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Exotic hadron production in a quark combination model
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The philosophy on production of exotic hadrons (multiquark states) in the framework of the quark combination
model is investigated, taking f0(980) as an example. The production rate and pT spectra of f0(980) considered
as (ss̄) or (sq̄s̄q), respectively, are calculated and compared in Au + Au collisions at

√
sNN = 200 GeV. The

unitarity of various combination models, when open for exotic hadron production, is addressed.
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I. INTRODUCTION

The basic quanta of quantum chromodynamics (QCD),
quarks and gluons, are confined in their bound states, hadrons.
In any high energy interaction, the produced color-singlet (CS)
(anti)quark system eventually transits to various hadron states
with the total probability exactly 1:∑

h

|〈h|U |q〉|2 = 〈q|U+U |q〉 = 1. (1)

Here we introduce the unitary time-evolution operator U to
describe the hadronization process. For the quark state |q〉 and
the corresponding hadron state |h〉, the matrix element Uhq =
〈h|U |q〉 describes the transition amplitude. Uhq is determined
by QCD but beyond the present approach of calculation. This
leaves the space for various hadronization models to mimic
this transition process. As a matter of fact from experiments,∑

h=B,B̄,M

|〈h|U |q〉|2 ∼ 1 − ε, ε → 0+, (2)

here B, B̄,M denote baryon, antibaryon, and meson,
respectively.

Naı̈vely from the group theory, color confinement seems not
so restrict as Eq. (2). The CS state, i.e., the invariant, totally
antisymmetric representation of the SUC(3) group, requires at
least one quark and one antiquark, or three (anti)quarks (these
are just the constituent/valence quark numbers for mesons
and baryons, respectively), but more (anti)quarks can also
construct this representation, hence possibly to form a CS
“hadron.” To name some possibilities, two quark-antiquark
pairs, a quark-antiquark pair with three (anti)quarks, six
(anti)quarks, etc., are to be called exotic hadrons in this paper.1

Until now, no experiment can definitely show the ε in Eq. (2)
is exactly 0 or a small but nonvanishing number. If definitely
ε = 0, there must be underlying properties of QCD which
need exploring. Even if ε is not vanishing, its smallness,
definitely confirmed by experiments and shown in Eq. (2), also
provides interesting challenges, especially on hadronization
models. The small production rate of a special kind of exotic

1There is also, the possible existence of bound states including
gluons, which is not covered in this paper and the name exotic hadron
here does not include glueball or hybrid except explicit statements.

hadron seems easy to be adopted. However, taking into account
so many possibilities to construct the CS representations by
various numbers of (anti)quarks that the total sum of them is
still quite small, is very nontrivial as a property of QCD and
even nontrivial for a hadronization model to reproduce.

More concretely, we investigate the quark combination
models [1,2] when open for the production of multiquark
states. At first sight, the quark combination model is the
most feasible in such a calculation, to just allow the desirable
number of (anti)quarks to combine together. But to get the
total production probability of all the exotic hadrons fulfilling
Eq. (2) with a universal combination rule is nontrivial. In
this paper, we investigate the production of exotic hadrons
via a quark combination model proposed by the Shandong
Group (SDQCM) [3–8]. We demonstrate that to treat the
production process of all the multiquark states as a hadron
molecule formation could be a practical and self-consistent
way, respecting Eqs. (1) and (2), the unitarity of hadronization
models (see also [9], and references therein).

Of all the “on market” combination models, SDQCM
is unique for its combination rule wisely designed so that
mesons and baryons exhaust the probability of all the fates
of the (anti)quarks in CS state. It has been realized in Monte
Carlo programs and tested against data from experiments in
high energy e+e− annihilation and pp collisions [3–8]. It
has been successfully extrapolated to ultrarelativistic heavy
ion collisions [10–13], reflecting the universality of the
hadronization mechanism. Most recently, the application of
this combination rule to the open charm and bottom hadron
production at Relativistic Heavy Ion Collider (RHIC) exper-
iments, without any more parameters for the hadronization,
further demonstrates its validity and provides opportunities
against more critical tests [14,15].

The main idea of the combination rule of SDQCM is to line
up the (anti)quarks in a one-dimensional order in phase space,
e.g., in rapidity, and then let them combine into initial hadrons
one by one according to this order [3–8]. Three (anti)quarks or
a quark-antiquark pair in the neighborhood form a (anti)baryon
or a meson, respectively. Thus the rule sets the priority of
the smallest number of (anti)quarks to form a hadron. The
cases of more numbers (>3) of (anti)quarks to combine into
hadrons automatically disappear. For the combination process,
the inclusive cross section is proportional to the product of
the quark number densities, leading to B/M enhancement
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in a region (which is in fact one of the motivations for the
burst of combination models at RHIC). Without this special
combination rule, a more-quark state could be even enhanced
[9]. This will conclude a nonsense result that a CS system
of (anti)quarks could prefer to combine into a giant “quark
ball” with a large number of constituent quarks. So one of the
key properties of combination models is whether a model can
shut off the possibility that an exotic number of (anti)quarks
is combined into a cluster with a large probability.

To introduce the small probability ε in Eq. (2) to SDQCM,
similar as the framework to calculate the resonance production
of heavy quark bound states [16], we consider the exotic hadron
production as a hadron molecule production and project the
free mesons and/or baryons (antibaryons) states onto their
bound states. In this paper we first clarify that it does not mean
that, in the bound state, quarks from each hadron should keep in
CS, respectively, but the color interactions can transit the whole
molecule into a “real” exotic hadron by some probability,
which will be introduced in the following. This is especially
reasonable for the circumstance of central (0 ∼ 5%) gold-gold
collisions at RHIC, where the large number of hadrons and
large bulk of thermalized area allow interactions between
hadrons lasting for a long time.

In the following we first discuss the color state and
“definition” of the quark number of the exotic hadrons (Sec. II).
Then, taking f0(980) as a working example, we describe the
calculations of the production of the exotic hadrons within the
quark combination model and discuss the results (Sec. III).
Section IV is the conclusion.

II. COLOR STATE AND QUARK NUMBER OF THE
EXOTIC HADRONS

A. Color state in an exotic hadron

All kinds of exotic hadrons have one common property,
which is that the (anti)quarks can be grouped into several clus-
ters, with each cluster possibly in CS. Hence, could the exotic
hadrons just be meson and/or baryon molecules? However,
the ways of grouping these (anti)quarks are not unique, as it
is simply known from group theory that the reduction ways
for a direct product of several representations are not unique.
Furthermore, these clusters need not necessarily be in CS,
respectively, since the only requirement is the whole set of
these clusters in CS. For example, the system q1q̄2q3q̄4 (the
constituents of a “tetraquark”) can be decomposed/clustered
in the following ways:

(q1q3)3̄ ⊗ (q̄2q̄4)3 → 1, (3)

(q1q̄2)1or8 ⊗ (q3q̄4)1or8 → 1. (4)

· · ·
Here we just mention that such group theory analysis is
applicable to the quark states as well as the quark field
operators [17]. In the above example, only the second case,
when these two qq̄ pairs are in CS, respectively, does
it seem possible to be considered as a hadron molecule.
But dynamically, the color interactions in the system via
exchanging gluons can change the color state of each separate

cluster, so each kind of grouping/reduction way seems no to
have special physical meaning. Such an ambiguity, which has
been considered in many hadronization and decay processes
as a “color recombination/rearrangement” [18–20], blocks the
possibility to consider the exotic hadron in a unique and
uniform way, while leading to the possibility of introducing
some phenomenological duality. Namely, even if we consider
the production of the exotic hadron as “hadron molecule”
formation, the subsequent color interactions in the system can
eventually transit this “molecule” into a “real” exotic hadron,
at least by some probability.

B. How to count the quark number in an exotic hadron

Some kinds of exotic hadrons have exotic quantum num-
ber(s), e.g., one kind of pentaquark (qqqs̄q, hereafter, q refers
to the flavor up or down), has +1 baryon number but +1
strange number. If a hadron with such quantum numbers is
experimentally confirmed, one seems to have to introduce
five valence (anti)quarks. However, in many other cases, there
exist parallel explanations because of a nonexotic quantum
number of a certain hadron. The tetraquark or four-quark
state discussed in this paper is an example. One of the
candidates is f0(980). It is considered as an orbit-excited
l = 1 regular meson (ss̄) [21], but argued possibly to be
a four-quark state (sq̄s̄q) by others [22]. So one naturally
raises the question relating with this ambiguity, how can one
count the number of quarks in a hadron? Even, what is the
meaning of the “number of quarks in a hadron”? This may
be one of the most ambiguities in the physical picture of the
exotic hadrons, because of a lack of complete understanding
of the confinement property of QCD. It is not clear what the
quantum field theory definition of the “constituent quark”
is. As a consequence, it is ambiguous to “count” the quark
number in a hadron. Here we just state the different pictures
of a proton, one is the parton model bursting from the
deeply inelastic scattering and other high energy interaction
processes, the other is the “static” quark model, corresponding
to the properties of a proton at rest. There is no satisfaction,
especially a quantitative relation between these two pictures.
Even the consideration of higher Fock states or pair excitations
[23] cannot remove the gap.

It is well-known that the factorization theorem confirms
the parton fragmentation picture to describe the hadron
production [24]. But this partonic picture is only valid in
inclusive processes with hard interactions involved. For the
low pT particles, e.g, those from “fragmentation” of the hadron
remnant in hadron-hadron interactions, or in a very complex
circumstance such as in heavy ion collisions, this picture
faces both challenges from theoretical as well as experimental
aspects. It is difficult to prove the factorization theorem for
these complex cases. Furthermore, the RHIC data expose some
properties difficult to be understood from the fragmentation
picture, such as the high p/π ratio at intermediate transverse
momenta [25] and the quark number scaling of hadron elliptic
flows [26], but these can be explained by coalescence or
(re)combination models [27,28]. Combination models include
the following picture: (1) the production of quarks, which is
considered as the “dressed” quarks, i.e., constituent/valence
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quarks; (2) these quarks combined to certain hadrons, e.g., qq̄

combined to meson. Within these models, the quark number
in a hadron has a model-dependent but clear “definition,” i.e.,
“the number of (anti)quarks” of a certain hadron is the number
of (anti)quarks involved in combining into the hadron in the
production process. So, as suggested by [27], one can “count”
this number experimentally by measuring the v2 in heavy-ion
collisions at RHIC, since v2 is proportional to the number of
quarks combined to the certain hadron, and the following inner
interactions between (anti)quarks in the hadron will not change
this property of global movement. This makes the quark
number an “observable,” by extrapolating the combination
picture to open for all kinds of exotic hadrons. Treating exotic
hadron production as hadron molecule formation will not
change this fact that v2 is still proportional to the total quark
number in the exotic hadron, which is a straightforward result
of an associative law of addition.

III. THE PRODUCTION OF f0(980) AT RHIC

Now we apply the above discussions into an example,
f0(980), to discuss its production in central gold-gold colli-
sions at RHIC. This particle is considered as a tetraquark with
the flavor content sq̄s̄q [29]. The traditional consideration for
it as an l = 1 state of ss̄ has been included in SDQCM with
all the other l = 1 mesons in the most recent version [15]. We
also calculate that case for comparison.

As we mentioned above, the conventional SDQCM can
calculate the free meson and baryon distributions, e.g.,
inclusive two meson distributions E1E2dσ

d3p1d3p2
in central gold-gold

collisions at RHIC.
Ignoring the affection of other hadrons in the system,

projecting it onto the meson molecule state, one can get the
inclusive bound state distribution:

EdσN

d3p
=

∑
N1N2

∫
d3p1

E1

d3p2

E2
|〈p1, p2, N1, N2|p,N〉|2

× E1E2dσN1,N2

d3p1d3p2
. (5)

In the above equation, the N,N1, N2 refer to discrete quantum
numbers, corresponding to the meson molecule state and the
two mesons, respectively. The conservation relations such as
δ4(p − p1 − p2) and δN1⊗N2,N are indicated in the projection
of the state vectors. In order to get these factorized formulas,
some interference terms are missed. Since the free hadron
distribution is calculated by the Monte Carlo programs, it
cannot give the amplitude but only its square, and only this
factorized form can be used in the Monte Carlo programs.

The projection of the discrete quantum numbers such
as flavor, isospin, angular momentum, charge, space parity,
etc., are easily calculated. In the case of angular momentum
projection, spin counting is assumed. Though the system is not
assumed to be nonrelativistic, only the lowest possible orbit
angular momentum is considered (i.e., since in general, the
parity requires an odd or even l value, in the case of even l, we
only consider l = 0, while for odd, only l = 1). The detailed

TABLE I. The projection of discrete quantum numbers
(I,C,P ) of M1, M2 to f0(980)(sq̄s̄q). The cases with much
smaller values of |〈p1, p2, N1, N2|p,N〉|2 are included in
the program but ignored in the below list.

Meson pair |〈J1, J2|J 〉|2 |〈C1, C2|C〉|2 |〈I1, I2|I 〉|2

φ,ω 1/9 1 1
η, η 1 1 4/9
η, η′ 1 1 5/9
η′, η′ 1 1 4/9
K+, K− 1 1 1/2
K0, K̄0 1 1 1/2

analysis on the projection of discrete quantum numbers is
outlined in Table I.

The phase space wave function of the exotic hadron in
terms of mesons and/or baryons is not definitely available.
One of the reasons is that, as argued above, the subsequent
color interactions in the “molecule” ruin a unique structure
to be described by a definite wave function. To mimic the
combination process, we use the same physical picture as
quarks combining into regular hadrons in our model, i.e., near
the rapidity correlation [3]. This says that only two mesons
in the neighborhood on the rapidity axis have the chance to
combine together, when starting the combination from one end
to the other for this lined-up hadron system. Contrary to the
case of quarks, in which the confinement property requires all
quarks to be combined into certain hadrons, the hadrons need
not necessarily be combined to some molecules. Rather, they
may have a large probability to be free. It is natural to introduce
a parameter x, smaller than 1, to parametrize the probability
for two mesons neighbored to combine into a bound state.
So, x not only reflects the information of some specific exotic
hadrons, but also reflects the interactions among the meson
and (anti)baryon system. To the “lowest order” approximation,
x takes the averaged value for all kinds of exotic hadrons,
since there are no exotic hadron production data at RHIC
which can be seriously fitted/explained yet. However, this
way of parametrization can accommodate more “higher order”
corrections by introducing hadron-kind-dependent x’s once
enough precise data of exotic hadrons are available. This x

assures the total results respecting the fact that all the quark
states and all the hadron states [mesons, (anti)baryons, and
exotic hadrons] respectively form two complete sets of bases
for the same Hilbert space. This unitary transformation assures
the unitarity of the quark combination model.

Unfortunately, the fact that the wave functions of all kinds
of exotic hadrons is unknown and for similar cases for the
hadron interactions means that x is almost a free parameter,
only constrained by the data of mesons and baryons, as well as
how many kinds of exotic hadrons are considered. It is clear
that to an extreme if we have infinite kinds of exotic hadrons, x
should be vanishing, expecting an infinite number of vanishing
variables (production rates corresponding to each certain
exotic hadron) summing up to get a finite small result (the
total production rate of all exotic hadrons). For demonstration,
here we only consider the existence of four-quark states such
as exotic hadrons, but still with two choices: One case is
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that only f0(980)(sq̄s̄q) exists in the world; the other is not
only f0(980)(sq̄s̄q) but also any other tetraquark state (isospin
multistates) to be allowed to be produced by our model. In the
latter case more mesons are “used up” to get the molecule, so
the x must be smaller than the former case.

In the calculation we first tune the standard SDQCM Monte
Carlo program (see, e.g., [15]) to produce the multiplicities of
mesons and baryons to be the central value of the experimental
data. The details of the various inputs to set up the CS
(anti)quark system produced in the central gold-gold collisions
at RHIC can be found in [15]. Now all the (anti)baryons and
mesons accommodated in SDQCM are produced and lined
up on the rapidity axial. Then we consider the combination
of hadrons into the exotic, concretely f0(980), according to
the order on the rapidity axial. The baryons are not used to
produce the exotic hadrons, so they are definitely determined
by experimental data. For two mesons in the neighborhood and
to be considered as a cluster, the probability to form molecule
is calculated by the factors provided in Table I times x. We tune
x so that all the mesons used up should not exceed the error
bar of the experimental data (within 5%).2 From the above
discussion, it is more fair to take them as up limits of the
production rates. By summing up all the exotic hadrons
considered, we get the up limit of ε in Eq. (2) as well. Some
results are in Table II and Fig. 1.

Recently, argued in Ref. [29], from the production rate one
can extract the information of the constituent quark number.
The authors employ the combination model proposed by [27]
and predict and compare the production rate of f0(980) for two
cases: ss̄ or sq̄s̄q. However, whether this idea is practical relies
on whether it is “model independent.” From our calculations
list in Table II, one can see different results from [29]. If we take
into account the case that many other kinds of exotic hadrons
could also exist in nature and formed from combination of
hadrons, the production rate of f0(980)(sq̄s̄q) should be even
smaller. So, this implies that the production rates depend on
the mechanism of production, and are not straightforwardly
possible to relate with the constituent quark number in the
framework of various quark combination models.

For the transverse momentum spectrum (Fig. 1), it is clear
that the four-quark state is harder, a common property of
all combination models. This is the same reason for B/M

2Now we take the error of φ’s data as one of the most precise. Its
production rate dN

dy
is 7.70 ± 0.30 in the midrapidity region from the

central Au + Au collisions at
√

sNN = 200 GeV [30]. Its error is
within 5%.

TABLE II. The production rate of f0(980) at midrapid-
ity (within one rapidity unit) for central Au + Au collisions
at

√
sNN = 200 GeV. (a) corresponds the case only one

exotic hadron, i.e., f0(980)(sq̄s̄q); (b) denotes the case
where we consider all the isospin multistates.

x f0(980)(sq̄s̄q) f0(980)(ss̄)

(a) 0.60 1.63
(b) 0.24 0.65 0.68
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FIG. 1. Transverse momentum spectra of f0(980) at midrapidity
for central Au + Au collisions at

√
sNN = 200 GeV. f0(980)(sq̄s̄q)

(solid line) compared to f0(980)(ss̄) (dashed line). (a) and (b)
respectively correspond to the cases (a) and (b) in Table II.

enhancement in the mid-pT region. Such kinds of generic
features are common for all kinds of combination models,
no matter if the combined “bricks” are quarks or hadrons.
Our calculation procedure is especially straightforward in
leading to this conclusion, since the hadron combination in
phase (momentum) space is similar to those of the quarks.
It is quite interesting to point out that, in principle, the pT

spectrum of such kinds of exotic hadrons formed from the
combination of mesons and/or (anti)baryons can be fixed in our
model, independent of the quark distributions. The free hadron
spectra in Eq. (5) can be fixed by experimental data, which
is completely model independent. Furthermore, x can only
change the absolute value but not the shape of the spectrum.
So, if some exotic hadron [maybe not f0(980)] is produced by
a combination of regular hadrons at RHIC, we can predict the
shape of its spectrum without any ambiguity.

IV. CONCLUSION

In this paper, we propose a way to calculate the pro-
duction rates of exotic hadrons (multiquark states) within
the framework of SDQCM. We point out that this special
combination model employs a specific combination rule to
shut off the possibility that more than three (anti)quarks can
combine into some hadron. The unitarity is automatically kept
but may be too restrict if there are exotic hadrons, since
the to-date experiments only assure the rareness of exotic
hadron production, as shown in Eq. (2). By an analysis on
the complexity of the color structure of the exotic hadrons,
we suggest that one can introduce the small section of exotic
hadron production by treating (only) its production process
as hadron molecule (hadron bound state) formation. Taking
the possible four-quark structure of f0(980) as an example,
we discuss two special cases, i.e., only one exotic hadron
f0(980)(sq̄s̄q) exists in nature, or all the isospin multistates of
(sq̄s̄q) exist, respectively, and compare with the regular meson
structure of f0(980)(ss̄). Such investigation demonstrates that
we can keep the inherent unitarity of the SDQCM as well as
improve its robustness to accommodate the exotic production.
This is helpful in the exotic hadron study in experiments like
RHIC.
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