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The effective chiral Lagrangian for cold dense nuclear matter is constructed, in which the chemical potential
corresponding to the baryon number density of QCD is introduced and included in the effective Lagrangian as
an external field. A nonperturbative approach inspired by chiral perturbation theory is employed to calculate the
baryon number density and its susceptibility, pressure, and quark condensate. The relevant discussions of the
obtained results are given.
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I. INTRODUCTION

The phase transition of strongly interacting matter is of
great interests to physicists. The expected phase diagram of
neutral strongly interacting matter given by Ref. [1] in the
framework of the Nambu-Jona-Lasinio (NJL) model is shown
in Fig. 1.

As the temperature and the chemical potential increase,
there is a transition from hadron matter to quark gluon
plasma (QGP). For small chemical potential, experiments
at the BNL Relativistic Heavy Ion Collider (RHIC) have
found evidence for the existence of ideal-liquid-like QGP,
whose properties need further investigations [2–5], and the
CERN Large Hadron Collider (LHC) gives more information
about QGP [6,7]. Theoretically, lattice QCD predicts that
the transition of hadron phase to QGP is a crossover with
a critical temperature in the range 150 ∼ 190 MeV [5,8–10].
The mechanism of crossover has been studied in many models
[11–16]. For the low temperature and high chemical potential
regime, our knowledge is quite limited. Experimentally, it is
impossible to achieve such a condition in laboratories on earth.
A natural laboratory holding such cold, highly compressed
matter is a neutron star, about which more observations and
theoretical work still need to be done [17,18]. Theoretically,
lattice QCD has difficulties in a low temperature and high
chemical potential regime. Models based on NJL or PNJL
analyses predict that the phase transition of chiral restoration
is of first order [1,5,19,20], as shown in Fig. 1. However,
in Refs. [21,22], Glozman and Wagenbrunn indicated that
according to a Dyson-Schwinger equation (DSE) method
under the large Nc approximation (Nc denotes the number
of colors), the transition is of second order. Nevertheless, it
is certain that chiral symmetry is spontaneously broken when
the chemical potential µ is below a critical value. And when µ

goes beyond this value, chiral restoration takes place, and then
the hadron matter transits into QGP. As the chemical potential
further increases to a certain point, QGP is expected to change
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into a superconductivity phase [23,24], the existence of which
still needs to be verified.

To understand the evolution properties of cold dense
strongly interacting matter with chemical potential, one should
first study how the baryon number density and the pressure
change with the chemical potential and investigate the spon-
taneous breaking of chiral symmetry and its restoration where
the key order parameter is the quark condensate. At present, an
analysis of the evolution properties of cold dense strongly in-
teracting matter from first principles of QCD is not possible, so
one has to resort to various nonperturbative QCD approaches
and models. Chiral perturbation theory (χPT) [25–28] (for
recent overviews, see Refs. [29,30]) provides an efficient
method for investigating the problem in the low energy regime
where chiral symmetry is spontaneously broken. In this paper,
we construct the chiral effective Lagrangian for cold dense
nuclear matter. Chemical potential corresponding to the baryon
number density of QCD is introduced and included in the
effective Lagrangian as an external field. This method is
analogous to the one used in Refs. [26,27]. Here it should be
noted that χPT has the limitation that its use is constrained
to the low energy regime and cannot be extrapolated to
the regime where resonances or virtual particles appear in
dense nuclear matter. Oller, Oset, and coworkers developed
a nonperturbative approach that extends the idea of χPT
beyond the region of its validity [31–34]. With this method,
the scattering matrix can be calculated to the regime below
1.2 GeV, and the existence of resonances can be revealed. In
this work, we use this nonperturbative idea to calculate the
baryon number density and the quark condensate, and conse-
quently we obtain the baryon number susceptibility and the
pressure.

This paper is organized as follows. In Sec. II, the effective
Lagrangian for cold dense nuclear matter is constructed. In
Sec. III, the baryon number density, baryon number suscepti-
bility, and pressure are calculated and the equation of state is
obtained. In Sec. IV, the evolution of quark condensate with
chemical potential is considered. Our results are consistent
with the low temperature result in Ref. [35]. Conclusions are
given in Sec. V.
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FIG. 1. Phase diagram of QCD for neutral strongly interacting
matter given by Ref. [1].

II. EFFECTIVE CHIRAL LAGRANGIAN AT ZERO
TEMPERATURE AND FINITE BARYON NUMBER

DENSITY

In QCD, the baryon number density operator that cor-
responds to the conserved charge of U (1)B symmetry is
1
3q+q, where q(x) denotes the quark field operator. The
baryon number density of the system is given by 〈 1

3q+q〉 (the
expectation value of the baryon number density operator on
the vacuum state at definite µ). At present, it is impossible
to calculate 〈 1

3q+q〉 directly from the QCD Lagrangian.
However, based on Weinberg’s idea [25] that a hadron system
could be described by an effective Lagrangian including all
the possible terms consistent with the assumed symmetry
principles, one can calculate the vacuum expectation value
of quark operators effectively in χPT.

The calculation of 〈q̄γµq〉, 〈q̄γ5γµq〉, 〈q̄q〉, and 〈q̄γ5q〉
was carried out in Refs. [26,27] as follows. Introducing four
external fields vµ, aµ, s, and p, which are coupled to the vector,
axial vector, scalar, and pseudoscalar current, respectively, the
presence of these external fields implies that there are four
additional terms added to the usual QCD Lagrangian. In the
chiral limit, it can be written as

LQCD
ext = LQCD

0 + q̄γ µ(vµ + γ5aµ)q − q̄(s − iγ5p)q, (1)

where LQCD
0 is the QCD Lagrangian in the chiral limit. The

transformation properties of external fields are determined
by the invariance of LQCD

ext under local chiral transformation.
In the end of the calculation, the scalar external field s is set
to the mass matrix of quarks. According to Refs. [25–27], if
in the low energy regime the effective Lagrangian consists
of all the possible terms, the results calculated from this
Lagrangian are equivalent to those calculated from QCD.
So, the generating functional deduced from this effective
Lagrangian is equivalent to the one deduced from QCD. The
generating functionals are functionals of external fields which
are included in the effective Lagrangian in a systematic way to
ensure local chiral symmetry. The vacuum expectation value of
quark operators q̄γµq, q̄γ5γµq, q̄q, and q̄γ5q can be obtained
from the derivative of the generating functional of the hadron

system with respect to the external fields corresponding to
these operators.

To calculate the expectation value of the baryon number
density 〈 1

3q+q〉 for cold dense nuclear matter, we use the same
method and introduce the chemical potential as follows. Under
local U (1)B , the quark field transforms as

q → eiBθ(x)q, (2)

where B is the baryon number. To ensure local U (1)B
symmetry of the system, one must introduce an external field
bµ with the transformation property

bµ → bµ + ∂µθ (x) (3)

and replace the derivative acting on the quark field by the
canonical one

∂µq → ∂µq − iBqbµq = ∂µq − i

3
bµq. (4)

Set

bµ = δµ0µb (5)

in the end of the calculation, then µb is the baryon chem-
ical potential. Here and in the following calculations, we
assume flavor SU(2) symmetry, which means equal chemical
potentials and equal masses for u and d quarks. The density
of the conserved charge corresponding to U (1)B symmetry
is the baryon number density 1

3 q̄γ0q = 1
3q+q. Its vacuum

expectation value can be calculated from the derivative of
generating functional as〈

1

3
q+q

〉
= ∂Z[bµ]

∂b0

∣∣∣∣
b0=µb,bi=0

. (6)

In our approach, this is equivalent to replacing b0 by µb and
then doing the partial differentiation with respect to µb, and
the result is

∂Z[µb]

∂µb

. (7)

On the other hand, under local U (1)B transformation, the
nucleon field transforms as

ψ → eiBθ(x)ψ. (8)

The derivative of the nucleon field should be replaced by

∂µψ → ∂µψ − iBNbµψ = ∂µψ − iδ0µµbψ. (9)

Accordingly, the pion-nucleon effective Lagrangian LπN for
cold dense nuclear matter differs from the usual one in χPT
[29,30] in that the canonical derivative of the nucleon field has
an additional term −iδ0µµbψ . The Lagrangian for the pure
pion fields Lπ is the same as the one in the usual χPT, where
the pions are taken as Goldstone bosons corresponding to the
spontaneous breaking of chiral symmetry.

The pionic Lagrangian at leading order reads

L(2)
π = F 2

π

4
T r(∂µU∂µU+) + F 2

π

4
T r(χU+ + Uχ+), (10)

where U denotes the Goldstone boson fields

U = exp

(
i �τ · �π
Fπ

)
, (11)
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with �τ being the three Pauli matrices, �π being the pion field,
and

�τ · �π =
(

π0
√

2π+√
2π− −π0

)
, (12)

χ = 2B0(s + ip) with s and p being the external fields
introduced in Eq. (1), and Fπ is the pion decay constant. In
our calculation, p = 0 and s equals the mass matrix of u, d

quarks. Under flavor SU(2)f , χ can be expressed as

χ = 2B0Mq = 2B0m̂ = M2
π . (13)

For π -N Lagrangians, to the order of O(p4), the terms
contributing to our later calculations are

L(1)
πN = ψ̄(i � D − m)ψ + 1

2
gAψ̄ � uγ5ψ,

L(2)
πN = c1〈χ+〉ψ̄ψ − c2

4m2
〈uµuν〉(ψ̄DµDνψ + h.c.)

(14)
+ c3

2
uµuµψ̄ψ + · · · ,

L(4)
πN = − e1

16
〈χ+〉2ψ̄ψ + · · · ,

where

Dµψ = ∂µψ − iδ0µµbψ + 
µψ,


µ = 1
2 [u+, ∂µu], (15)

u2 = U, uµ = iu+∂µUu+.

In Eq. (14), m denotes the nucleon mass in the chiral limit,
c1, c2, c3, and e1 are the low energy constants. The values for
the constants used in our calculation are listed in Table I.

Here it should be noted that the effective Lagrangian
contains second- and even higher order derivative terms of
the nucleon field, such as the second term in L(2)

πN . Because
of the presence of these terms, the density of the conserved
charge of U (1)B symmetry in the nuclear system is not ψ+ψ .
This is why we introduce the baryon chemical potential
at the quark level instead of naively adding a µbψ

+ψ term
to the effective Lagrangian. Besides, it should also be noted
that the Feynman rules are different from those of the usual
χPT owing to the additional term in the canonical derivative
of the nucleon fields.

III. EVOLUTION PROPERTIES OF COLD DENSE
NUCLEAR MATTER WITH CHEMICAL POTENTIAL

To study the evolution properties of cold dense nuclear
matter with chemical potential, we first calculate the baryon
number density and its susceptibility. According to the analysis
in the above section, the baryon number density can be

calculated from the effective Lagrangian of the nuclear system.
The pion-nucleon effective Lagrangian can be written as

LπN = −ψ̄K̂ψ, (16)

where according to Eq. (14), K̂ is of the form

K̂ = −(iγµ∂µ + γ0µb − m + Ô) (17)

with Ô denoting all the remaining terms of K̂ . The baryon
number density of the nucleon can be calculated to be

n(µb) =
〈

1

3
q+q

〉
= ∂

∂µb

∫
Dψ̄DψDUei

∫
d4xLeff

= ∂

∂µb

∫
DU (det K)ei

∫
d4xLπ

=
∫

DU (det K)Tr

(
K−1 ∂

∂µb

K

)
ei

∫
d4xLπ , (18)

where Leff = LπN + Lπ . K and O denote the results of the
path integral after integrating out the nucleon field. The most
important contribution to 〈 1

3q+q〉 from K is

Tr (K−1γ0). (19)

The remaining term

Tr

(
K−1 ∂

∂µb

O

)
(20)

comes from higher order terms in the effective Lagrangian,
which include the canonical derivative of the nucleon field,
such as the second term in L(2)

πN . The contributions of such
terms are far smaller than the leading term due to the smallness
of c2. Therefore, we can neglect them in our later calculation
and set

n(µb)
.=

∫
DU (det K)Tr (K−1γ0)ei

∫
d4xLπ . (21)

After doing the path integral on the pion fields U , K−1 becomes
the nucleon propagator S. Then the baryon number density is

n(µb) = −i

(2π )4

∫
d4pTr (γ0S). (22)

Remember that the chemical potential is introduced in
Euclidean space, p0 is imaginary, and the integral is of the
form ∫

d4p =
∫

d3 �p
∫ i∞

−i∞
dp0. (23)

Besides, note that the baryon number density vanishes at zero
chemical potential, so if we let p′

0 = p0 + µb, then

n(µb) = −i

(2π )4

∫
d3 �p

(∫ i∞+µb

−i∞+µb

dp′
0 −

∫ i∞

−i∞
dp′

0

)
Tr (γ0S).

(24)

TABLE I. Numerical values for m, Mπ , Fπ , gA, c1, c2, c3, and e1 used in our calculation. c1, c2, and c3 are the same as
the ones used in Ref. [30]. m and e1 are fitted through the nucleon mass.

Mπ (MeV) m (MeV) Fπ (MeV) gA c1 (MeV−1) c2 (MeV−1) c3 (MeV−1) e1 (MeV−2)

137 896 92.4 1.27 −0.90 × 10−3 3.3 × 10−3 −4.7 × 10−3 1 × 10−9
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LI, LÜ, WANG, SUN, AND ZONG PHYSICAL REVIEW C 80, 034909 (2009)

FIG. 2. Integration path of p0 for the baryon number density of
the nucleon in Eq. (24).

The integration path in the complex plane is closed as is shown
in Fig. 2.

According to the Cauchy integral formula, the value of
the integral is determined by the analytical properties of the
integrand in the region encircled by the integration path.

Obviously, ordinary χPT requires real momentum, and an
extrapolation of the results to the complex plane would be
apparently illegal according to perturbation expansion when
any singularity appears. As a result, a nonperturbative scheme
becomes necessary in this case. Following the approach devel-
oped in Refs. [31,32], in which the T matrix was calculated
nonperturbatively from the L-S equation, we calculate the
nucleon propagator in the same way as follows. The full
nucleon propagator satisfies the following DSE

S = S0 + S0�S, (25)

where S0 is the free nucleon propagator and � is the self-
energy. In principle, � include the full propagator S in the
integral and the DSE should be solved by iteration. Here we
make the approximation of replacing the full propagator in the
self-energy with the free one. And thus

S = (1 − S0�)−1S0 = [
S−1

0 (1 − S0�)
]−1 = 1

S−1
0 − �

. (26)

One may notice that this expression for S is just what one
uses for mass renormalization. However, in ordinary χPT it
holds only near the mass shell. Extending the result to the
full complex plane and calculating n(µ) in terms of such
an S means adopting a nonperturbative approach instead of
an order-by-order perturbative expansion. � is calculated
perturbatively from the effective chiral Lagrangian. To be
consistent with ordinary χPT, counter terms are added, and
the divergence of � is removed by mass renormalization. So,
when µ = 0, S has a pole at the physical value of the nucleon
mass. To the order of O(p4), the diagrams that contribute to

the self-energy � are shown in Fig. 3. The explicit expression
for the self-energy is

� = −4c1M
2 + �a + �b + �c + e1M

4 + O(p5),

�a = 3g2
A

4F 2
π

(m+ �p′)
{
M2

πI + (m− �p′) �p′I (1)
}
,

(27)

�b = 3M2
π�π

F 2
π

{
2c1 − p′2

m2d
c2 − c3

}
,

�c = −4c1M
2
π

∂�a

∂m
,

where d = 4, �p′ =�p + γ0µb,

I = − 1

8π2

α
√

1 − �2

1 + 2α� + α2
arccos

(
− � + α√

1 + 2α� + α2

)

− 1

16π2

α(� + α)

1 + 2α� + α2
(2 ln α − 1), (28)

I (1) = 1

2p′2
{(

p′2 − m2 + M2
π

)
I + �π

}
, �π = M2

π

8π2
ln

Mπ

m
,

and

α = Mπ

m
,

(29)

� = p′2 − m2 − M2
π

2mMπ

.

It should be noted that the free nucleon propagator in cold
dense nuclear matter is different from the usual one, because
in the Feynman diagram the momentum of nucleon is always
added with a term δµ0µb. If the calculation is restricted to
order O(p4), then the self-energy is the same as that shown
in Ref. [28], except that the momentum p of the nucleon
field is replaced by p′ = {p0 + µb, �p}, wherever it appears.
The renormalization scheme used here is the one introduced
in Ref. [28] based on the “infrared regularization,” which
we denote as IR. The baryon number density can now be
calculated to be

n(µb) = −i

(2π )4

∫
d4pTr

(
γ0

� p′ − m − �( � p′)

)
, (30)

However, a direct application of the IR results [28] in the
full complex p0 plane is illegal. In IR, the loop integral H is
divided into two parts, the singular part I and the regular part
R, and the R part is dropped out in renormalization because it
does not fit the infrared singularity of the integral. Considering
that the analysis of the singularity is based on an expansion
of the nucleon momentum about the nucleon mass mN , when
the nucleon momentum goes far beyond mN , the expansion is
illegal and so the regular part R cannot be dropped out. In the
regime where the momentum of the nucleon is much larger or

(a) (b) (c)

FIG. 3. One-loop diagrams contributing to
the self-energy of the nucleon. The crossed
vertices denote the contribution from L(2)

πN .
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FIG. 4. Poles and branch cut of the integrand in Eq. (24) in
the complex p0 plane. The positions of the three poles are at
p0 = √ �p2 + p2

n, where n denotes a, b, and c. pn for each pole is
pa = 938, pb = 1152 + i337, and pc = 1152 − i337. The branch
cut starts at d , where p0 = √ �p2 + (m + Mπ )2.

much smaller than mN , the result of the loop integral should
be H = I + R, not I .

According to above consideration, the integrand in Eq. (24)
has three poles and one branch cut in the complex p0 plane with
the real part of p0 positive and not larger than 1200 MeV. The
regime beyond 1200 MeV is out of the consideration because
the spontaneous breaking of chiral symmetry is expected to
get restored there. The poles and branch cut relevant to our
calculation are shown in Fig. 4.

Obviously, the pole denoted as a on the real axis corre-
sponds to the ground state of the nucleon (N938). The branch
cut starts at p0 =

√
�p2 + (m + Mπ )2. The positions of b and

c are far from the real axis and are on the right-hand side of
the starting point of the cut line.

The results for the baryon number density are shown in
Figs. 5–7. The contributions from the poles and those from the
branch cut are shown in Figs. 5 and 6, respectively. The total
contributions from the poles and the branch cut are shown in
Fig. 7. In Fig. 7, the result for baryon number density from
χPT is denoted by a thick black line, while the free-nucleon
approximation result [36] is the gray line.

From Fig. 7, it can be seen that the baryon number
density n(µ) is zero when the baryon chemical potential µb is
smaller than the mass of the nucleon. That is, µ = 938 MeV
is a singularity. This result agrees qualitatively with the
general conclusion in Ref. [36]. In that reference, based on
a universal argument, it is pointed out that the existence of
some singularity at the point µ = µ0 and T = 0 is a robust

800 900 1000 1100 1200

b MeV

2 106
4 106
6 106
8 106
1 107

1.2 107
1.4 107

n
M

eV
3

density from poles

FIG. 5. Contributions to the baryon number density of cold dense
nuclear matter from poles.

800 900 1000 1100 1200

b MeV

20000

40000

60000

80000

n
M

eV
3

density from cut line

FIG. 6. Contributions to the baryon number density from the
branch cut.

and model-independent prediction. A recent model calculation
using the rainbow approximation of the DSE method [37]
also supports this. Here one complementary point should be
stressed: physically, the critical point for n(µ) to go from zero
to a nonzero value should be smaller than 938 MeV because
of the contribution from the binding energy. However, our
calculation cannot reveal such a contribution, because the pion
loops are not considered. It is expected that when calculating
to higher order, the results would be better and the quenching
effect would be revealed. When µb goes beyond that starting
point, our result for n(µb) is larger than the free-nucleon result.
And when µb is larger than about 1152 MeV, the rate for the
increase of n(µ) is slowed down. (Here it should be noted that
our calculation is based on a nonperturbative approach inspired
by χPT. Since this is not a rigorous theory, keeping four digits
of precision here is not very meaningful. Nevertheless, for
convenience of discussion below, we shall still keep the four
digits of precision in our results.)

The baryon number susceptibility χ (µb) is defined as

χ (µb) = ∂

∂µb

n(µb), (31)

which comes into existence when the temperature of the
system stays the same. The results of χ (µb) is shown in Fig. 8.

In Fig. 8, a peak around 1152 MeV can be clearly seen. Here
it is interesting to note that the chemical potential at which the
rate for the increase of n(µ) is slowed down coincides with
the one at which the peak in the curve for baryon number
susceptibility appears.

Once n(µb) is obtained, one can calculate the pressure P (µ)
of the nuclear matter. The relation of n(µb) and P (µ) is given

800 900 1000 1100 1200

b MeV

2 106
4 106
6 106
8 106
1 107

1.2 107
1.4 107

n
M

eV
3

total density

FIG. 7. Total contributions to the baryon number density from
both poles and the branch cut, where thick black line is our result
from χPT and the gray line is the free-nucleon approximation result.
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800 900 1000 1100 1200
b MeV

20000

40000

60000

80000

M
eV

2

susceptibility

FIG. 8. Curve for the susceptibility of cold dense nuclear matter.

by (for more details, please see Ref. [37])

n(µb) = ∂P (µ)

∂µ
. (32)

The P (µ)-n(µ) curve for the equation of state of cold dense
nuclear matter is shown in Fig. 9. Our results for baryon
number density and equation of state are quite similar to those
calculated from the free-nucleon approximation. This could
explain why one can adopt the almost independent particle
model in the study of nuclear matter. In the following, we will
explore more details about the phase transition by studying the
evolution of quark condensate with the chemical potential.

IV. EVOLUTION OF THE QUARK CONDENSATE

According to LQCD
ext in Eq. (1), the quark condensate

〈q̄q〉 can be calculated from the derivative of the generating
functional with respect to the corresponding external fields,
i.e.,

〈q̄q〉 = ∂

∂s

∫
Dψ̄DψDUei

∫
d4xLeff |s=Mq

. (33)

By analogy with the deduction in the last section, the result
comes out to be

−i

(2π )4

∫
d4pTr

(
S

∂�

∂m̂

)
, (34)

where m̂ denotes the mass of u and d quarks under flavor
SU(2) symmetry. The integral is performed in the same way

FIG. 9. Curve for the equation of state of cold dense nuclear matter.

〉

〉

〈

〈

FIG. 10. Curve for the evolution of −〈q̄q〉.

as in Eq. (24), that is,∫
d4p =

∫
d3 �p

(∫ i∞+µb

−i∞+µb

dp′
0 −

∫ i∞

−i∞
dp′

0

)
, (35)

with the integration path shown in Fig. 2. However, since
the vacuum quark condensate does not vanish, the result of
the integral in Eq. (34) is not 〈q̄q〉 but instead 〈q̄q〉 − 〈q̄q〉0,
where 〈q̄q〉0 denotes the vacuum quark condensate.

The curve for the quark condensate −〈q̄q〉 is shown in
Fig. 10. Since the value for 〈q̄q〉0 is not well determined yet,
we just give a sketch map in Fig. 10.

When µb is below a certain value µc (where in our work
µc = mN ), 〈q̄q〉 is kept unchanged from its vacuum value,
i.e., 〈q̄q〉 = 〈q̄q〉0. For µb larger than µc, the absolute value
of the quark condensate tends to decrease as µb increases.
Recent work based on the rainbow approximation of the DSE
method in Ref. [38] and the large Nc approximation in Ref. [21]
give the same result. From Fig. 10, it can be seen that the
decrease of quark condensate speeds up when µb is larger than
1152 MeV. When the chemical potential reaches 1200 MeV,
the quark condensate vanishes. Therefore, our results are
applicable only for µb smaller than 1200 MeV, where the
spontaneous breaking of chiral symmetry still works. This
range of application is in agreement with that in Refs. [31,32],
where the upper range is obtained by fitting the experiments.
In addition, our results are consistent with the HBχPT result
at low temperature in Ref. [35], where the evolution of the
quark condensate is investigated for different temperatures.
In principle, our results are also consistent with those in
Refs. [39,40].

V. CONCLUSION

The effective chiral Lagrangian for cold dense nuclear
matter is constructed, in which the chemical potential corre-
sponding to the baryon number density of QCD is introduced
and included in the effective Lagrangian as an external
field. Using a nonperturbative approach inspired by chiral
perturbation theory, the evolution properties of cold dense
nuclear matter with chemical potential are analyzed, and the
evolution curve of the baryon number density, the baryon
number susceptibility, and the curve of the equation of state
are obtained. When the baryon chemical potential is around
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1152 MeV, a peak is found in the curve of baryon number
susceptibility. These results for baryon number density and
equation of state are quite similar to those calculated from
the free-nucleon approximation. This could explain why one
can adopt the almost independent particle model in the study
of nuclear matter. The evolution curve for quark condensate
indicates that the quark condensate is kept unchanged from
its vacuum value when µb < mN , and it decreases as µb

increases when µb > mN . This result is also consistent with
that in Refs. [21,38] obtained using the DSE method. When
the chemical potential goes beyond 1152 MeV, the quark
condensate decreases rapidly to zero. To understand the full
phase transition properties of cold dense strongly interacting
matter, one needs to investigate the region above the phase
transition point using a method, such as the DSE method in
Refs. [41–43], which is applicable to cold dense quark matter.

As is indicated in Sec. III, the contribution of binding energy
and the quench effect are not included in our calculation. To
improve our results, we need to calculate self-energy to order
of O(p6).
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