in the hyperfine state with F = 1.

The probabilities of decays into hydrogen in the certain
hyperfine states are equal to

RF=0

= (λβ−
b

)F=0

λβ−
b

= 1

4

(1 + 3gA)2

1 + 3g2
A

1

1 + b

(
1 + 2

gS + 3gT

1 + 3gA

)

= 0.987(2)

(
1 + 2

gS + 3gT

1 + 3gA

)
,
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RF=1

= (λβ−
b

)F=1

λβ−
b

= 3

4

(1 − gA)2

1 + 3g2
A

1

1 + b

(
1 + 2

gS − gT

1 − gA

)

= 0.010(0)

(
1 + 2

gS − gT

1 − gA

)
, (25)

where we have used the numerical values gA = 1.2750(9) and
b = 0.0032(23).

VI. ELECTRON SPECTRUM OF CONTINUUM-STATE
β−-DECAY OF THE NEUTRON WITH

CORRELATION COEFFICIENTS

The experimental measurement of the value of the axial
coupling constant gA can be carried out by measuring the
electron energy spectrum and correlation coefficients [3]. The
electron energy spectrum of the continuum-state β−-decay of
the neutron is equal to

d5λ
(γ )
β−

c

dEed�ed�ν̃e

= (
1 + 3g2

A + g2
S + 3g2

T

)
× G2

F |Vud |2
16π5

(Qβ−
c

+ me − Ee)2Ee

√
E2

e − m2
e

×F (Ee,Z = 1)
(

1 + α

2π
g(Ee)

)

×
(

1 + a
�ke · �kν̃e

EeEν̃e

+ b
me

Ee

+ A
�ξ · �ke

Ee

+ B
�ξ · �kν̃e

Eν̃e

)
,

(26)

where the coefficients a,A, and B define the correlations
between momenta of electron and antineutrino, neutron spin
and electron momentum, and neutron spin and antineutrino
momentum, respectively, �ξ is the unit polarization vector
of the neutron. The Fierz term b [3] describes a deviation
from the V − A theory of weak interactions. The correlation
coefficients are equal to

a = 1 − g2
A − g2

S + g2
T

1 + 3g2
A + g2

S + 3g2
T

,

b = 2(gS + 3gAgT )

1 + 3g2
A + g2

S + 3g2
T

,

A = − 2
gA(gA − 1) + gT (gS − gT )

1 + 3g2
A + g2

S + 3g2
T

, (27)

B = + 2
gA(gA + 1) + gT (gS + gT )

1 + 3g2
A + g2

S + 3g2
T

+ 2
gT + gA(gS + 2gT )

1 + 3g2
A + g2

S + 3g2
T

me

Ee

.

Neglecting the contribution of g2
S, g

2
T , and gSgT we get

a = 1 − g2
A

1 + 3g2
A

, b = 2
gS + 3gAgT

1 + 3g2
A

,

A = − 2
gA(gA − 1)

1 + 3g2
A

, B = + 2
gA(gA + 1)

1 + 3g2
A

(28)

+ 2
gT + gA(gS + 2gT )

1 + 3g2
A

me

Ee

.

The coefficients a and A agree well with the results adduced
in [3], whereas the coefficient B differs from that given in [3]
by the term inversely proportional to the energy of the electron
and linear in scalar and tensor coupling constants. The value
of the Fierz term b = 0.0032(23) is given in Eq. (17).

VII. NUMERICAL VALUE OF CKM MATRIX ELEMENT
|Vud| IN V − A THEORY OF WEAK INTERACTIONS

For the calculation of the lifetime of the neutron we have
used the numerical value |Vud | = 0.97419(22) of the CKM
matrix element proposed in [4].

In this section we calculate the value of the CKM matrix
element |Vud | in the V − A theory of weak interactions using
our expression for the continuum-state β−-decay rate of the
neutron Eq. (8) calculated for the axial coupling constant gA =
1.2750(9) [3] and accounting for the radiative corrections and
the experimental values of the lifetimes of the neutron [1,4].
From Eq. (8) with f (Qβ−

c
, Z = 1) → f (γ )(Qβ−

c
, Z = 1) we

get

|Vud |2 = 4910.22

τ
(exp)
β−

c

(
1 + 3g2

A

) . (29)

Using the experimental values of the lifetimes τ
(exp)
β−

c
=

878.5(8) s and τ
(exp)
β−

c
= 885.7(8) s, given in [1] and [4],

respectively, we obtain

|Vud | =
⎧⎨
⎩

0.9752(7), τ
(exp)
β−

c
= 878.5(8) s

0.9713(7), τ
(exp)
β−

c
= 885.7(8) s.

(30)

In Fig. 1 we show a dependence of the CKM matrix
element on the values of the lifetime of the neutron and

FIG. 1. (Color online) The dependence of the CKM matrix
element |Vud | on the values of the lifetime of the neutron and the
axial coupling constant gA.
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the axial coupling constant gA. The yellow area shows
that the value |Vud | = 0.9752(7), calculated for the lifetime
τ

(exp)
β−

c
= 878.5(8) s, agrees with both |Vud | = 0.97419(22) and

|Vud | = 0.9738(4).
One can see that the value |Vud | = 0.9713(7), calculated for

the lifetime τ
(exp)
β−

c
= 885.7(8) s and gA = 1.2750(9), is ruled

out by the experimental value |Vud | = 0.9738(4), measured
from the superallowed 0+ → 0+ nuclear β−-decays, caused
by pure Fermi transitions only [3,18], and the unitarity of the
CKM matrix elements giving |Vud | = 0.97419(22) [4].

VIII. CONCLUSIVE DISCUSSION

We have recalculated the continuum-state and bound-state
β−-decay rates of the neutron. Taking into account the contri-
butions of weak and strong interactions for the lifetime of the
neutron we get the value τβ−

c
= 914.8(1.2) s, where the error

±1.2 s is caused by the experimental error of the axial coupling
constant gA = 1.2750(9) and the CKM matrix element |Vud | =
0.97419(22) [4]. Including the radiative corrections [13], the
theoretical value of the lifetime of the neutron changes to
τ

(γ )
β−

c
= 880.4(1.1) s. It agrees well with the experimental value

τ
(exp)
β−

c
= 878.5(8) s [1].

We would like to accentuate that the radiative corrections
are universal and make up about 3.9 %. The theoretical value
of the radiative corrections, calculated in this paper as

RRC = f (γ )(Qβ−
c
, Z = 1)

f (Qβ−
c
, Z = 1)

= 1.03912, (31)

agrees well with the value RRC = 1.03886(39) given in [3],
and RRC = 1.0390(8) calculated in [13].

Thus, the agreement of the theoretical value of the lifetime
of the neutron τβ−

c
= 880.4(1.1) s with the experimental

value τ
(exp)
β−

c
= 878.5(8) s, measured in [1], is fully due to

the axial coupling constant gA = 1.2750(9) and the CKM
matrix element |Vud | = 0.97419(22) [4] (see Table III and the
discussion below).

Using our expression (8) for the continuum-state β−-decay
rate with the Fermi integral, accounting for the contribution
of radiative corrections, the axial coupling constant gA =
1.2750(9) and the experimental lifetimes of the neutron
τ

(exp)
β−

c
= 878.5(8) s [1] and τ

(exp)
β−

c
= 885.7(8) s we get the

values of the CKM matrix element |Vud | = 0.9752(7) and
|Vud | = 0.9713(7), respectively.

It seems that |Vud | = 0.9713(7) is ruled out by the values
|Vud | = 0.9738(4) and |Vud | = 0.97419(22) defined from the
superallowed 0+ → 0+ nuclear β−-decays [3,18] and the uni-
tarity condition for the CKM matrix elements [4], respectively.
One should emphasize that it is valid only for the axial coupling
constant gA = 1.2750(9).

What lifetime time of the neutron is singled out by the
nature either τ

(exp)
β−

c
= 878.5(8) s [1] or τ

(exp)
β−

c
= 885.7(8) s [4]?

Of course, the reply to this question should be obtained
by further experiments in terrestrial laboratories. In regards to
new measurements of the lifetime of the neutron we would like

TABLE II. The correlation coefficients of the energy spectrum of
the continuum-state β−-decay of the neutron calculated for gA =
1.2750(9) [3]; C = −0.27484 (A + B) is the proton asymmetry
measured in [29].

Experiment Theory: gA = 1.2750 (9)

τβ−
c

878.5 (8) [1] 880.4 (1.1)V −A

a −0.103 (4) [3] − 0.1065 (3)V −A

b – 0.0032 (23)
A −0.11933 (34) [3] fit
B 0.9821 (40) [27,28] 0.9871 (4)V −A

C −0.2377 (26) [29] −0.2385 (1)V −A

|Vud | 0.97419 (22) [4] 0.9752 (7)V −A

|Vud | 0.9738 (4) [18] 0.9752 (7)V −A

gS – −0.0251 (181)
gT – +0.0090 (65)

to mention the recent experimental value τ
(exp)
β−

c
= 878.2(1.9) s,

reported by Ezhov et al. [32]. It is important to emphasize that
the experimental procedure of Ezhov’s experiments, based
on the use of the magnetic trap for neutrons, differs from
the procedure of Serebrov’s experiments [1]. In addition
to the experimental data of terrestrial laboratories some hints
on the value of the lifetime of the neutron can be obtained far
from Earth, for example, from cosmology [25,26].

The theoretical values of the correlation coefficients, cal-
culated for gA = 1.2750(9), are given in Table II. We remind
the reader that the value gA = 1.2750(9) of the axial coupling
constant has been calculated from the fit of the experimental
value of the coefficient of the correlation between the neutron
spin and electron momentum A(exp) = − 0.11933(34), which
has been obtained in [3] as an averaged value over PERKEO
II measurements [30,31].

The deviation of the theoretical value of the lifetime of
the free neutron τ

(th)
β−

c
= 880.1(1.1) s from the experimental

one τ
exp
β−

c
= 878.5(8) s [1] allows to take into account the

contributions of scalar and tensor weak interactions, which
can be added to the standard V − A baryon-lepton weak
interactions with coupling constants gS and gT , respectively.
From the fit of the experimental value of the lifetime of the
neutron τ

exp
β−

c
= 878.5(8) s [1] we have found gS + 3gAgT =

0.0094(70), caused by the value of the Fierz term b =
0.0032(23), Eq. (17).

The standard V − A weak interactions describe well the
experimental data on the coefficient of the neutron spin and
antineutrino momentum correlation (see Table II). Therefore,
in order to estimate the values of the scalar and tensor
coupling constants, we set to zero the contribution of the
energy-dependent term to the coefficient B. This gives

gT + gA(gS + 2gT ) = 0. (32)

We would like to emphasize that there is no other reason for the
constraint (32) except a sufficiently good agreement between
the experimental and theoretical values of B (see Table II).
Of course, more precise experimental data on the coefficient B,
showing an energy dependence, may destroy such a constraint.
Solving Eq. (32) together with the Fierz term Eq. (17) we
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estimate the scalar and tensor coupling constants

gS = + b

2

(1 + 2gA)
(
1 + 3g2

A

)
1 + 2gA − 3g2

A

,

(33)

gT = − b

2

gA

(
1 + 3g2

A

)
1 + 2gA − 3g2

A

.

The numerical values are given in Table II.
The coupling constants gS and gT are related to the weak

coupling constants CV ,CS , and CT used in [8], as gS =
CS/CV and gT = CT /CV . The scalar gS = − 0.0251(181)
and tensor gT = + 0.0090(65) differ from the values gS =
+ 0.0013(13) and gT = − 0.0046(42) found in [8]. This can
imply only that the energy-dependent term in the correlation
coefficient B cannot be set zero. The coupling constants gS

and gT can be obtained experimentally by measuring the
energy dependence of the coefficient B of the correlation of
the neutron spin and the antineutrino momentum in parallel to
the measuring of the bound-state β−-decay rates of the neutron
into hydrogen in certain hyperfine states. As we have shown the
measurement of the angular distributions of the probabilities
of the bound-state β−-decay of the polarized neutron into
hydrogen in the hyperfine states with F = 1 can be carried out
at ϑ = 0 or ϑ = π .

Our angular distributions for the probabilities of the bound-
state β−-decay rates of the neutron into hydrogen in certain
hyperfine states agree at gS = gT = 0 with those obtained by
Song [9].

A. Comments on the use of the axial coupling constant
gA = 1.2695(29)

Concluding our analysis of the β−-decays of the neutron
we would like to discuss the theoretical lifetime of the neutron,

TABLE III. The correlation coefficients of the energy spectrum
of the continuum-state β−-decay of the neutron calculated for gA =
1.2695(29) [4]; C = −0.27484 (A + B) is the proton asymmetry,
measured in [29].

Experiment Theory: gA = 1.2695 (29)

τβ−
c

885.7 (8) [4] 886.7 (3.4)
a −0.103 (4) [3] −0.1048 (9)V −A

b – 0.0017 (59)
A −0.11933 (34) [3] −0.11727 (109)V −A

B 0.9821 (40) [27,28] 0.9876 (23)V −A

C −0.2377 (26) [29] − 0.2392 (7)V −A

|Vud | 0.97419 (22) [4] 0.9747 (18)V −A

|Vud | 0.9738 (4) [18] 0.9747 (18)V −A

gS – −0.0135 (470)
gT – +0.0049 (169)

the correlation coefficients, the CKM matrix element |Vud |,
and the estimate of the scalar and tensor coupling constants,
calculated for the axial coupling constant gA = 1.2695(29).
The results are given in Table III.

The use of the axial coupling constant gA = 1.2695(29),
given in [4] (see also [19]), allows to describe the world aver-
aged value of the lifetime of the neutron well. However, due to
the sufficiently large uncertainty, which is by a factor 3 larger
compared with that of gA = 1.2750(9), the theoretical values
for the correlation coefficients agree with the experimental
data within two standard deviations, and the contribution of the
scalar and tensor weak interactions is ruled out, since the nu-
merical values of the Fierz term, gS and gT , are compared with
zero.
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