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Coupled-channel analysis for φ photoproduction with �(1520)
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We investigate photoproduction of φ mesons off protons within a coupled-channel effective-Lagrangian method
which is based on the K-matrix approach. Since the threshold energy of the K�(1520) channel is close to that of
φN , the contribution of this channel to φ photoproduction near the threshold energy region may give rise to some
unexpected structures. In the transition amplitude K�(1520) → φN , the kinematics allows an intermediate kaon
to be on-shell. This happens in the energy region where a peak structure has been observed in φ photoproduction.
In our calculations, the on-shell kaon effect indeed reproduces a peak structure, though with a magnitude that is
far too small to explain the observed effect. As a following step, we introduce a nucleon resonance in our model.
The coupling of the resonance to the K�(1520) and φN channels is not suppressed by the Okubo-Zweig-Iizuka
(OZI) rule if the resonance contains a dominant hidden strangeness component. We find that the resonance can
reproduce a peak structure of the correct magnitude at the right energy. We also investigate the effects of coupled
channels and the resonance on the angular distribution and the spin-density matrices for φ photoproduction.

DOI: 10.1103/PhysRevC.80.035201 PACS number(s): 13.60.Le, 25.20.Lj, 11.55.Jy, 25.75.Dw

I. INTRODUCTION

Photo-induced strangeness production is a main topic in
hadron physics. The relevant photon energy of about 1 GeV
is still well below the regime of perturbative QCD, and
hence one expects large nonperturbative effects. This energy
is also well above the energy region that is controlled by low-
energy theorems. At the energies for strangeness production,
important ingredients are the various baryon resonances and
coupled-channel effects.

Recently, several photon facilities have reported interesting
results in the energy region of strangeness production, such
as pentaquarks [1,2], � resonances [3,4], and φ-meson
production [5–7]. The latter has the unique feature that the
gluon dynamics dominates in the reaction process because
the process is suppressed by the Okubo-Zweig-Iizuka (OZI)
rule thanks to the dominant s̄s structure of the φ meson.
As shown in Fig. 1, the cross section of φ photoproduction
increases with increasing energy, which can be explained by a
Pomeron and meson exchange model [9,10]. The Pomeron is
introduced in Regge theory for high-energy hadron scattering
and is considered to be dominated by gluon dynamics. It
was also shown that this model reproduces the angular
dependence in the diffractive region, spin observables, and the
energy dependence [11]. Since Regge theory was developed
to describe average properties of high-energy scattering pro-
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cesses, such a good agreement is much better than expected.
Extrapolation from the high-energy region predicts a smooth
energy dependence of the cross section down to the threshold
energy for the reaction. Interestingly, the recent observation at
the laser electron photon beamline at SPring-8 (LEPS) strongly
indicates a peak structure (solid dots in Fig. 1) at around
Eγ (lab) ∼ 2 GeV. Such a structure is difficult to explain in
conventional models of φ photoproduction, and it is the subject
of the present paper to explore possible explanations for this.

The energy at which the peak structure in the φ-
photoproduction cross section occurs lies very close to the
threshold of �(1520) production. Since the peak seems to have
a rather narrow width, channel coupling to the �(1520) reso-
nance could be responsible for it. In this paper, we will present
an analysis of these data in terms of the Groningen K-matrix
model, which is based on an effective Lagrangian formulation
for the reaction kernel. This kernel obeys gauge invariance
and crossing symmetry and is covariant. All these conditions
are conserved in the K-matrix formulation, which in addition
imposes the unitarity of the scattering matrix, provided that the
kernel is Hermitian. The effective Lagrangian for the kernel is
also consistent with chiral symmetry. To investigate whether
the observed structures in the φ-photoproduction cross section
could be due to coupled-channel phenomena in which the
�(1520) resonance is expected to play a crucial role, we extend
the Groningen K-matrix approach to include the �(1520)
resonance. We will not consider, however, other channels such
as K∗� and K∗�, since the K∗ meson has a larger width than
the �(1520) resonance and the φ meson.

In Sec. II A, the basic principles of the Groningen K-matrix
approach will be shortly reviewed. For the interaction ker-
nels, we follow previous approaches where possible; for
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FIG. 1. Differential cross section dσ/dt(θ = 0) as a function of
the photon energy Eγ in the laboratory system. The solid line is the
sum of Pomeron and meson (π and η) exchange contributions. The
data are from Refs. [6,8].

γN → φN, the Pomeron and meson exchange model is
employed [9,10]; and for γN → K�(1520), the effective La-
grangian method is used [12]. The new ingredient introduced
here is the K�(1520) → φN coupling. A brief description
of the kernels is given in Secs. II B–II D, while the effective
Lagrangians used in these transition amplitudes are presented
in Appendix A.

In the attempt to explain the peak structure in the cross
section, we pay attention to the following two aspects. One
is an on-shell kaon exchange effect in the transition kernel
K�(1520) → φN , which is kinematically allowed and which
produces a singular structure in the energy region Eγ ∼ 2 GeV.
We discuss this effect in Sec. II E. It turns out, however, that the
inclusion of the two coupled channels with the above singular
behavior cannot explain the observed peak structure in the
cross section. As another possibility, we introduce a nucleon
resonance as a bare pole in the coupled-channel approach in
Sec. II F. We assume that this nucleon resonance contains
a large fraction of hidden ss̄ or KK̄ components, and that
such a state will not be produced directly in photon-induced
reactions and has a sufficiently large coupling to K�(1520) as
well as to φN . In Sec. III, we present results for cross sections,
including the t dependence, and spin observables. The role
of the on-shell kaon kinematics and nucleon resonances are
discussed in detail. The final section is devoted to discussions
and a summary.

II. DESCRIPTION OF THE MODEL

Our model calculations are based on a coupled-
channel calculation using the K-matrix formulation as de-
scribed in the following section. We include πN, ρN, ηN,

K�,K�,K�(1520), and φN channels. The kernel for our
coupled-channel calculation is derived from an effective
Lagrangian method. Included are the s-, t-, and u-channel
Born diagrams supplemented by the contact terms to ensure
gauge invariance where necessary. In addition, a spectrum
of low-lying baryonic contributions is included in the s and u

channels. A more complete account of the terms in the effective
Lagrangians is given in Appendix A.
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FIG. 2. Feynman diagrams included in this work. First row: s-
and u-channel diagrams, the external baryons B in these diagrams
are those included in the coupled channels, N, �, �,�(1520), and
the intermediate ones can also be N∗, 
 resonances in addition
to those of the external ones when allowed. M stands for the
mesons included in the model space π, η,K, ρ, φ. Second row:
t-channel contributions with meson exchange π, K, η,K∗, ρ, ω, and
the contact term required by the gauge invariance.

A. K -matrix model

The coupled-channel (or rescattering) effects are included
in our model via the K-matrix formalism. In this section, we
present a short overview of this approach; a more detailed
description can be found in Refs. [13–15].

In the K-matrix formalism, the scattering matrix is written
as

T = K

1 − iK
. (1)

It is easy to check that the resulting scattering amplitude
S = 1 + 2iT is unitary provided that K is Hermitian. The con-
struction in Eq. (1) can be regarded as the resummation of an
infinite series of loop diagrams by making a series expansion,

T = K + iKK + i2KKK + · · · . (2)

The product of two K matrices can be rewritten as a sum
of different one-loop contributions. However, not the entire
spectrum of loop contributions present in a systematic field-
theoretical approach is generated in this way, and the missing
ones should be accounted for in the kernel. In constructing
the kernel, care should be taken to avoid double counting.
For this reason, we include in the kernel tree-level diagrams
only [Figs. 2(a)–2(c)], modified with form-factors and contact
terms [Fig. 2(d)]. The contact terms (or four-point vertices)
ensure gauge invariance of the model and express the model
dependence introduced by working with form factors (see
Appendix A). Contact terms and form factors can be regarded
as accounting for loop corrections that are not generated in the
K-matrix procedure, or for short-range effects that have been
omitted from the interaction Lagrangian. Inclusion of both
s- and u-channel diagrams [Figs. 2(a) and 2(b), respectively]
in the kernel ensures compliance with crossing symmetry.

B. Kernel γ N → φN

Because of the OZI rule, the nucleon pole (s- and u-type
diagrams) contribution will be suppressed for the γN → φN

channel. The same will hold for the nucleon resonance
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contributions if they are dominated by u and d quarks. There-
fore the t-channel contributions will be the most important in
the kernel. We include meson (π ,η) exchange diagrams as well
as the Pomeron contribution. Effective Lagrangians used in
meson exchange amplitudes are presented in Appendix A. As
discussed in Sec. III, the kernel is dominated by the Pomeron
contribution. According to the recipe of Refs. [9,10,16], the
amplitude of the Pomeron exchange is given by

M = ū
(
pNf

)
Mµνu

(
pNi

)
ε

∗µ
φ εν

γ , (3)

where εφ and εγ are the polarization vectors of the φ meson
and photon, and Mµν is

Mµν = M(s, t)�µν. (4)

Here the transition operator �µν reads

�µν = /kγ

(
gµν − p

µ
φ pν

φ

p2
φ

)
− γ ν

(
kµ
γ − p

µ
φ

kγ · pφ

p2
φ

)

−
(

pν
φ − p̄νkγ · pφ

p̄ · kγ

) (
γ µ − /pφp

µ
φ

p2
φ

)
,

with p̄ = (
pNi

+ pNf

)
/2. This amplitude satisfies gauge in-

variance. The factor M(s,t) is written as

M(s,t) = CpFN (t)Fφ(t)

(
s

sp

)αp(t)−1

exp

(
− iπ

2
αp(t)

)
,

(5)

where FN (t) is the isoscalar form factor of the nucleon, and
Fφ(t) is the form factor for the photon-φ meson-Pomeron
coupling. They are parametrized as

FN (t) = 4M2
N − a2

Nt(
4M2

N − t
)
(1 − t/t0)2

,

Fφ(t) = 2µ2
0(

1 − t/M2
φ

)(
2µ2

0 + M2
φ − t

) .

In Eq. (5) the Pomeron trajectory αp(t) = 1.08 + 0.25t is
determined from hadron elastic scattering in the high-energy
region. The strength factor Cp is

Cp = 6eβsβu

γφ

, (6)

where γφ = 6.7 is the φ-meson decay constant. The constants
βs and βu are Pomeron couplings with the strange quark in a φ

meson and the light quark in a proton, respectively. For other
parameters, we use standard values for the Pomeron exchange
model, that is, t0 = 0.7 GeV2, µ2

0 = 1.1 GeV2, sP = 4 GeV2,
aN = 2, and βs = 1.44 and βu = 2.04 GeV−1.

C. Kernel γ N → K�(1520)

We can expect that the γN → K�(1520) channel con-
tributes to φ-meson photoproduction through coupled-channel
effects near the threshold region because the threshold of this
channel is very close to that of the φN channel. For �(1520)
photoproduction, we use the model in Ref. [12], which is based
on the effective Lagrangian method. The relevant terms of the

Lagrangian are presented in Appendix A. In this model, the
most important contribution is given by the contact term

Mc = −egKN�∗

mK

ūµεµγ5u · Fc, (7)

where uµ and εµ are the Rarita-Schwinger vector-spinor (see
Appendix C) and photon polarization vector, respectively, and
Fc is a hadronic form factor (see Appendix A). The coupling
constant gKN�∗ = −11 [�∗ ≡ �(1520)] is determined by the
decay rate of �(1520) → KN,��(1520)→KN � 7 MeV. Gauge
invariance is satisfied when all Born diagrams are summed.
This model successfully reproduces the experimental data in
the medium-energy region (3 � Eγ � 5 GeV). Recent LEPS
data [17] also support this model in the low-energy region.

D. Kernel K�(1520) → φN

For the terms in the effective interaction Lagrangian for
the K�(1520) → φN kernel, which plays a crucial role in
coupled-channel effects, we choose

LKN�∗ = i
gKN�∗

mKM�∗
N̄γ5[(∂αK+)(/∂�∗α)

− (∂µK+)γα(∂µ�∗α)], (8)

LφKK = −igφ(∂µK−K+ − ∂µK+K−)φµ, (9)

Lφ�∗�∗ = − gφ

M2
�∗

(∂ρ�̄∗β)[gαβgρτ − gτβgρα]

×
(

−γµ + κφ

2M�∗
σµν∂

ν

)
φµ(∂τ�∗α), (10)

where we assume universality for φ-meson and hadron
couplings including strangeness, that is, gφ = gφKK . The
vertices are chosen such that the coupling to the spin-1/2
component of the intermediate Rarita-Schwinger propagator
vanishes (so-called gauge-invariant vertices). From the decay
width �φ→KK we obtain the value |gφ| = 4.7. For simplicity,
we take κφ = 0. Here we employ these Lagrangians rather
than those similar to Eqs. (A5) and (A6) with the photon field
Aµ replaced by φµ, since for coupling to the photon field,
the magnetic coupling (set to zero for φ-meson production)
is dominant together with the associated contact term. For
coupled-channel calculations, a proper treatment of off-shell
properties is important and the choice of Eqs. (8)–(10) is one
way to reduce the ambiguities in the off-shell propagator
of a spin-3/2 particle. Replacing the derivative in Eq. (8)
by a covariant derivative, that is, ∂µK+ → (∂µ − igφφµ)K+
(the minus sign is due to Qs = −1 in the case of K+) and
∂µ�∗ → (∂µ + igφφµ)�∗ (the plus sign is due to Qs = +1 in
the case of �∗), we obtain the contact term

LφKN�∗ = −gφgKN�∗

mKM�∗
N̄γ5

× [−φαK+/∂�∗α + ∂αK+γµφµ�∗α]. (11)

Here we find an additional term, the second term of Eq. (11),
which does not exist in Eq. (A7) for on-shell �∗. This term,
however, is shown to be suppressed by the order O(p/M)
and has a negligible contribution to the scattering amplitude.
Using these effective interaction Lagrangians, we obtain the

035201-3



S. OZAKI, A. HOSAKA, H. NAGAHIRO, AND O. SCHOLTEN PHYSICAL REVIEW C 80, 035201 (2009)

transition amplitudes K�(1520) → φN

Mu = i
gφgKN�∗

mKM3
�∗

ū(pN )γ5[pKν /qu − (pK · qu)γν]

×D
νβ

3/2[gαβ(qu · p�∗) − p�∗βquα]/εφuα(p�∗ ), (12)

Mt = −gφgKN�∗

mK

1

q2
t − m2

K

(qt − pK )

· εφū(pN )γ5(qt · u(p�∗)), (13)

Mc = gφgKN�∗

mKM�∗
ū(pN )γ5( /p�∗εφα − /εφpKα)uα(p�∗), (14)

where the four-momenta of the kaon, �∗, φ, and N are denoted
by pK, p�∗ , pφ , and pN, respectively; we have defined qt =
pφ − pK , and ε

µ
φ is the polarization vector of the φ meson.

D
αβ

3/2 stands for the spin-3/2 propagator

D
αβ

3/2(qu) = −i
/qu + M�∗

q2 − M2
�∗

[
gαβ − 1

3
γ αγ β

− 2

3M2
�∗

qα
u qβ

u − qα
u γ β − q

β
u γ α

3M�∗

]
, (15)

where qu = p�∗ − pφ . Assuming gφNN = 0, as suggested by
the OZI rule, the s-channel amplitude vanishes.

E. On-shell kaon exchange

In the t-channel contribution to the K�(1520) → φN

kernel, (Fig. 3), the exchanged kaon can reach the on-shell
pole for certain kinematical conditions. The on-shell condition
is

t(W (Eγ ), cosθK ) − m2
K = 0, (16)

where t is the momentum transfer as a function of the invariant
mass W , which in turn depends on the energy of the in-coming
photon in the γN → φN channel and on cos θK , where θK is
the angle between the out-going φ meson and the in-coming
kaon, as shown in Fig. 3. Therefore, Eq. (16) gives a relation
between Eγ and cos θK, which is shown by the solid line
in Fig. 4(a). Since |cos θK | � 1, the solution of Eq. (16) is
kinematically limited to a narrow energy region given by the
photon energy 1.7 <∼ Eγ <∼ 2.1 GeV. In Fig. 4(a), the allowed
region is colored in blue. An interesting point is that the blue
region Eγ <∼ 2.1 GeV corresponds to the region in which the
peak structure in the production cross section is observed, as
shown in Fig. 4(b).

(1520)

K

K

N

K

FIG. 3. t-channel diagram in the kernel K�(1520) → φN .

The fact that the intermediate kaon may become on-shell is
similar to the threshold effect in the coupled-channel dynamics
and might be responsible for a singular behavior in the
kinematically allowed region.

In reality, this pole contribution is washed out because
the �(1520) resonance as well as the φ meson are unstable
particles. If they were stable, they could not couple to the
on-shell KK̄N intermediate state. The resulting small but
finite width of these particles is, however, not yet taken into
account in the calculations. This width can be folded with the
divergent pole contribution, creating a resonance-like structure
for the matrix element. To simulate this, we introduce an
effective width for the exchanged kaon reflecting the decay
width of the external φ meson and the �(1520) resonance,

i

t − m2
K

→ i

t − m2
K − imK�K

. (17)

In Appendix B, we give an estimate for the value of the
effective width for the intermediate kaon. We have obtained a
value for �K of

�K > 7.79 MeV, (18)

in the on-shell region (see Appendix B). In the calculations,
we have chosen the value �K = 10 MeV. In Sec. III, we will
discuss the dependence of the calculated φ-photoproduction
cross section on �K , which is rather small.

F. Nucleon resonance with large ss̄ components

In these discussions we have not yet considered any nucleon
resonance contributions. A normal nucleon resonance will
not contribute to the K�(1520) → φN kernel because of
the OZI rule; however, if the resonance contains a hidden ss̄

component, it may strongly couple to φN and/or K�(1520)
states and will contribute through the s-channel process. In
this paper, as one possibility, we introduce such a nucleon
resonance as a pole term, since in the K-matrix approach,
resonances are not generated dynamically. This pole term,
with the bare mass MN∗ , is introduced in the kernels
of K�(1520) → K�(1520),K�(1520) → φN, and φN →
φN . This resonance can thus be regarded as a φN,K�(1520),
or a KK̄N quasi-bound state or a superposition of such
states. The possibility of such a resonance is discussed for
a slightly lower energy region in Refs. [19,20]. In contrast
to the mass, its finite decay width is dynamically generated
through the coupling to the K�(1520) and φN channels.
Furthermore, we assume that the resonance is not directly
excited in photoproduction. In spite of this, it may contribute
to φ-meson photoproduction through coupled-channel effects
as investigated in this work. Since we do not know the spin and
parity of the resonance, we assume JP = 1/2±, for simplicity.
The kernels in which the nucleon resonance appears in the
s channel are given by

MN∗
φN→K�∗ = −i

gK�∗N∗

mK

gφκφNN∗

4MN

ū(pN )[/εφ/pφ − /pφ/εφ]

×�1
i

/pN∗ − MN∗
�2pKµuµ(p�∗), (19)
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FIG. 4. (Color online) (a) Solution to

the on-shell condition of the intermedi-
ate kaon. The kinematically allowed region,
−1 � cos θK � 1 or equivalently 1.7 � Eγ �
2.1 GeV is colored blue with the boundary
shown by the dashed lines. (b) Allowed region
in Eγ is also shown in the plot of the cross
section.

MN∗
K�∗→K�∗ = i

(
gK�∗N∗

mK

)2

ūµ(p′
�∗)p′

Kµ

×�2
i

/pN∗ − MN∗
�2pKνu

ν(p�∗), (20)

MN∗
φN→φN =

(
gφκφNN∗

4MN

)2

ū(p′
N )[/ε′

φ/p′
φ − /ε′

φ/p′
φ]

×�1
i

/pN∗ − MN∗
�1[/εφ/pφ − /εφ/pφ]u(pN ),

(21)

where gK�∗N∗ , κφNN∗ , and MN∗ are free parameters that
characterize the N∗ resonance. �1 (�2) equals 14×4 (γ5)
for the positive-parity resonance and equals γ5 (14×4) for
negative-parity resonance.

In the following section, we investigate the extent to which
such an N∗ resonance with hidden strangeness can be respon-
sible for the peak structure observed in φ photoproduction.

III. RESULTS AND DISCUSSIONS

In this section, we present our numerical results for the
reaction cross section of γN → φN . To investigate the roles
of coupled channels, we first discuss the contributions of the
different channels. Next we introduce the N∗ resonance with
hidden strangeness in our model. Finally we show our results
for the t dependence of the cross section and spin-density
matrices.

1000 2000 3000 4000 5000
Eγ [MeV]

0

0.5

1

1.5

σto
t  [

µb
]

FIG. 5. Total cross section for γp → K+�(1520) as function of
the photon energy in the laboratory system Eγ , calculated with a
cutoff of �c = 0.7 GeV. The data are from Ref. [18].

A. Kernel γ N → K�(1520)

As mentioned before, one potentially interesting coupled-
channel contribution to φ-meson photoproduction is the one
going via the K�(1520) intermediate channel. The reason
is that the threshold for this channel lies close to that of
φN . The magnitude of this coupled-channel contribution is
determined by the product of kernels for γN → K�(1520)
and K�(1520) → φN .

To fix the magnitude of the γN → K�(1520) kernel, we
compare the calculated cross section for this reaction with
data in Fig. 5. The calculated cross sections depend strongly
on the cutoff parameter in the hadronic form factor (see
Appendix A). Following Ref. [12], a good agreement with the
data in the medium-energy region (3000 � Eγ � 5000 MeV)
is obtained using a value of �c = 0.7 GeV. At higher energies,
the calculation overestimates the data, however, this is outside
the region of interest for the present investigation. Care should
be taken when using the parameters of Ref. [12] for the
reaction of γN → K�(1520) since coupled-channel effects
will contribute. Our strategy is first to fix each kernel to
reproduce the corresponding data if available and to introduce
the coupled-channel effects afterward. If the latter effect is
important, we will reconsider the kernels themselves such that
the coupled-channel results will reproduce the data. For the
K�(1520) photoproduction, we have found that the coupled
effects are not very important.

B. Kernel K�(1520) → φN

The K�(1520) → φN kernel is one of the most important
ingredients in the present coupled-channel analysis. In Fig. 6,
various contributions to the differential cross section of the
φ photoproduction, dσ/dt(θ = 0) are shown when only the
K�(1520) → φN term is included in the kernel to highlight
the effect of the coupled channels of K�(1520) and φN . In
this case, for example, the lowest order process is given by
γN → K�(1520) → φN .

An important aspect of the kernel for the K�(1520) → φN

channel is the pole in the t-channel kaon that can be hit for
certain kinematics. In Sec. II E, we argued that this singularity
could be treated effectively by assigning a finite width �K

to the intermediate kaon propagator, where we related the
width to the physical decay widths of the �(1520) resonance
and φ meson in the in-coming and out-going channels. To
test the importance of the width attributed to the intermediate
kaon we have calculated the cross section for different values
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FIG. 6. Differential cross sections of γN →
φN at zero degrees, dσ/dt(θ = 0). (a) Effects
of changing the width of the intermediate
kaon, �K = 5 MeV (solid line), �K = 10 MeV
(dashed line), and �K = 50 MeV (dotted line),
in a calculation in which only the t-channel
kaon exchange contribution is included for the
K�(1520) → φN matrix elements. (b) Result
including the full matrix element (solid line),
only the contact term (dotted line), and only the
t-channel kaon exchange contribution (dashed
line).

of �K . In Fig. 6(a), we plot dσ/dt(θ = 0) when only the
t-channel contribution of kaon exchange is included in the
kernel K�(1520) → φN . Different lines correspond to those
calculated for �K values of 5, 10, and 50 MeV. Variation of
�K does not influence the result very much, as shown in the
figure. Based on the decay width of the φ meson and that of
the �(1520) resonance, one expects �K ≈ 10 MeV as argued
in the previous section. Therefore, we will use this value in the
following calculations.

Interestingly, the cross section in Fig. 6(a) shows a peak
structure in the same energy region as the experimental data.
However, the magnitude of the peak in the calculation is
very small. The effects of the other contributions of the
K�(1520) → φN kernel from the u channel and contact
term are investigated in Fig. 6(b), where we can see that
the dominant contribution is generated by the contact term
(dotted line), which is compared with the case including all
terms (solid line). This is similar in structure to that in the
γN → K�(1520) channel [12]. The t-channel kaon exchange
contribution (dashed line) is thus buried under the contribution
from the contact term. The u-channel contribution is also
negligibly small.

We have also investigated the cutoff dependence of the
kernel. In Fig. 7, the solid line is for �2

c = 0.49 GeV2

(�c = 0.7 GeV), corresponding to the solid line in Fig. 6(b),
the dashed line for �2

c = 0.8 GeV2, and the dotted line for
�2

c = 1.2 GeV2, which is the value used for other kernels such

1.5 2 2.5 3 3.5 4
Eγ [GeV]

0

0.05
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dσ
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FIG. 7. Differential cross sections for φ-meson photoproduction
at zero degrees for different values of cut-off parameters in the kernel
for K�(1520) → φN, �2

c = 0.49, 0.80, and 1.20 GeV2 for the solid,
dashed, and dotted lines, respectively.

γN → K�(1116), γN → K�(1193), etc. From the figure,
we see that the cutoff dependence is not very strong.

One important conclusion that should be drawn from the
results presented here is that the cross section calculated by
including only the Born terms in the kernel K�(1520) →
φN is not very large by itself, typically, dσ/dt(θ = 0) �
0.1 µb/GeV2 which is smaller than the experimental values
of order 1 µb/GeV2. However, when other dominant terms
especially from the Pomeron exchange term are included, the
interference among those terms becomes sizable, as we will
see in the following sections.

C. Differential cross section at θ = 0

The dominant contribution to the φ-photoproduction cross
section is derived from the Pomeron exchange diagram.
The magnitude of the Pomeron contribution is fixed by the
measured cross section for Eγ >∼ 3 GeV. As shown in Ref. [10],
other hadronic contributions such as σ, π, and η exchange
diagrams are orders of magnitude smaller at higher photon
energies.

In our model, the value of the cutoff parameter in the
hadronic form factor is treated as a free parameter as well
as the sign of gφ . The hadronic form factor is discussed in
more detail in Appendix A. We have calculated the differential
cross section for the two cases gφ = +4.7 and gφ = −4.7. The
absolute value is determined by the φ-meson decay width. In
Fig. 8, we show the differential cross section calculated in
our coupled-channel approach at θ = 0, dσ/dt(θ = 0) as a
function of the photon energy in the laboratory fame Eγ . As
explained previously, we have included as coupled channels
not only the �(1520) but also those containing the ground
state hyperons. As we have anticipated, the main contribution
is due to the Pomeron exchange. The most important coupled-
channel effect is mainly from the K�(1520), where the
interference of the amplitude of the Pomeron exchange and the
coupled channel K�(1520) is sizable. Other coupled-channel
effects, i.e., those from the ground state hyperons, are not
significant. In Fig. 8, the thin upper line is for the result of
the Pomeron exchange without the coupled channels, and
the other two thick lines are for those with the coupled
channels for gφ = +4.7 and gφ = −4.7, as indicated by the
arrows. However, as mentioned in the previous section, the
on-shell kaon effect does not reproduce the peak structure
with sufficient strength near the threshold region.
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FIG. 8. (Color online) Differential φ-meson photoproduction
cross section at zero degrees. The topmost black curve shows
the results of the tree-level calculation, including the Pomeron
contribution. The arrows indicate the curves showing the full coupled-
channel results with gφ = +4.7 and gφ = −4.7. The lowest line is
the effect of only coupled-channel effects, including the K�(1520)
channel and all others.

The Pomeron contribution whose strength is determined
by the cross sections beyond Eγ � 3 GeV can be smoothly
extrapolated downward of the threshold energy region, where
it traces the peak value at Eγ ≈ 2 GeV. In this case, the
structure at around Eγ ≈ 2 GeV can rather be interpreted as a
dip at around Eγ ≈ 2.3 GeV. The structure of either peak or
dip can be realized by different phases of amplitude through
interference. We have partly tested this already by changing
the sign of gφ , which changes the sign of the kernel of such
as K�(1520) → φN,K�(1116) → φN, and K�(1193) →
φN . As shown in Fig. 8, we could not reproduce the
peak/dip structure by the interference in the coupled-channel
approach.

D. Introduction of the N∗ resonance with large ss̄ components

In the previous section, we observed that the peak at around
2 GeV looks rather like a dip around 2.3 GeV after a global fit
of the Pomeron exchange amplitude to the experimental data.
For this reason, we refer to it as the dip structure rather than the
peak structure in the following discussions. To reproduce the
observed dip structure in the φ-meson photoproduction cross
section at forward angle, we will introduce in this section
an N∗ resonance with large ss̄ components, as discussed in
Sec. II F. We introduce the resonance as a pole term of mass
MN∗ . The decay width is then generated dynamically after the
coupled-channel equation is solved, and it is related to the
coupling strength of the pole term to the φN and K�(1520)
channels. The strengths are treated as parameters in order to
reproduce the depth and width of the dip. For simplicity, we
limited ourselves only to a spin-1/2 resonance. We found that
an excellent fit to the data could be obtained by assuming a
negative parity resonance, much better so than for a positive
resonance. This is due to the interference of the partial waves
naturally entering in the calculation with those of the N∗
resonance. For instance, the relative motion of the φN channel
which is coupled to the JP = 1/2− partial wave can be an
S wave, while for a JP = 1/2+ it should be a P wave. In

TABLE I. Resonance parameters.

Sets gφ gK�(1520)R κφNR MR (GeV)

A +4.7 −4.24 0.07 2.25
B −4.7 −4.90 0.06 2.26

the present treatment of the resonance, where the coupling
to the channels generates the decay width, the magnitude of
the width, energy dependence, and the resulting interference
pattern with the other amplitude depend on the spin and parity
of the resonance in a complicated manner.

In the following, we will present results for a resonance
with JP = 1/2−. For coupling parameters we have adopted
the values as given in Table I where two parameter sets, A and
B, are given, corresponding to two signs for gφ , i.e., gφ = +4.7
(set A) and gφ = −4.7 (set B). In Fig. 9, sets A and B can both
reproduce the dip structure through a destructive interference.
The central point of the dip corresponds roughly to the pole
position of the resonance when the width of the resonance is
not too wide. The width of the resonance can be estimated
from the extension of the dip in the cross section shown in
Fig. 9 to be around 100 MeV for both parameter sets A and
B. An experiment with photon energies Eγ ∼ 2.25 GeV and
beyond will be able to provide more information on resonance
parameters.

E. t dependence

In this section, we discuss the t dependence of the cross
section. In Fig. 10, theoretical results for dσ/dt(θ = 0) with
and without coupled channels are compared with the LEPS
data [6]. At forward angles, the differences between the tree-
level and the coupled-channel results are not very large. In the
backward region, however, there are large differences. This
is because coupled-channel effects tend to enhance the cross
section at large angles. The effect is then further enlarged by
the inclusion of the N∗ resonance. Similar effects are also seen
in ρ-meson photoproduction, where coupled-channel effects

(a) (b)

1 2 3 4 5 6 7 1 2 3 4 5 6 7
E  [GeV] E  [GeV]

d 
 /d

t [
  b

/G
eV

  ]2
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FIG. 9. (Color online) Effect of a spin-1/2− N∗ resonance on
the forward angle φ-meson photoproduction cross section. The thin
black line in the both figures are tree-level results. The thick solid
lines in (a) and (b) show the results of sets A and B, respectively. The
dotted lines in both figures denote the results of the coupled-channel
calculations without the resonance as corresponding to the solid lines
in Fig. 8.
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FIG. 10. (Color online) t dependence of the cross section at various photon energies Eγ as indicated above each panel. The black line is
the tree-level result; arrows mark the other lines as results of sets A and B. The data are from Ref. [6].

successfully reproduce the observed cross section at backward
angles [21]. In our present calculation, the N∗ resonance has
an important contribution such that the enhancement at large
angle is more prominent in the resonance energy region.

In the present calculation, the forward angle structure is
dominated by the Pomeron exchange, while at the backward
angles the dominant contribution is caused by coupled-channel
effects with the nucleon resonance N∗. In many other hadronic
reactions at energies well above 2 GeV, one sees that the cross
section at forward angles can be explained quite accurately by
Reggeon exchange [22–25], while at backward angles more
complicated processes contribute.

F. Spin-density matrix

In general, spin observables provide a sensitive test of
the reaction mechanism. We have therefore calculated these
quantities to investigate the coupled-channel effects. Follow-
ing Refs. [11,26], we have calculated the spin-density matrices
in the Gottfried-Jackson (GJ) system. In the LEPS experiment,
measurements were made for t + |t |min > −0.2 GeV2. To
obtain the spin-density matrices for a similar kinematics as
for the LEPS experiment, we performed our calculation at an
angle of θ = 20◦.

Figure 11(a) shows ρ0
00, which is related to the single spin-

flip amplitude in the GJ system. At the tree level, only the
Pomeron exchange can contribute to ρ0

00, whereas the meson
exchange contributions vanish exactly. The coupled-channel

effects are large, as can be seen from the figure. There is a
wide structure in the energy region of Eγ � 1.8 (set A) and
2 GeV (set B), and also a very narrow dip at the low energy
Eγ ∼ 1.7 GeV. This dip structure is due to the contribution
from the on-shell kaon in the K�(1520) → φN channel. Since
the non-spin-flip amplitude gives the dominant contribution to
the cross section at forward angles, the coupled-channel effects
can be much more pronounced in the spin-flip amplitude. The
N∗ resonance gives only a minor contribution to ρ0

00, as shown
by a tiny bump at Eγ ∼ 2.25 GeV.

Figure 11(b) shows ρ0
1−1, which is related to the double

spin-flip amplitude in the GJ frame. Only the Pomeron
exchange contributes to this spin-density matrix at the tree
level since meson exchanges cannot transfer spin 2 if they
have spin less than 2, and their contributions thus vanish. The
coupled-channel effects are very important especially for the
t-channel contribution of the K�(1520) → φN amplitude.
We see either a dip (set A) or peak (set B) structure in the
low-energy region due to the on-shell kaon effect. These effects
are larger than the Pomeron contribution in the low-energy
region. The contribution due to the N∗ resonance is small. Our
calculation, however, does not reproduce the data, as shown
in Fig. 11(b). From the figures of ρ0

00 and ρ0
1−1, we emphasize

that higher order perturbation effects are important for spin
observables. A similar conclusion is reached in Ref. [27].

Figure 11(c) shows ρ1
1−1, which is related to the asymmetry

due to the interference of natural (Pomeron) and unnatural
(π,η) parity t-channel exchanges. In this matrix element, the
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FIG. 11. (Color online) Spin-density matrix for φ-meson photoproduction as a function of the photon energy in the GJ system, (a) ρ0
00,

(b) ρ0
1−1, (c) ρ1

1−1. In the calculation, the φ-meson angle is fixed at θ = 20◦. The black line is the tree-level results; the other lines are results of
sets A and B. The data are from Ref. [6].

non-spin-flip amplitude is dominant. The coupled-channel
effect is small in ρ1

1−1 because of the dominance of the
Pomeron contribution. There is, however, a visible contribution
due to the N∗ resonance.

IV. CONCLUSIONS

We have investigated φ-meson photoproduction motivated
by the recent experimental observation of a peak/dip structure
near the threshold region. Our method is based on a coupled-
channel K-matrix approach. The kernel used in the K-matrix
is constructed based on an effective Lagrangian respecting the
symmetries of QCD. In the present work, we have focused
on the role of the K�(1520) reaction channel in coupled-
channel calculations because the threshold value of the channel
is close to that of the φN channel. Additional interest in this
channel comes from the fact that in the t-channel contribution
to the transition amplitude K�(1520) → φN , the exchanged
kaon can be in the on-shell state in the energy region where a
distinct structure is observed in φ-meson photoproduction. The
coupled-channel effect driven by this t-channel contribution
itself produces a peak structure in the correct energy region.
The dominant contribution to the φ-meson photoproduction
amplitude, however, is generated by the Pomeron, compared
to which the coupled-channel effect induced by the t-channel
in the K�(1520) → φN transition amplitude is insignificant.

As an alternative explanation for the observed structures, we
have considered the effect of an N∗ resonance. If the resonance
contains a hidden ss̄ component [as would be the case for a
φN or a K�(1520) molecular state], it should have a large
coupling to the K�(1520) and the φN reaction channels.
For simplicity, we considered only the case of a spin-1/2
resonance. We found that destructive interference between
the tree-level amplitude and the resonance coupled-channel
contribution can produce a dip structure which is in excellent
agreement with the experimental data. These results suggest
the existence of an N∗, J P = 1/2− resonance with a mass of
2250 MeV and width of about 100 MeV that has a large ss̄

component.
To complete our calculations, we have also presented our

results for the t dependence of the φ-meson photoproduction

cross section and the forward-angle spin-density matrices.
In the cross section, the coupled-channel effects are most
prominent at backward angles, while they do contribute
to certain polarization observables at forward angles. The
t dependence at large momentum transfer is perhaps one
clear-cut signal of the N∗ resonance as well as the dip structure,
and therefore it would be interesting if further comparison with
experimental data were available.
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APPENDIX A: EFFECTIVE LAGRANGIANS AND
FORM FACTORS

In the transition amplitude for γN → φN , we calculate
the pseudoscalar meson exchange amplitudes in terms of the
effective Lagrangians [10]

Lγ ϕφ = egγϕφ

mϕ

εµναβ∂µφν∂αAβϕ, (A1)

LϕNN = gϕNN

2MN

N̄γµγ5N∂µϕ, (A2)

where ϕ stands for the pseudoscalar mesons (π, η).
We calculate the transition amplitudes for γN →

K�(1520) in terms of the effective Lagrangians [12]

LγNN = −eN̄

(
γ µ − κN

2MN

σµν∂ν

)
NAµ, (A3)

LγKK = −ie(∂µK+K− − ∂µK−K+)Aµ, (A4)

Lγ�∗�∗ = − κ�∗

2M�∗
�̄∗µ/kγ /A�∗

µ, (A5)
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TABLE II. Coupling constants.

gγπφ −0.141 gγηφ −0.707
gπNN 13 gηNN 1.94
κ�∗ 0.5 gKN�∗ −11

LKN�∗ = gKN�∗

mK

N̄γ5∂µK+�∗µ, (A6)

LγKφN = i
egKN�∗

mK

N̄γ5K
+�∗µAµ. (A7)

Coupling constants are shown in Table II.
In the amplitudes calculated from the above Lagrangians,

we have used the form factor

Fx = �4
c(

x − m2
x

)2 + �4
c

, x = s, t, u, (A8)

where �c is the cutoff. We take the cutoff �c = 1.2 GeV for
ground state hadrons and �c = 0.7 GeV for the �(1520) res-
onance. To satisfy gauge invariance, we follow the suggestion
of Davidson and Workman [28],

FM = FsMs,◦ + FuMu,◦ + FtMt,◦
+Fc(Ms,× + Mu,× + Mt,× + Mc),

where Mx,◦ is the gauge invariant part of the x-channel
amplitude and Mx,× is not. Here Fc is defined as

Fc = 1 − (1 − Fs)(1 − Fu)(1 − Ft ). (A9)

We use this procedure for the γN → K�(1520) kernel.
For the φN → K�(1520) kernel, all born contributions are
multiplied by the form factor Fc. For the γN → φN kernel,
we follow Titov’s approach [10].

APPENDIX B: DETERMINATION OF AN EFFECTIVE
KAON WIDTH

To determine the effective width for the kaon exchanged in
the transition K�(1520) → φN , we express the intermediate
kaon propagator as a function of the c.m. energy W and the
angle θK between the out-going φ meson and in-coming kaon.
The left-hand side of Eq. (17) can be described as

gφ(W,cos θK ) = i

(pφ − pK )2 − m2
Kin

+ iε

=
∫

dm2
φδ

(
m2

φ − m̄2
φ

) i

(pφ − pK )2 − m2
Kin

+ iε
,

where m̄φ is the physical φ-meson mass, m̄φ = 1.02 GeV,
and mKin is the exchanged kaon mass. By using a smearing
function, we introduce the physical φ-meson width �φ

gφ(W, cos θ ) →
∫

dm2
φf

(
m2

φ − m̄2
φ, �φ

)
× i

(pφ − pK )2 − m2
Kin

+ iε
,

where the smearing function f is given by the imaginary part
of the φ-meson propagator

f
(
m2

φ − m̄2
φ, �φ

) = m̄φ�φ(
m2

φ − m̄2
φ

)2 + m̄2
φ�2

φ

.

When the exchanged kaon reaches the on-shell point, the
propagator is given by

gφ(W, cos θ ) →
∫

dm2
φf

(
m2

φ − m̄2
φ, �φ

)
× i[−iδ(D(cos θ,mφ))],

where the function D(cos θ,mφ) is defined by

D(cos θ,mφ) = cos θ − F (mφ).

Here the function F (mφ) is given by

F (mφ) = 2EφEK − m2
φ

2| 	pφ|| 	pK | , (B1)

where 	pφ and 	pK are the three-momentum vector of the φ

meson and the out-going kaon, respectively. We perform the
integral, giving

gφ(W, cos θ ) =
∫

dm2
φ

dF
dFf (mφ − m̄φ, �φ)

× i(−i)δ(cos θ − F (mφ))

=
(

dF

dm2
φ

)−1

m2
φ=m′2

φ

f
(
m′2

φ − m̄2
φ, �φ

)
.

The introduced mass m′
φ denotes the solution of the equation

D(cos θ,m′
φ) = 0 and is a function of cos θ . Along the same

lines, one can also introduce the �(1520) resonance width ��∗

in the picture,

g�∗ (W, cos θ ) =
∫

dm2
�∗

dF
dFf

(
m2

�∗ − m̄2
�∗, ��∗

)
× i(−i)δ(cos θ − F (m�∗))

=
(

dF

dm2
�∗

)−1

m2
�∗ =m′2

�∗

f
(
m′2

�∗ − m̄2
�∗, ��∗

)
,

where the mass m′
�∗ denotes the solution of the equation

cos θ − F (m′
�∗) = 0. Finally we introduce the effective kaon

width as

gKin (W, cos θ ) =
∫

dm2
Kin

dF
dFf

(
m2

Kin
− m̄2

Kin
, �Kin

)
× i(−i)δ(cos θ − F (mKin ))

=
(

dF

dm2
Kin

)−1

m2
Kin

=m′2
Kin

f
(
m′2

Kin
− m̄2

Kin
, �Kin

)
,

where the mass m′
Kin

refers to a solution of the equation cos θ −
F (mKin ) = 0, and the function F is defined as

F (mKin ) = 2EφEK − m2
φ + (

m2
Kin

− m̄2
K

)
2| 	pφ|| 	pK | . (B2)

035201-10



COUPLED-CHANNEL ANALYSIS FOR φ . . . PHYSICAL REVIEW C 80, 035201 (2009)

1.6 1.8 2 2.2
Eγ [GeV]

0

0.5

1

1.5

2
R

at
io

dm
K

/dmφ
dm

K
/dmΛ∗

FIG. 12. (Color online) Ratio of the widths given by Eqs. (B3)
and (B4).

We can obtain the ratio of the effective width of the
intermediate kaon Kin and the widths of the φ meson or the
�∗ resonance from dF/dmx , where x denotes φ,�∗, or Kin,

(dF/dmφ)|mφ=m̄φ

(dF/dmKin )|mKin =m̄Kin

= dmKin

dmφ

= �Kin

�φ

, (B3)

and

(dF/dm�∗ )|m�∗=m̄�∗

(dF/dmKin )|mKin =m̄Kin

= dmKin

dm�∗
= �Kin

��∗
. (B4)

Figure 12 shows dmKin/dmφ and dmKin/dm�∗ as functions of
the photon energy Eγ .

Substituting the physical widths of the φ meson �φ =
4.26 MeV and the �(1520) resonance ��∗ = 15.6 MeV,
we obtain from Fig. 12 the corresponding kaon width at
Eγ = 1.77 GeV,

�
φ

Kin
= dmKin

dmφ

�φ = 4.97 MeV,

��∗
Kin

= dmKin

dm�∗
��∗ = 9.87 MeV,

at Eγ = 2.1 GeV (the end of blue region), we obtain

�
φ

Kin
= dmKin

dmφ

�φ = 2.94 MeV,

��∗
Kin

= dmKin

dm�∗
��∗ = 7.23 MeV.

The functions g are displayed at Eγ = 1.77 GeV in Fig. 13,
and for Eγ = 2.1 GeV in Fig. 14. These figures show that
gKin (cos θ ) is in good agreement with gφ(cos θ ) and g�∗(cos θ ).
This means that the effective width of the intermediate kaon
can accurately account for the physical decay width of the φ

meson and the �(1520) resonance. We define the effective
intermediate kaon width �K as

�K =
√

�
φ2
K + ��∗2

K . (B5)

Typical values for �K are, for example,

�K = 11.1 MeV at Eγ = 1.77 GeV,

�K = 7.79 MeV at Eγ = 2.1 GeV.

APPENDIX C: RARITA-SCHWINGER VECTOR SPINOR

We can decompose the Rarita-Schwinger vector spinor [29]
for the different spin states as follows:

uµ(p, 3/2) = e
µ
+(p)u(p, 1/2),

uµ(p, 1/2) =
√

2

3
e
µ

0 (p)u(p, 1/2) +
√

1

3
e
µ
+(p)u(p,−1/2),

uµ(p,−1/2) =
√

1

3
e
µ
−(p)u(p, 1/2) +

√
2

3
e
µ

0 (p)u(p,−1/2),

uµ(p,−3/2) = e
µ
−(p)u(p,−1/2).

Here we use the basis four-vectors e
µ
λ , which are given as

e
µ
λ (p) =

( 	ελ · 	p
MB

, ελ + 	p(	ελ · 	p)

MB(p0 + MB)

)
with

	ε+ = − 1√
2

(1, i, 0), 	ε0 = (0, 0, 1), 	ε− = 1√
2

(1,−i, 0).
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FIG. 13. (Color online) On-shell exchanged kaon propagator at Eγ = 1.77 GeV as a function of angle. (a) Black solid line denotes gφ(cos θ )
with the physical φ-meson width �φ , and the dashed line is gK (cos θ ) with the corresponding kaon width �

φ

K = 4.97 MeV. (b) Black solid line
is g�∗ (cos θ ) with the physical �(1520) width ��(1520), and the dashed line is gK (cos θ ) with the corresponding kaon width ��∗

K = 9.87 MeV.
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FIG. 14. (Color online) On-shell exchanged kaon propagator at Eγ = 2.1 GeV as a function of angle. (a) Black solid line is gφ(cos θ ) with
the physical φ width �φ, and the dashed line is gK (cos θ ) with the corresponding kaon width �

φ

K = 2.94 MeV. (b) Black solid line is g�∗ (cos θ )
with the physical �(1520) width ��(1520), and the dashed line is gK (cos θ ) with the corresponding kaon width ��∗

K = 7.23 MeV.

APPENDIX D: SPIN-DENSITY MATRIX

In terms of helicity amplitudes Tλf ,λ;λi ,λγ
, spin-density

matrices can be written as [11,26]

ρ0
λλ′ = 1

N

∑
λγ ,λi ,λf

Tλf ,λ;λi ,λγ
T ∗

λf ,λ′;λi ,λγ
, (D1)

ρ1
λλ′ = 1

N

∑
λγ ,λi ,λf

Tλf ,λ;λi ,−λγ
T ∗

λf ,λ′;λi ,λγ
, (D2)

ρ2
λλ′ = i

N

∑
λγ ,λi ,λf

λγ Tλf ,λ;λi ,−λγ
T ∗

λf ,λ′;λi ,λγ
, (D3)

ρ3
λλ′ = 1

N

∑
λγ ,λi ,λf

λγ Tλf ,λ;λi ,λγ
T ∗

λf ,λ′;λi ,λγ
, (D4)

where

N =
∑

|Tλf ,λ;λi ,λγ
|2. (D5)

Here the helicities λγ , λi, and λf are for the photon and
initial and final nucleons, while λ and λ′ are for the φ meson.
To calculate the spin-density matrix in the GJ system, one
needs a transformation from the c.m. to the GJ system. This
transformation is done in terms of

T GJ
λf ,λφ;λi ,λγ

=
∑
l,m

T c.m.
λf l;mλγ

d1
lλ(−ωφ) d

1/2
mλi

(−ωp), (D6)

where the corresponding Wigner rotating angles are given by

ωφ = acos

(
cos θ − uφ

1 − uφcos θ

)
, (D7)

ωp = atan

(
uφsin(π − θ )(1 − v2

p)1/2

vp + uφcos(π − θ )

)
. (D8)

Here θ is the angle of the outgoing φ meson in the c.m. system,
while vp and uφ are the proton and the φ-meson velocities in
the c.m. system, respectively.
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