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Multi-K̄ hypernuclei
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Relativistic mean-field calculations of multi-K̄ hypernuclei are performed by adding K− mesons to particle-
stable configurations of nucleons, � and � hyperons. For a given hypernuclear core, the calculated K̄ separation
energy BK̄ saturates with the number of K̄ mesons for more than roughly 10 mesons, with BK̄ bounded
from above by 200 MeV. The associated baryonic densities saturate at values 2–3 times nuclear-matter density
within a small region where the K̄-meson densities peak, similarly to what was found for multi-K̄ nuclei. The
calculations demonstrate that particle-stable multistrange {N, �, �} configurations are stable against strong-
interaction conversions � → NK̄ and � → NK̄K̄ , confirming and strengthening the conclusion that kaon
condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter.
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I. INTRODUCTION

Quasibound nuclear states of K̄ mesons have been studied
by us recently in a series of articles [1–4], using a self-
consistent extension of nuclear relativistic mean-field (RMF)
models. References [1–3] focused on the widths expected
for K̄ quasibound states, particularly in the range of K̄

separation energy BK̄ ∼ 100–150 MeV deemed relevant from
K−-atom phenomenology [2,5] and from the KEK-PS E548
12C(K−, N) missing-mass spectra [6] that suggest values of
Re VK̄ (ρ0) ∼ −(150–200) MeV. Such deep potentials are not
reproduced at present by chirally based approaches that yield
values of Re VK̄ (ρ0) of order −100 MeV or less attractive, as
summarized recently in Ref. [7]. For a recent overview of K̄N

and K̄-nucleus dynamics, see Ref. [8].
The subject of multi-K̄ nuclei was studied in Refs. [3,4],

where the focal question considered was whether or not kaon
condensation could occur in strong-interaction self-bound
nuclear matter. Yamazaki et al. [9] argued that K̄ mesons
might provide the relevant physical degrees of freedom for
reaching high-density self-bound strange matter that could
then be realized as multi-K̄ nuclear matter. This scenario
requires that BK̄ beyond some threshold value of strangeness
exceeds mKc2 + µN − m�c2 >∼ 320 MeV, where µN is the
nucleon chemical potential, thus allowing for the conversion
� → K̄ + N in matter. For this strong K̄ binding, � and
� hyperons would no longer combine with nucleons to
compose the more conventional kaon-free form of strange
hadronic matter, which is made out of {N,�,�} particle-
stable configurations [10,11] (see Ref. [12] for an update), and
K̄ mesons would condense then macroscopically. However,
our detailed calculations in Ref. [4] demonstrated a robust
pattern of saturation for BK̄ and for nuclear densities upon
increasing the number of K̄ mesons embedded in the nuclear
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medium. For a wide range of phenomenologically allowed
values of meson-field coupling constants compatible with
assuming a deep K̄-nucleus potential, the saturation values of
BK̄ were found generally to be below 200 MeV, considerably
short of the threshold value of ≈320 MeV required for the onset
of kaon condensation under laboratory conditions. Similar
results were subsequently published by Muto et al. [13]. Our
discussion here concerns kaon condensation in self-bound
systems, constrained by the strong interactions. It differs
from discussions of kaon condensation in neutron stars where
weak-interaction constraints are operative for any given value
of density. For very recent works on kaon condensation in
neutron-star matter, see Ref. [14], where hyperon degrees of
freedom were disregarded, and Ref. [15], where the interplay
between kaon condensation and hyperons was studied, and
references to earlier relevant work cited therein.

In our calculations of multi-K̄ nuclei [4], the saturation of
BK̄ emerged for any boson-field composition that included
the dominant vector ω-meson field, using the F-type SU(3)
value gωKK ≈ 3 associated with the leading-order Tomozawa-
Weinberg term of the meson-baryon effective Lagrangian.
This value is smaller than in any of the other commonly
used models [4]. Moreover, the contribution of each one of
the vector φ-meson and ρ-meson fields was found to be
substantially repulsive for systems with a large number of
antikaons, reducing BK̄ as well as lowering the threshold
value of the number of antikaons required for saturation to
occur. We also verified that the saturation behavior of BK̄ is
qualitatively independent of the RMF model applied to the
nucleonic sector. The onset of saturation was found to depend
on the atomic number. Generally, the heavier the nucleus is, the
more antikaons it takes to saturate their separation energies.
We concluded that K̄ mesons do not provide a constituent
degree of freedom for self-bound strange dense matter.

In the present work we extend our previous RMF cal-
culations of multi-K̄ nuclei into the domain of multi-K̄
hypernuclei, to check whether a joint consideration of K̄

mesons together with hyperons could bring new features
or change our previous conclusions. This is the first RMF
calculation that considers both K̄ mesons and hyperons
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together within finite self-bound hadronic configurations. The
effect of hyperonic strangeness in bulk on the dispersion
of kaons and antikaons was considered by Schaffner and
Mishustin [16]. More recently, kaon-condensed hypernuclei
as highly dense self-bound objects have been studied by
Muto [17], using liquid-drop estimates.

The plan of the article is as follows. In Sec. II we briefly
outline the RMF methodology for multi-K̄ hypernuclei and
discuss the hyperon and K̄ couplings to the meson fields used
in the present work. Results of these RMF calculations for
multi-K̄ hypernuclei are shown and discussed in Sec. III. We
conclude with a brief summary and outlook in Sec. IV.

II. MODEL

A. RMF formalism

In the present work, our interest is primarily aimed at
multiply strange baryonic systems containing (anti)kaons. We
employed the relativistic mean-field approach where the strong
interactions among pointlike hadrons are mediated by effective
mesonic degrees of freedom. In the following calculations we
started from the Lagrangian density

L = B̄[iγ µDµ− (MB −gσBσ −gσ ∗Bσ ∗)]B + (DµK)†(DµK)

− (
m2

K − gσK mKσ − gσ ∗K mKσ ∗)K†K

+ (σ, σ ∗, ωµ, �ρµ, φµ,Aµ free-field terms)

−U (σ ) − V (ω), (1)

which includes, in addition to the common isoscalar scalar
(σ ), isoscalar vector (ω), isovector vector (ρ), electromagnetic
(A) fields, and nonlinear self-couplings U (σ ) and V (ω), also
hidden strangeness isoscalar σ ∗ and φ fields that couple
exclusively to strangeness degrees of freedom. Vector fields
are coupled to baryons B (nucleons, hyperons) and K mesons
via the covariant derivative

Dµ = ∂µ + i gω	 ωµ + i gρ	
�I · �ρµ + i gφ	 φµ

+ i e
(
I3 + 1

2Y
)
Aµ , (2)

where 	 = B and K , with �I denoting the isospin operator,
I3 being its z component, and Y standing for hypercharge.
This particular choice of the coupling scheme for K− mesons
ensures the existence of a conserved Noether current, the
timelike component of which can then be normalized to the
number of K− mesons in the medium,

ρK− = 2(EK− +gωK ω+gρK ρ+gφK φ+e A)K+K−,∫
d3x ρK− = κ, (3)

and serves as a dynamical source in the equations of motion
for the boson fields in matter:

(−∇2 + m2
σ

)
σ = gσBB̄B + gσKmKK+K− − ∂

∂σ
U (σ )

(−∇2 + m∗2
σ

)
σ ∗ = gσ ∗BB̄B + gσ ∗KmKK+K−

(−∇2 + m2
ω

)
ω = gωBB†B − gωKρK− + ∂

∂ω
V (ω) (4)

(−∇2 + m2
ρ

)
ρ = gρBB†I3B − gρKρK−

(−∇2 + m2
φ

)
φ = gφBB†B − gφKρK−

−∇2A = e B†
(

I3 + 1

2
Y

)
B − e ρK− .

These dynamically generated intermediate fields then enter the
Dirac equation for baryons,[−iα · ∇ + β

(
MB − gσBσ − gσ ∗Bσ ∗) + gωBω + gρBI3ρ

+ gφBφ + e
(
I3 + 1

2Y
)
A

]
B = εB, (5)

and the Klein-Gordon equation for K− mesons,[−∇2 − E2
K− + m2

K + 
K−
]
K− = 0, (6)

with the in-medium K− self-energy,


K− = −gσKmKσ − gσ ∗KmKσ ∗

− 2EK− (gωKω + gρKρ + gφKφ + eA)

− (gωKω + gρKρ + gφKφ + eA)2. (7)

Hence, the presence of the K̄ mesons modifies the scalar and
vector mean fields entering the Dirac equation, consequently
leading to a dynamical rearrangement of the baryon configura-
tions and densities that, in turn, modify the K̄ quasibound states
in the medium. This requires a self-consistent solution of these
coupled wave equations, a procedure followed numerically in
the present as well as in our previous works. In the present
work, for the sake of simplicity, we have suppressed the
imaginary part of 
K− arising from in-medium K− absorption
processes except for demonstrating its effect in one example.
Note that, for the range of values BK− >∼ 100 MeV mostly
considered here, the effect of Im 
K− was found to be
negligible (see Fig. 1 of Ref. [4]).

B. Choice of the model parameters

To parametrize the nucleonic part of the Lagrangian
density (1) we considered the standard RMF parameter
sets NL-SH [18] and NL-TM1(2) [19], which have been
successfully used in numerous calculations of various nuclear
systems.

In the case of hyperons the coupling constants to the vector
fields were fixed using SU(6) symmetry. For � hyperons this
leads to

gω� = 2

3
gωN, gρ� = 0, gφ� = −√

2

3
gωN . (8)

The coupling to the scalar σ field, gσ�/gσN = 0.6184 (0.623)
for the NL-SH (NL-TM) RMF model, was then estimated by
fitting to measured �-hypernuclear binding energies [20]. This
essentially ensures the well depth of 28 MeV for � in nuclear
matter. The coupling of the � hyperon to the scalar σ ∗ field
was fixed by fitting to the measured value �B�� ≈ 1 MeV
of the uniquely identified hypernucleus ��

6He [21]. For �

hyperons, SU(6) symmetry gives

gω� = 1

3
gωN, gρ� = −gρN, gφ� = −2

√
2

3
gωN . (9)

Because there are no experimental data for �(�)-� interac-
tions, we set gφ� = gσ ∗� = 0 to avoid parameters that might
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TABLE I. K̄ and K− separation energies, BK̄ and BK− ,
respectively, calculated statically (in MeV) for a single
antikaon 1s state in several nuclei, using the NL-TM nuclear
RMF parametrizations (TM2 for 12C and 16O, TM1 for 40Ca
and above) and vector SU(3) coupling constants, Eq. (10). The
difference BK− − BK̄ is due to the K− finite-size Coulomb
potential.

12C 16O 40Ca 90Zr 208Pb

BK̄ 44.8 42.7 49.8 54.5 53.6
BK− 49.0 47.6 59.2 69.4 76.6

lead to unphysical consequences and that, in addition, are
expected to play a minor role (in analogy to the small effect,
of order 1 MeV for BK− , found upon putting gφ� and gσ ∗�
to zero, and as is demonstrated below in Fig. 7 within a
different context). The coupling to the scalar σ field was then
constrained to yield an optical potential Re V�− = −14 MeV
in the center of 12C [22]. This corresponds to gσ� = 0.299gσN

for the NL-TM2 RMF model.
Finally, for the antikaon couplings to the vector meson fields

we adopted a purely F-type, vector SU(3) symmetry:

2gωK = 2gρK =
√

2gφK = gρπ = 6.04, (10)

where gρπ is due to the ρ → 2π decay width [7]. (Here we
denoted by gV P the VPP electric coupling constant gV PP .)
Using this “minimal” set of coupling constants to establish
correspondence with chirally based approaches, we calculate
the single antikaon 1s separation energies BK̄ and BK− listed
in Table I. These separation energies are lower roughly by
25 MeV than those anticipated from K̄N -�π coupled-channel
chiral approaches [7], most likely because the K� vector-
meson off-diagonal coupling is not included in the standard
RMF formulation. The missing attraction, and beyond it, is
incorporated here by coupling the antikaon to scalar fields σ

and σ ∗. SU(3) symmetry is not of much help when fixing the
coupling constants of scalar fields. Because there still is no
consensus about the microscopic origin of the scalar σ field
and the strength of its coupling to K̄ mesons [23,24], in this
work we fitted gσK to several assumed K− separation energies
BK− in the range of 100–150 MeV for a single K− meson in
selected nuclei across the periodic table, as implied by the deep
K−-nucleus potential phenomenology of Refs. [2,6]. Further-
more, for use in multistrange configurations, the coupling
constant to the σ ∗ field is taken from f0(980) → KK̄ decay
to be gσ ∗K = 2.65 [16]. The effect of the σ ∗ field was found
generally to be minor. For a more comprehensive discussion
of the issue of scalar couplings, see our previous work [4].

C. Inclusion of the SU(3) baryon octet

We considered many-body systems consisting of the
SU(3) octet N,�,�, and � baryons that can be made
particle stable against strong interactions [10,11]. The energy
release Q values for various conversion reactions of the type
B1B2 → B3B4 together with phenomenological guidance on
hyperon-nucleus interactions suggest that only the conversions

�−p → �� and �0n → �� (for which Q � 20 MeV) can
be overcome by binding effects. It becomes possible then to
form particle-stable multi-{N,�,�} configurations for which
the conversion �N → �� is Pauli blocked owing to the �

orbitals being filled up to the Fermi level. For composite
configurations with � hyperons the energy release in the
�N → �N conversion is too high (Q >∼ 75 MeV) and, hence,
it is unlikely for hypernuclear systems with � hyperons to be
particle stable.

III. RESULTS AND DISCUSSION

In Refs. [3,4] we studied multi-K̄ nuclei, observing that
the calculated K− separation energies as well as the nu-
clear densities saturate upon increasing the number of K−
mesons embedded dynamically in the nuclear medium. This
saturation phenomenon, which is qualitatively independent
of the applied RMF model, emerged for any boson-field
composition containing the dominant vector ω-meson field
which acts repulsively between K̄ mesons. Because the
calculated K− separation energies did not exceed 200 MeV, for
coupling-constant combinations designed to bind a single K−
meson in the range BK− ∼ 100–150 MeV, it was argued that
kaon condensation is unlikely to occur in strong-interaction
self-bound hadronic matter. In this section we demonstrate that
these conclusions hold also when adding, within particle-stable
multistrange configurations, large numbers of hyperons to
nuclei across the periodic table.

A. Multi-{N,�, K−} configurations

Figure 1 presents 1s K− separation energies BK− in
16O + η� + κK− multi-K−� hypernuclei as a function of
the number κ of K− mesons for η = 0, 2, 4, 6, and 8 �

hyperons, calculated in the NL-SH model for two values
of gσK (gσK = 0.233gσN and 0.391gσN ) chosen to produce
BK− = 100 and 150 MeV, respectively, for η = 0, κ = 1. In
addition, the lower group of curves with BK− < 60 MeV
corresponds to gσK = 0. The figure illustrates saturation of
BK− with the number of antikaons in multi-� hypernuclei.
There is an apparent increase of BK− (up to 15%) when the first
two � hyperons fill the 1s shell. Further � hyperons, placed in
the p shell, cause only insignificant variation of BK− for small
values of κ . However, the effect of the 1p3/2-shell hyperons
increases with the number of antikaons, and for κ = 8 it
adds another 5–10 MeV to BK− . The separation energy BK−

remains almost unaffected (or even decreases) by the next two
� hyperons placed in the 1p1/2 shell. The figure thus suggests
saturation of the K− separation energy also with the number η

of � hyperons in the nuclear medium. When the K− coupling
to the σ field is switched off, gσK = 0, the K− separation
energy assumes relatively low values, BK− <∼ 50 MeV, and
decreases as a function of κ when Im 
K− is considered
(solid lines). In this case, the effect of K− absorption is not
negligible as illustrated by the dot-dashed line showing BK− for
Im 
K− = 0. The effect of Im 
K− 	= 0 for BK− > 100 MeV
in the upper groups of curves is negligible and is not shown
here or in all subsequent figures.
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FIG. 1. (Color online) The 1s K− separation energy BK− in 16O +
η� + κK− as a function of the number κ of antikaons for several
values of the number η of � hyperons, with initial values BK− =
100 and 150 MeV for η = 0, κ = 1, calculated in the NL-SH RMF
model. The solid (dot-dashed) lines with open symbols correspond
to gσK = 0 including (excluding) Im 
K− .

It is worth noting that η = 8 is the maximum number of �

hyperons in our calculation that can be bound in the 16O nuclear
core. In some of the 16O + η� + κK− allowed configurtions,
1p1/2 neutrons became less bound than 1d5/2 neutrons because
of the strong spin-orbit interaction. (This occurs, e.g., for η = 0
when κ � 5 or for η = 8 when κ � 3.) However, the total
binding energy of the system was found always to be higher for
configurations with 1p1/2 neutrons. Consequently, the standard
shell configurations of oxygen are more bound and are thus
energetically favorable.

The saturation of BK− upon increasing the number of �

hyperons in multi-K−� hypernuclei based on a 16O nuclear
core holds also when going over to heavier core nuclei. Figure 2
shows the 1s K− separation energy BK− in 208Pb + η� +
κK− multi-K−� hypernuclei as a function of both the number
κ of K− mesons and η of � hyperons, calculated in the NL-
TM1 model for gσK = 0.133gσN such that BK− = 100 MeV
for η = 0, κ = 1. For any given number η of � hyperons,
BK− saturates with the number κ of K− mesons, reaching
its maximum value for κ = 12. Morever, BK− increases with
the number of hyperons up to η = 20, when it reaches its
maximum value BK− ≈ 110 MeV for κ = 12, and then starts
to decrease with η. Consequently, in the Pb configurations with
100 � hyperons and more than 5 K− mesons, K− mesons are
even less bound than in configurations with no � hyperons.
The decrease of BK− with η beyond η = 20 is apparently
related to a depletion of the central nuclear density in the
presence of a massive number of hyperons in outer shells, as

1 5 10 15 20
κ

100

102

104

106

108

110

112

B
K

−  (
M

eV
)

    0Λ
  20Λ
  50Λ
  70Λ
100Λ

208
Pb + ηΛ + κK

−

FIG. 2. (Color online) The 1s K− separation energy BK− in
208Pb + η� + κK− as a function of the number κ of antikaons for
several values of the number η of � hyperons, with initial value
BK− = 100 MeV for η = 0, κ = 1, calculated in the NL-TM1 RMF
model.

confirmed by some of the subsequent figures, because BK− is
greatly affected by the central nuclear density.

B. Multi-{N,�,�, K−} configurations

When building up baryonic multi-{N,�,�} configurations
with maximum strangeness for selected core nuclei, we
first started by filling up � hyperon single-particle states
in a given nuclear core up to the � Fermi level. Subse-
quently, we added �0 and �− hyperons as long as the
reaction [AN, η�,µ�] → [(A − 1)N, η�, (µ − 1)�] + 2�

was energetically forbidden (here, [. . .] denotes a bound
configuration). Finally, we checked that the inverse re-
action [AN, η�,µ�] → [(A + 1)N, (η − 2)�, (µ + 1)�] is
kinematically blocked as well. These conditions guarantee
that such {N,�,�} multistrange configurations are particle
stable against strong interactions, decaying only via weak
interactions.

Clearly, the amount of � hyperons bound in a given
system depends on the depth −V� of the �-nucleus potential.
We adopted a value for gσ� that gives V Dirac

� = VS + VV =
−18 MeV, corresponding to a depth of −V Schr.

� � 14 MeV
for use in the Schroedinger equation [22]. For comparison, in
some cases we also considered V Dirac

� = −25 MeV.
The 16O core can accommodate up to η = 8 � hyperons

in particle-stable configurations, and the 16O + 8� system
admits many more, of order 40 K− mesons. However, we have
not found any energetically favorable conversion �� → �N

in 16O + η� + κK− systems. Therefore, � hyperons are
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FIG. 3. (Color online) The 1s K− separation energy BK− in 40Ca,
90Zr, and 208Pb with η� + µ� + κK− as a function of the number
κ of antikaons, with initial value BK− = 100 MeV for η = µ = 0,
κ = 1, calculated in the NL-TM1 RMF model.

not part of any particle-stable multistrange configurations
built upon the 16O core. While checking the energy bal-
ance in heavier systems with 40Ca, 90Zr, and 208Pb nuclear
cores, we found particle-stable configurations: 40Ca + 20� +
2�0, 90Zr + 40� + 2�0 + 2�−, and 208Pb + 106� + 8�0 +
18�−. We then embedded several K− mesons in these
configurations and studied density distributions and binding
energies in such multi-K− hypernuclear systems. Figure 3
demonstrates the calculated 1s K− separation energy BK−

in 40Ca + 20� + 2�0 + κK−, 90Zr + 40� + 2�0 + 2�− +
κK−, and 208Pb + 106� + 8�0 + 18�− + κK− as a function
of the number κ of K− mesons. For comparison, in the case
of the 208Pb core, we also present calculations done excluding
� hyperons but keeping the same number, η = 106, of �

hyperons. A decrease of BK− upon adding hyperons (� in this
case) is noted, in line with the trend observed and discussed
for Fig. 2 above.

The calculations shown in Fig. 3 were performed
within the NL-TM1 nuclear RMF scheme using values of
gσK = 0.211gσN (40Ca) and 0.163gσN (90Zr), which yield
BK− = 100 MeV for a single K− nuclear configuration with
η = µ = 0, where µ denotes the number of � hyperons.
The figure demonstrates that the saturation of K− separation
energies, observed for multi-� hypernuclei in Figs. 1 and 2,
holds also when � hyperons are added dynamically within
particle-stable configurations and that the heavier the system
is, the larger number κ of antikaons it takes to saturate BK− .
It is worth noting that in all cases BK− does not exceed
120 MeV. Finally, the two curves for a 90Zr nuclear core
in Fig. 3 (using diamond symbols) show the sensitivity to
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FIG. 4. (Color online) The 1s K− separation energy BK− in 40Ca
and 90Zr with η� + µ� + κK−, for V Dirac

� = −25 MeV, as a function
of the number κ of antikaons, with initial value BK− = 100 MeV for
η = µ = 0, κ = 1, calculated in the NL-TM1 RMF model.

the value assumed for the � hyperon potential depth, the
standard −V Dirac

� = 18 MeV, and a somewhat increased depth
−V Dirac

� = 25 MeV, illustrating the tiny effect it exercises on
BK− that is noticeable only for κ < 12.

A deeper � potential supports binding of more � hyperons
in a given multi-� hypernucleus. For V Dirac

� = −18 MeV,
only 2�0 and 2�0 + 2�− hyperons were found to be bound
in 40Ca + 20� and 90Zr + 40�, respectively. However, for
V Dirac

� = −25 MeV it is possible to accommodate up to 8�0 +
2�− hyperons in 40Ca + 20� and 8�0 + 8�− hyperons in
90Zr + 40�. Figure 4 presents the 1s K− separation energy
BK− in multi-K− hypernuclei 40Ca + 20� + 8�0 + 2�− +
κK− and 90Zr + 40� + 8�0 + 8�− + κK− as a function of
the number κ of K− mesons, calculated in the NL-TM1
model for V Dirac

� = −25 MeV, using values for gσK such
that BK− = 100 MeV in 40Ca + 1K− and in 90Zr + 1K−.
The figure illustrates that the saturation of the K− separation
energy occurs also in baryonic systems with three species of
hyperons, �, �0, and �−, reaching quite large fractions of
strangeness [|S|/B = 0.57(0.8) for a Ca(Zr) core]. We note
that the separation energy BK− barely exceeds 120 MeV in
these cases too.

We also studied the rearangement of nuclear systems
induced by embedding hyperons and K− mesons. Figure 5
presents the evolution of the density distributions in Zr
after first adding 40� + 4� hyperons (top panel) and then
10 K− mesons (bottom panel). The nucleon density ρN

in 90Zr is denoted by a dotted line. The relatively weakly
bound hyperons with extended density distributions (dashed
line, solid diamonds) attract nucleons, thus depleting the

035205-5



D. GAZDA, E. FRIEDMAN, A. GAL, AND J. MAREŠ PHYSICAL REVIEW C 80, 035205 (2009)
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FIG. 5. (Color online) Density distributions in 90Zr + 40� +
2�0 + 2�− + κK−, for κ = 0 (top panel) and κ = 10 (bottom
panel), with BK− = 100 MeV for η = µ = 0, κ = 1, calculated in
the NL-TM1 RMF model. The dotted line corresponds to the nucleon
density ρN in 90Zr. The densities ρ� (open diamonds) and ρN (open
circles) in 90Zr + 40� + κK− are shown for comparison.

central nucleon density ρN (dashed line, circles). Adding
extra 10 K− mesons to the hypernuclear system induces
large rearrangement of the baryons. The K− mesons, which
pile up near the origin (solid line, squares), attract the
surrounding nucleons and hyperons. Consequently, the den-
sities ρN and ρY (solid lines, solid circles and diamonds,
respectively) increase considerably in the central region. The
resulting configuration 90Zr + 40� + 2�0 + 2�− + 10K− is
thus significantly compressed, with central baryon density
ρB exceeding the nuclear density in 90Zr by a factor of
roughly 3.

For comparison we present in Fig. 5 also the � hyperon
(ρ�, open diamonds) and nucleon (ρN , open circles) density
distributions calculated in 90Zr + 40� + κK− for κ = 0 and
10 K− mesons. The removal of the 1s-state � hyperons from
the primary baryonic configuration 90Zr + 40� + 2�0 + 2�−
affects considerably the hyperon density distribution ρY in the
central region of the nucleus, this effect being magnified by
the presence of K− mesons. In contrast, the nucleon density
ρN remains almost intact. For κ = 10, � hyperons appear to
repel nucleons from the center of the multi-{N, Y, K̄} system,
much like � hyperons do.

C. Multi-{N,�,�, K+} configurations

The K+-nucleus potential is known to be repulsive, with
VK+ ≈ 30 MeV at central nuclear density [5]. Schaffner
and Mishustin [16] suggested that the presence of hyperons
could lead eventually to a decrease of the repulsion that K+
mesons undergo in nuclear matter so that the K+ potential
might even become attractive. Here we studied the possibility
of binding K+ mesons in hypernuclear matter, neglecting
for simplicity dynamical effects arising from coupling K+
mesons to the hypernuclear system. The K+-nucleus potential
was constructed simply by applying a G-parity transfor-
mation to the corresponding K− potential, choosing gσK

such that it produces BK− = 100 MeV in the given core
nucleus.

Figure 6 shows the radial dependence of the real part
of the static K+ potential in various hypernuclear systems
connected with 16O. The dotted line shows the repulsive K+
potential in 16O for comparison. The figure indeed shows
that the repulsion decreases, from roughly 30 MeV down to
roughly 20 MeV with the number of � hyperons added to the
nuclear core, but the K+ potential remains always repulsive
in 16O + η� systems. Searching for a K+ bound state in
hadronic systems we also calculated the K+ potential in more
exotic multistrange hypernuclei AZ + η� − νp, where several
protons are removed from the nuclear core in an attempt to
increase the |S|/B ratio and to reduce Coulomb repulsion.
Figure 6 indicates that such removal of protons from 16O has
a sizable effect on the shape of the K+ potential, which may
result in a shallow attractive pocket. However, the attraction
is insufficient to bind a K+ meson in these hadronic systems.
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FIG. 6. (Color online) The K+ static potential in 16O + η� − νp,
calculated in the NL-SH RMF model.

035205-6



MULTI-K̄ HYPERNUCLEI PHYSICAL REVIEW C 80, 035205 (2009)

0 2 4 6 8
r (fm)

0

10

20

30

40

50
V

K
+
 (

M
eV

)

90
Zr

90
Zr+40Λ

90
Zr+40Λ+8(Ξ0+Ξ−)

90
Zr+40Λ+8(Ξ0+Ξ−), gσ Ξ=gφΞ=0*
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Our calculations confirmed that the above conclusion holds
also in heavier hypernuclear configurations based on Ca, Zr,
and Pb cores.

In heavier nuclei, where it becomes possible to accom-
modate also � hyperons in addition to � hyperons, the K+
repulsion may be further reduced. This is demonstrated in
Fig. 7 for a 90Zr nuclear core. However, this reduction is
insufficient to reverse the repulsion into attraction. The figure
also shows that the hidden strangeness couplings (chosen to
be gi� = 2gi�, i = σ ∗, φ) have no effect whatsoever on the
reduction accomplished by the presence of � hyperons.

Finally, we searched for K+ bound states in nuclei
sustained by K− mesons. The presence of deeply bound
K− mesons makes the K+ potential immensely deep (more
than 100 MeV in 16O + 8K−). However, because the K−
mesons are concentrated at the very center of the nucleus,
the K+ potential is of a rather short range of about 1 fm.
As a result, we found only very weakly bound K+ states (by
1 MeV) in multi-{N, Y,K−} configurations. A more careful
treatment of K+K− dynamics near threshold is necessary
before coming to further conclusions, but our conclusion is
not at odds with recent studies of the I = 1/2, Jπ = 1/2+

KK̄N system [25,26].

IV. SUMMARY AND CONCLUSIONS

In this work, the RMF equations of motion for multi-K̄
hypernuclei were formulated and solved for self-bound finite
multistrange configurations. The choice of coupling constants
of the constituents—nucleons, hyperons, and K̄ mesons—to

the vector and scalar meson fields was guided by a combination
of accepted models and by phenomenology. The sensitivity
to particular chosen values was studied. The results of the
RMF calculations show a robust pattern of binding-energy
saturation for K̄ mesons as a function of their number κ .
Compared to our previous RMF results for multi-K̄ nuclei [4],
the added hyperons do not bring about any quantitative change
in the BK− (κ) saturating curve. The main reason for saturation
remains the repulsion induced by the vector meson fields,
primarily ω, between K̄ mesons. The SU(3)V values adopted
here for gvK , Eq. (10), provide the “minimal” strength for gωK

out of several other choices made in the literature, implying
that the saturation of BK− (κ) persists also for other choices of
coupling-constant sets, as discussed in Ref. [4]. The repulsion
between K̄ mesons was also the primary reason for saturation
in multi-K̄ nuclei, both in our previous work [4] and in
Ref. [13].

The saturation of BK− with typical values below 200 MeV,
considerably short of what it takes to replace a � hyperon by a
nucleon and a K̄ meson, means that K̄ mesons do not compete
favorably and thus cannot replace hyperons as constituents
of strange hadronic matter. In other words, K̄ mesons do not
condense in self-bound hadronic matter. The baryon densities
of multi-K̄ hypernuclei are between 2ρ0 and 3ρ0, where ρ0

is nuclear-matter density. This is somewhat above the values
obtained without K̄ mesons, but still within the density range
where hadronic models are likely to be applicable.

Our conclusion of no “kaon condensation” is specific
to self-bound finite hadronic systems run under strong-
interaction constraints. It is not directly related to the Kaplan-
Nelson conjecture of macroscopic kaon condensation [27],
nor to hadronic systems evolving subject to weak-interaction
constraints, such as neutron stars. Yet, this conclusion has been
challenged recently by Muto [17] who uses the liquid-drop
approach to claim that multi-K̄ hypernuclei (termed by him
“kaon-condensed hypernuclei”) may provide the ground-state
configuration of finite strange hadronic systems at densities
about 9ρ0. Of course this high value of density for kaon-
condensed hypernuclei is beyond the range of applicability
of hadronic models, because quark-gluon degrees of freedom
must enter in this density range. His calculation also reveals an
isomeric multistrange hypernuclear state, without K̄ mesons,
at density about 2ρ0 which is close to what we find here
within a RMF bound-state calculation. The appearance of
a high-density kaon-condensed hypernuclear bound state in
Muto’s calculation might be just an artifact of the applied
liquid-drop methodology, which does not provide an accurate
substitute for a more microscopically oriented bound-state
calculation.

The role of K− strong decays in hadronic matter was played
down in the present calculation of multi-K− hypernuclei
because our aim, primarily, was to discuss and compare
(real) binding energies of strange hadronic matter with and
without K− mesons. The width of deeply bound K− nuclear
configurations was explored by us in Refs. [1–3], concluding
that residual widths of order �K− ∼ 50 MeV due to K−NN →
�N,�N pionless conversion reactions are expected in the
relevant range of binding energy BK− ∼ 100–200 MeV. This
estimate should hold also in multi-K− hypernuclei where
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added conversion channels are allowed: K−NY → �Y,�Y ,
K−N� → N�, and K−�Y → �Y . We know of no physical
mechanism capable of reducing substantially these widths, and
therefore we do not anticipate multi-K− nuclei or multi-K−
hypernuclei to exist as relatively long-lived isomeric states
of strange hadronic matter that consists of multi-{N,�,�}
configurations.
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045206 (2008).
[5] E. Friedman and A. Gal, Phys. Rep. 452, 89 (2007), and

references to earlier work cited therein.
[6] T. Kishimoto et al., Prog. Theor. Phys. 118, 181 (2007);

T. Kishimoto et al., Nucl. Phys. A827, 321c (2009).
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