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Momentum kick model analysis of PHENIX near-side ridge data and photon jet
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We analyze PHENIX near-side ridge data for central Au + Au collisions at
√

sNN = 200 GeV with the
momentum-kick model, in which a near-side jet emerges near the surface, kicks medium partons, loses energy,
and fragments into the trigger particle and fragmentation products. The kicked medium partons subsequently
materialize as the observed ridge particles, which carry direct information on the early parton momentum
distribution and the magnitude of the momentum kick. We find that the PHENIX ridge data can be described
well by the momentum-kick model and the extracted early partons momentum distribution has a thermal-like
transverse distribution and a rapidity plateau structure. We also find that the parton-parton scattering between
the jet parton and the medium parton involves the exchange of a nonperturbative pomeron, for jet partons in
momentum range considered in the near-side ridge measurements.
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I. INTRODUCTION

Recently, the STAR Collaboration [1–13] observed a
�φ-�η correlation of particles associated with a high-pt

near-side hadron trigger particle in central Au + Au collisions
at

√
sNN = 200 GeV, where �φ and �η are the azimuthal

angle and pseudorapidity differences measured relative to
the trigger particle, respectively. Particles associated with the
near-side jet can be decomposed into a “jet component” at
(�φ,�η) ∼ (0,0) and a “ridge component” at �φ ∼ 0 with
a ridge structure in �η. A similar correlation with a high-pt

trigger has also been observed by the PHENIX Collaboration
[14–16] and the PHOBOS Collaboration [17]. Recent reviews
of the ridge phenomenon have also been presented [18–20].

In this article, we shall limit our attention to the ridge
phenomenon involving a high-pt jet on the near side. We
shall not consider ridge-type �φ-�η correlations that have
also been observed between two low-pt hadrons [21], as they
do not involve the occurrence of a high-pt jet on the near side.

Many theoretical models [22–43] have been proposed to
discuss the ridge phenomenon. The model of Ref. [27] assumes
that the ridge particles arise from the extra particles deposited
by the forward and backward beam jets at the source point
associated with the two transverse jets. The correlation of the
jet source transverse position and the transverse medium flow
then leads to an azimuthal distribution with a width in �φ

[27,28]. The width in �φ obtained from such a model is wide
in comparison with experimental data [27]. The correlated
emission model [29–32] assumes that ridge particles arise
from soft thermal gluons radiated along the jet direction,
with an enhancement due to the radial flow. The models of
Refs. [27] and [29] deal with the azimuthal correlations in
the central rapidity region, and the pseudorapidity correlation
has not yet been considered. The backsplash model assumes
that the ridge on the near-side arises from the hydrodynamical
backsplash of the away-side jet flow [33]; hydrodynamical
calculations for such a model has not yet been made. The
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Glasma model examines �φ-�η correlation between two
low-pt hadrons [21] without a high-pt trigger and assumes
that the ridge in soft low-pt pairs arises from the initially
boost-invariant distribution that persists in the bulk matter for
low-pt particles [34–36]. The jet broadening models [37–40]
consider the ridge particles as arising from radiated gluons of
the incident jet; they have not been compared quantitatively
with the ridge data. Taking the features of jet broadening as
free parameters in a hydrodynamical calculation leads to a
theoretical jet peak to ridge ratio large in comparison with
experiment [41]. The possibility of the intermediate pt trigger
arising from the medium-medium recombination adds further
complications to the analysis of the ridge phenomenon [42,43].
The recent PHOBOS observation that the ridge extends to
pseudorapidity separations as large as |�η|∼ 4 [17] provides
an important test for the models.

Successful analyses of experimental near-side data have
been obtained in the momentum-kick model, over large phase
space of the associated particles in pt ,�φ, and �η [22–25].
In this model, the ridge particles are described as arising from
partons in the medium that are kicked by the jet. We envisage
that a near-side jet emerges near the surface, kicks (or scatters)
medium partons, loses energy, and fragments into the trigger
particle and fragmentation products. By assumption of parton-
hadron duality, the kicked (or scattered) medium partons
subsequently materialize as the observed ridge particles, which
can be used to extract valuable information on the jet-medium
interaction and the properties of the early parton medium. In
the description of the interaction between the medium and a
jet in the momentum-kick model, we have chosen to represent
the medium as particles instead of fields, because of (i) the
short-range nature of the color screening interaction between
partons in a dense color medium [44,45] and (ii) the observed
azimuthal kinematic correlation between the ridge particles
and the trigger jet.

Our task can be made easier here as we can divide the
theoretical analysis in three steps. The first step is to set up the
basic phenomenological theory of the momentum-kick model
in which physical quantities enter as important parameters.
The second step consists of comparing the extracted physical
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quantities with those in other observed phenomena. The third
step consists of constructing fundamental theoretical models
that can explain these physical quantities.

Following such a strategy, we describe the production pro-
cess of associated particles as consisting of the jet component
and the ridge component. The ridge component depends on the
magnitude of the momentum kick, the number of jet-(medium
parton) collisions, and the shape of the early medium parton
momentum distribution. However, the jet component yield per
trigger in a nucleus-nucleus collision can be described as an
attenuated jet component of a pp collision. It is therefore
necessary to analyze the auxiliary associated particle yield in
pp collisions to specify the jet component in nucleus-nucleus
collisions.

Our successful description of the experimental data allows
us to extract physical quantities from STAR near-side ridge
data in central Au + Au collisions at

√
sNN = 200 GeV [25].

In the process, we infer that the shape of the early parton
momentum distribution possesses a thermal-like transverse
distribution and a rapidity plateau structure. We find that the
magnitude of the longitudinal momentum kick is about 1 GeV
per jet-(medium parton) collision. We infer also that for a
central Au + Au collision the number of jet-(medium parton)
collision multiplied by the attenuation factor is about 4. As not
much is known about these physical quantities, the extracted
quantities provide useful insight into the properties of the early
partons and their interactions with the jet in nucleus-nucleus
collisions.

With the successes in analyzing the STAR near-side ridge
data, it is of interest to see whether the momentum-kick model
is consistent with other experimental measurements. Our first
test of the momentum-kick model gives a good prediction
[24,25] of the PHOBOS data [17] at large rapidities, indicating
the approximate validity of the momentum-kick model and the
presence of the rapidity plateau.

We wish to analyze here the PHENIX ridge data that cover
a smaller region of pseudorapidities, |ηtrig, ηassoc| < 0.35 but a
large number of p

trig
t ⊗ passoc

t combinations. Both the jet and
ridge components contribute and interplay in the small �η

region on the near side of the jet. This is different from the
STAR and PHOBOS ridge data that cover a large range of
pseudorapidities. The jet component is important at �η ∼ 0,
whereas the ridge component dominates for |�η| > 0.7.

After extracting the physical quantities from the analysis
of the PHENIX ridge data, we wish to find out the nature of
the scattering between the jet parton and the medium parton.
In the experimental setup, jet triggers have been accepted in
the interval 2 < p

trig
t < 10 GeV. The incident jet parton has

an initial transverse momentum of order p
jet
t ∼ 10 GeV, as a

jet parton loses a few GeV in kicking a few medium partons.
Is the scattering between a jet parton and a medium parton
a perturbative or nonperturbative QCD scattering process, for
jet partons in this momentum range? Our ability to ascertain
the nature of the parton-parton scattering will help us select
the proper description to formulate the process of energy loss
for these jet partons.

Previously, phenomenological model of hadron-hadron
differential cross section in terms of parton-parton collisions
with a finite correlation length was successfully applied in the

modified Chou-Yang model [46–49]. In recent years, much
progress has been made on the description of nonperturbative
parton-parton scattering, in connection with a better under-
standing on the nature of the nonperturbative soft pomeron
[50–60]. In particular, hadron-hadron elastic differential cross
section analysis and lattice gauge calculations support the
concept of the structure of a pomeron with a small correlation
length. These recent theoretical advances will allow us to com-
pare the characteristics of the parton-parton scattering in the
present momentum-kick model with those parton-parton colli-
sions arising from the exchange of nonperturbative pomerons.

Turning to the properties of the early parton momentum
distribution extracted from the momentum-kick model, we
note that the presence of the rapidity plateau in the early history
of a central nucleus-nucleus collision as inferred from the
momentum-kick model is not a surprising result, as the rapidity
plateau structure occurs in elementary processes involving the
fragmentation of flux tubes [26,61–64] and in many particle
production models such as models based on preconfinement
[65], parton-hadron duality [66] cluster fragmentation [67],
string-fragmentation [68], dual-partons [69], the Venus model
[70], the Relativistic quantum molecular dynamics (RQMD)
model [71], multiple collision model [72], parton cascade
model [73,74], color-glass condensate model [75], a multi-
phase transport (AMPT) model [76], the Lexus model [77],
and many others. To investigate the origin of the rapidity
plateau in a quantum mechanical framework, we can go a step
further to use the physical argument of transverse confinement
to establish a connection between QCD and QED2 (quantum
electrodynamics in 2 dimensions) [25,26]. One finds that a
rapidity plateau of produced particles is a natural occurrence
when color charges pull away from each other at high energies
[26,61–64] as in QED2 [78–81]. Experimental evidence for
a rapidity plateau along the sphericity axis or the thrust axis
has been observed earlier in π± production in high-energy
e+-e− annihilations [82–86]. A rapidity plateau structure has
also been observed in pp collisions at RHIC energies by the
BRAHMS Collaboration [87].

In addition to the magnitude of the momentum kick
acquired by a medium parton per jet (medium parton) collision,
the ridge data also give information on the number of kicked
partons. These physical quantities are clearly related to the
energy loss of a jet in the dense medium. A consistent picture
of both the ridge yield and jet quenching emerges from the
momentum-kick model analyses [25] and complements other
studies of the jet quenching phenomenon [88].

The analysis of the PHENIX near-side ridge data also
provides an opportunity to examine an additional test of the
momentum-kick model using a high-pt photon jet. Nucleon-
nucleon collisions can lead to the occurrence of a high-pt

parton jet in coincidence with a high-pt photon jet. In a central
nucleus-nucleus collision with an away-side parton jet, we can
use a photon jet on the near-side to test different ridge models
[89]. By comparing associated particles on the near-side with
a hadron or a photon jet, we can separate out effects owing
to the collision of the near-side jet. If the ridge arises from
the medium as a result of the collision of the near-side parton
jet, as in the momentum-kick model, the substitution of a
near-side photon jet will lead to a greatly reduced yield of
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ridge particles. If the ridge particles arise from “several extra
particles deposited by forward-backward beam jets into the
fireball,” as in the position-flow model of Refs. [27] and [28]
then the near-side ridge will remain for a near-side photon jet.
If the ridge arises from the backsplash of the propagation of
away-side parton jet, then the large ridge structure will remain
for a near-side photon jet. It is therefore of interest to make
theoretical estimates of the ridge yield in association with a
near-side, high-pt photon jet in the momentum-kick model so
as to assist experiments in such an analysis.

This article is organized as follows. In Sec. II, we review
and summarize the main results of the momentum-kick model.
In Sec. III, we discuss the jet component in Au + Au and in
pp collisions. The auxiliary associated particles yield in pp

collisions is parametrized to assist the analysis of the ridge
component in Au + Au collisions. In Sec. IV, momentum-kick
model description of the ridge yield is presented and physical
parameters are introduced to describe the ridge component.
In Sec. V, we compare theoretical and experimental results
of the total associated particle yield in PHENIX experiments
using hadron triggers in different p

trig
t intervals. In Secs. VI,

VII, and VIII, we examine new insights derived from the
physical quantities extracted from the momentum-kick model.
Specifically, in Sec. VI, we find that the magnitude of the
longitudinal momentum kick along the jet direction qL is
consistent with the characterization that the scattering between
the jet parton and the medium parton involves the exchange
of a nonperturbative pomeron. In Sec. VII, we find that the
extracted shape of the rapidity plateau of the early parton
distribution is in between those of the pp and Au + Au
collisions, indicating an intermediate stage of parton evolution.
In Sec. VIII, we find that the number of kicked partons at the
most central collision can provide the correct normalization
for the momentum-kick model to describe the centrality
dependence of the ridge yield. These results supports the
approximate validity of the momentum-kick model. In Sec. IX,
we calculate the ridge yield when a high-pt photon jet occurs.
The results can be used to guide our search for ways to
discriminate different models. In Sec. X, we present our
discussions and conclusions.

II. REVIEW OF THE MOMENTUM-KICK MODEL

We shall briefly summarize the basic concepts of the
momentum-kick model. In the phenomenon of the ridge
associated with the near-side jet, it is observed that (i) the
ridge particle yield increases with the number of participants,
(ii) the ridge yield appears to be nearly independent of the
trigger jet properties, (iii) the baryon to meson ratios of the
ridge particles are more similar to those of the bulk matter than
those of the jet, and (iv) the slope parameter of the transverse
distribution of ridge particles is intermediate between those of
the jet and the bulk matter [1–20]. These features suggest that
the ridge particles are medium partons, at an early stage of the
medium evolution during the passage of the jet. The azimuthal
correlation of the ridge particle with the jet and the presence
of strong screening suggest that the associated ridge particle

and the trigger jet are related by collisions. A momentum-kick
model was put forth to explain the ridge phenomenon [22–26].

The model assumes that a near-side jet occurs near the
surface, collides with medium partons, loses energy along
its way, and fragments into the trigger and its associated
fragmentation products (the “jet component”). Those medium
partons that collide with the jet acquire a momentum kick along
the jet direction. They subsequently materialize by parton-
hadron duality as ridge particles in the “ridge component.” In
other words, the ridge particles are medium partons kicked by
the jet and they carry direct information on the early parton
momentum distribution and the magnitude of the longitudinal
momentum kick.

As described in detail in Refs. [22–25], we follow a jet as it
collides with medium partons in a dense medium and study the
yield of associated particles for a given p

trig
t . The evaluation

of the ridge yield and the investigation of the quenching of
the jet will be greatly simplified by using average values of
various physical quantities, whose “average” attribute will be
made implicit.

We label the normalized initial momentum distribution
of medium partons at the moment of jet-(medium parton)
collisions by EidF/dpi . The jet imparts a momentum q onto
a kicked medium parton, which changes its momentum from
pi to p = (pt , η, φ) = pf = pi + q, as a result of the jet-
(medium parton) collision. By assumption of parton-hadron
duality, the kicked medium partons subsequently materialize
as observed associated ridge particles.

We shall use the label p of the kicked medium partons inter-
changeably with the label passoc of associated ridge particles.
The normalized final parton momentum distribution EdF/dp
at p is related to the normalized initial parton momentum
distribution EidF/dpi at pi at a shifted momentum, pi =
p − q, and we have [22]

dF

ptdptdηdφ
=

[
dF

ptidptidyidφi

E

Ei

]
pi=p−q

×
√

1 − m2(
m2 + p2

t

)
cosh2 y

, (1)

where the factor E/Ei ensures conservation of particle
numbers and the last factor changes the rapidity distribution
of the kicked partons to the pseudorapidity distribution [64].

We characterize the number of partons kicked by the jet
by 〈Nk〉, which depends on the centrality and the jet-(medium
parton) cross section. The (charged) ridge particle momentum
distribution in a central A + A collision per trigger is then[

dNch

Ntrigptdptd�η d�φ

]AA

ridge

=
[
fR

2

3
〈Nk〉 dF

ptdpt d�ηd�φ

]AA

ridge

= fR

2

3
〈Nk〉

[
dF

ptidptidyidφi

E

Ei

]
pi=p−q

×
√

1 − m2(
m2 + p2

t

)
cosh2 y

, (2)
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TABLE I. Physical parameters in Eq. (4), for the description of associated particles in pp collisions and the meaning of each parameter.

Category Physical parameter Meaning

Properties of jet particles associated with Njet Number of associated particles per trigger in a pp collision
a trigger in a pp collision Tjet “Temperature” of passoc

t distribution in a pp collision
σφ0 Jet cone width parameter
ma Mass parameter to modify the variation of

jet cone width σφ with passoc
t

where �η = η − ηtrig, �φ = φ − φtrig, fR is the average sur-
vival factor for produced ridge particles to reach the detector,
and the factor 2/3 is to indicate that 2/3 of the produced associ-
ated particles (presumably pions) are charged.1 Present mea-
surements furnish information only on the product fR〈Nk〉.
The momentum kick q will be distributed in the form of a cone
around the trigger jet direction with an average 〈q〉 = qL etrig

directed along the trigger direction etrig, characterized by the
momentum-kick magnitude qL. For brevity of nomenclature,
‘the longitudinal momentum kick qL along the jet direction’
will henceforth be abbreviatingly called ‘the momentum
kick qL.’

III. THE JET COMPONENT IN Au + Au AND
pp COLLISIONS

Experimental measurements of the associated particles in
A + A collisions include contributions from both the jet com-
ponent and the ridge component. By comparing the associated
particle yield per trigger in central Au + Au collisions with
the pp associated particle yield at �η ∼ 0, one finds that
in the region of pt < 4 GeV, the jet component yield in
central Au + Au collisions can be consistently described as an
attenuated yield of associated particles in a pp collision [25],[

1

Ntrig

dNch

ptdptd�ηd�φ

]AA

jet

= fJ

dN
pp

jet

ptdptd�ηd�φ
. (3)

The survival factor fJ varies with passoc
t of the associated

particles, being relatively constant for low passoc
t with a

semiempirical value of fJ = 0.632 [25]. It reaches the value
of unity when passoc

t of the associated particle approaches p
trig
t ,

corresponding to fragmentation outside the medium [see the
dependence of fJ on passoc

t in Eq. (15) below].
To obtain the jet component in Au + Au collisions, we

need the yield of associated particles in a pp collision. In
principle, the yield of associated particles can be obtained
from the description of jets in perturbative QCD such as the
PYTHIA computer program [90,91]. The application of such
a treatment with different available sets of tuned parameters
does not automatically yield a perfect agreement of the theory
with experiment. Additional fine tuning of many PYTHIA

parameters and theoretical options is needed [91]. Even with
the fine-tuning, the agreement of theoretical results with both
the experimental jet spectra and the experimental associated

1The charge fraction (2/3) assumed for a pion system can be
modified for a medium with a more general composition.

particle correlation cannot be obtained simultaneously at the
present time [91].

For our purposes of studying the ridge phenomenon, the
pp associate particle data are only auxiliary quantities that
are needed to calculate the total associated particle yield. One
could in principle make use of the experimental pp data to infer
the jet component of the Au + Au jet component, with the help
of Eq. (3). We shall alternatively represent the experimental
pp data by simple parametrization, which is just a short-hand
way to stand for the experimental pp associated particle data,
for the purpose of assisting later the evaluation of the total
associated particle yield.

The experimental associated particle distribution in pp

collisions can be described well by [25]

dN
pp

jet

ptdptd�ηd�φ
= Njet

exp
{(

m −
√

m2 + p2
t

)/
Tjet

}
Tjet(m + Tjet)

× 1

2πσ 2
φ

e−[(�φ)2+(�η)2]/2σ 2
φ , (4)

where by assumption of hadron-parton duality m is taken as the
pion mass mπ,Njet is the total number of near-side (charged)
associated particles in a pp collision, and Tjet is the jet inverse
slope (“temperature”) parameter of the “pp jet component.”
In our search for parameter values we find that the parameters
Njet and Tjet vary linearly with p

trig
t of the trigger particle which

we describe as2

Njet = Njet0 + dNp
trig
t , (5)

Tjet = Tjet0 + dT p
trig
t . (6)

We also find that the width parameter σφ depends slightly on
pt which we parametrize as

σφ = σφ0
ma√

m2
a + p2

t

. (7)

We summarize the meaning of the parameters introduced to
describe the pp associated particle data in Table I.

Using this set of parameters, we fit the pp associated parti-
cle data obtained in PHENIX measurements for pp collisions
at

√
sNN = 200 GeV. The values of the parameters are given in

2In calculating the Njet and Tjet parameters using Eqs. (5) and (6)
for the interval of p

trig
t = 5–10 GeV, we use 〈ptrig

t 〉 = 5.5 GeV for
this interval as the spectra of trigger particles decrease rapidly with
p

trig
t and the dominant contributions for this interval come between

p
trig
t = 5 and 6 GeV.
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TABLE II. Jet component parameters in Eq. (4) for associated particles with different p
trig
t triggers in pp collisions at√

sNN = 200 GeV.

Hadron trigger p
trig
t STAR PHENIX

4–6 GeV
2–3 GeV 3–4 GeV 4–5 GeV 5–10 GeV

Properties of particles associated Njet 0.75 0.15 + 0.10〈ptrig
t 〉 GeV

with a trigger in pp collisions
Tjet 0.55 GeV 0.19 GeV + 0.06〈ptrig

t 〉
σφ0 0.50
ma 1.1 GeV

Table II. The theoretical results of dN
pp

ch /Ntrig d�φ are given
as dash-dot curves in Fig. 1 and the corresponding experimen-
tal data are represented by open circles. As one observes in
Fig. 1, although the fit is not perfect, the set parameters in
Table II adequately describe the set of pp associated particle
data for 2 < p

trig
t < 10 GeV and for 0.4 < passoc

t < 4 GeV. The
parametrization can be used to generate the jet component for
nucleus-nucleus collisions by assuming that the jet component
yield per trigger in a nucleus-nucleus collision is an attenuated
yield of the corresponding pp collision.

As indicated in Table II, the parameters of Eqs. (5) and (6)
are Njet0 = 0.15, dN = 0.1/GeV, Tjet0 = 0.19 GeV, and dT =
0.06. Thus, particles associated with the pp collisions changes
its properties significantly as p

trig
t changes.

We can compare the parameters obtained here with those
from our previous analysis of the STAR near-side ridge data for

central (0–5%) Au + Au collisions at
√

sNN = 200 GeV with
4 < p

trig
t < 6 GeV. The associated particles in pp collisions

in the STAR measurements can be described by Eq. (4) with
parameters [25]

Njet = 0.67, Tjet = 0.55 GeV,

σφ0 = 0.50 GeV, and ma = 1.1 GeV, (8)

as shown in column 3 of Table II. They are consistent with those
for the PHENIX-associated particle data in pp collisions.

IV. TOTAL YIELD OF ASSOCIATED PARTICLES

The total observed yield of associated particles per trigger
in A + A collisions consists of the sum of the jet and the ridge
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FIG. 1. (Color online) PHENIX az-
imuthal angular distribution of associ-
ated particles per trigger in different
p

trig
t ⊗ passoc

t combinations. The solid and
open circles are the total associated par-
ticle yield per trigger, dNch/Ntrig d�φ,
in central Au + Au and pp collisions,
respectively [14]. The solid, dashed, and
dashed-dot curves are the theoretical total
Au + Au associated particle yields per
trigger, the Au + Au ridge particle yields
per trigger, and the pp associated particle
yields, respectively.
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TABLE III. Physical parameters in Eqs. (2), (3), and (10) in the momentum-kick model and the meaning of each parameter.

Category Physical parameter Meaning

Properties of jet-medium interaction qL Magnitude of momentum kick along the jet direction
per jet-(medium parton) collision

fR〈Nk〉 Centrality-dependent number of kicked partons per trigger
multiplied by the survival factor fR

fJ Ratio of (jet component yield per trigger in A+A collisions)
to (associated jet component in pp collisions)

Properties of medium parton a Falloff parameter of medium parton
momentum distribution in rapidity distribution in the form (1 − x)a

central A + A collisions T “Temperature” of the medium parton pt distribution
md Mass parameter to modify the pt distribution for low pt

components,[
1

Ntrig

dNch

ptdptd�ηd�φ

]AA

total

=
[
fR

2

3
〈Nk〉 dF

ptdpt d�ηd�φ

]AA

ridge

+
[
fJ

dN
pp

jet

ptdptd�ηd�φ

]AA

jet

. (9)

To obtain the associated ridge yield in the first term on
the right hand side of Eq. (9) for A + A collisions, we need
information on the medium parton distribution. We describe
the normalized initial medium parton momentum distribution,
which implicitly includes all possible physical effects, as
represented by [25]

dF

ptidptidyidφi

= Aridge(1 − x)a
e
−
√

m2+p2
t i

/
T√

m2
d + p2

t i

, (10)

where Aridge is a normalization constant defined (and deter-
mined numerically) by

∫
dyidφiptidptiAridge(1 − x)a

exp
{−√

m2 + p2
t i

/
T

}
√

m2
d + p2

t i

= 1,

(11)

x is the light-cone variable

x =
√

m2 + p2
t i

mb

e|yi |−yb , (12)

a is the falloff parameter that specifies the rate of decrease of
the distribution as x approaches unity, yb is the beam parton
rapidity, and mb is the mass of the beam parton. A small value
of a indicates a relatively flat rapidity distribution. In particular,
a boost-invariant rapidity distribution will be characterized by
a = 0. A large value of a � 1 indicates a relatively sharp
falloff rapidity distribution. As x � 1, there is a kinematic
boundary that is a function of yi and pti at x = 1,√

m2 + p2
t i = mbe

yb−|yi |. (13)

We set mb equal to mπ and yb equal to yN , the rapidity of the
beam nucleons in the center-of-mass system.

From the above discussions, we note that the momentum-
kick model physical parameters can be divided into two
categories as given in Table III where the meaning of each
parameter is listed. There are parameters qL, fR〈Nk〉, and
fJ that pertain to the jet-medium interaction. They provide
information on the momentum kick per collision qL along
the jet direction, the number of jet-(medium parton) collisions
〈Nk〉 multiplied by fR , and the ratio fJ of the jet component
in A + A collisions per trigger relative to the jet component in
pp collisions. Finally, there are parameters a, T , and md that
pertains to the properties of the medium at the moments of
jet-(medium parton) collisions. They provide information on
the shape of the early medium parton momentum distribution.
The evaluation of these quantities from fundamental theories
is beyond the scope of the present theoretical development.

In calculating theoretical differential distribution
dNch/Ntrig d�η as a function of �η, we impose the
experimental constraints of η

trig
min � ηtrig � η

trig
max and

ηassoc
min � ηassoc � ηassoc

max that generate various pseudorapidity
differences �η = ηassoc − ηtrig. We add up all yields
dNch/Ntrig d�η of the same �η = ηassoc − ηtrig to get the
uncorrected yield as a function of �η. We assume that the
acceptance is uniform in regions of both ηassoc and ηtrig.
Theoretical acceptance-corrected yield is then equal to the
product of the uncorrected yield and the acceptance correction
factor facc(�η). We can alternatively carry out the acceptance
correction as the uncorrected yield divided by the factor
[1/facc(�η)] arising from a uniformly generated distribution
in ηtrig and ηassoc.

The acceptance correction factor facc(�η) can be obtained
from geometrical considerations by plotting the acceptance
region in the plane of ηassoc and ηtrig and changing the axes
to ηassoc − ηtrig and ηassoc + ηtrig. From the geometrical areas
after the change of axes, the �η acceptance correction factor
is given by

facc(�η)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
η

trig
max−η

trig
min

)
�η−

(
ηassoc

min −η
trig
max

) for ηassoc
min − η

trig
max < �η � ηassoc

min − η
trig
min

1 for ηassoc
min − η

trig
min � �η � ηassoc

max − η
trig
max(

η
trig
max−η

trig
min

)(
ηassoc

max −η
trig
min

)
−�η

for ηassoc
max − η

trig
max � �η < ηassoc

max − η
trig
min.

(14)
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TABLE IV. Jet-medium interaction and medium parton distribution parameters in Eqs. (2) and (10) in the momentum-kick model for
particles associated with a hadron trigger with different p

trig
t in central Au + Au collisions at

√
sNN = 200 GeV.

Centrality STAR 0–5% PHOBOS 0–10% PHENIX 0–20%
4–6 GeV >2.5 GeV

Hadron trigger p
trig
t 2–3 GeV 3–4 GeV 4–5 GeV 5–10 GeV

Momentum kick qL 1.0 GeV 0.80 GeV
Number kicked partons fR〈Nk〉 3.8 3.0

Jet component survival factor fJ 0.632 0.632 for passoc
t < 2 GeV

0.82 for 2 < passoc
t < 3 GeV

1.00 for 3 GeV < passoc
t

Medium parton distribution a 0.5
parameters in central Au + Au Collisions

T 0.5 GeV
md 1.0 GeV

A computer program to carry out the momentum-kick model
analysis outlined above can be obtained from the author on
request.

V. ANALYSIS OF PHENIX RIDGE DATA

In this section, we investigate the PHENIX near-side ridge
data for pp collisions and for the most central (0–20%)
Au + Au collisions at

√
sNN = 200 GeV. The region of ac-

ceptance includes |ηtrig, ηassoc| < 0.35 and many p
trig
t ⊗ passoc

t

combinations [14].
We need to find out how the jet component in Au + Au

collisions is related to the jet component in pp collisions.
Previously, the jet component per trigger in Au + Au collisions
can be considered as an attenuated jet component in pp

collisions with a survival factor fJ ∼ 0.632 [25]. For the
PHENIX experimental data, we find that fJ increases to unity
as passoc

t increases to 3–4 GeV. We can understand this behavior
because the jets with passoc

t > 3–4 GeV are likely to come
from the fragmentation process outside the medium and the
associated particles are likely to be unattenuated. As fJ =
0.632 for passoc

t < 2 GeV and fJ = 1.0 for passoc
t > 3 GeV,

respectively, we can interpolate fJ = 0.82 in the intermediate
region and use an empirical fJ factor that depends on passoc

t ,

fJ

(
passoc

t

) =

⎧⎪⎨
⎪⎩

0.632 for passoc
t < 2 GeV,

0.82 for 2 < passoc
t < 3 GeV,

1.0 for 3 GeV < passoc
t .

(15)

With the knowledge of jet component in Au + Au colli-
sions, we can determine the properties of the medium and the
characteristics of the jet-medium interaction. For the medium
momentum distribution given by Eq. (10), we use the same
shape as that obtained previously in the analysis of the STAR
ridge data [25] with parameters

a = 0.5, T = 0.50 GeV, and md = 1 GeV. (16)

The remaining free parameters are then the magnitude of the
momentum kick qL along the jet direction and the number
of attenuated medium kicked partons fR〈Nk〉. The PHENIX

ridge data are found to be well described (Fig. 1) by

qL = 0.8 GeV and fR〈Nk〉 = 3.0. (17)

We summarize the values of the parameters for the analysis of
the PHENIX ridge data in Table IV. As a comparison, we also
list the values of the parameters used previously in the analysis
of the STAR and PHOBOS ridge data.

In Fig. 1, we show the PHENIX near-side ridge data [14] for
collisions at

√
sNN = 200 GeV and the momentum-kick model

theoretical results. The solid data point are the total associated
particle yield per trigger, dNch/Ntrig d�φ, in central Au + Au
collisions, and the open circles are the associated particle yields
per trigger, dNch/Ntrig d�φ, in pp collisions [14]. Theoretical
results are given as various curves. The solid, dashed, and
dashed-dot curves are the theoretical total Au + Au associated
particle yields per trigger, the Au + Au ridge particle yields
per trigger, and the pp associated particle yields, respectively.
The different subfigures give the yields of associated particles
with different passoc

t , spanning passoc
t from 0.4 GeV up to p

trig
t .

Comparison of the PHENIX near-side data with the results
of the momentum-kick model in Fig. 1 indicates that the
PHENIX ridge data on the near-side for central Au + Au
collisions at

√
sNN = 200 GeV [14] can be well described

by the momentum-kick model.
We can compare the extracted values of physical pa-

rameters of the jet-medium interaction and medium parton
characteristics with those extracted previously from the STAR
data. The centrality region covered by the present PHENIX
measurement [14] extends from 0 to 20%, whereas the STAR
data [1] extends from 0 to 5%. The method of subtracting
the v2 background are also different [43]. The STAR detector
covers |η| < 1 and 0 < φ < 2π ; the PHENIX detector covers
|η| < 0.35 and only about half of the full range of azimuthal
angles. The medium parton parameters a, T , and md are the
same, whereas (qL, fR〈Nk〉) is (1 GeV, 3.8) for the STAR data
and (0.8 GeV, 3.0) for the PHENIX data. The difference in
qL and fR〈Nk〉 may arise from difference in centrality
selections and the methods of processing the data.

From the present study of the PHENIX ridge data in the
region of |η| < 0.35, we can briefly compare the associated
particle yield per trigger of the ridge component and the jet
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component in central Au + Au collisions as a function of
passoc

t . We find from Fig. 1 that the ridge associated particle
yield per trigger is comparable to the jet associated particle
yield for passoc

t
<∼ 2 GeV. Thus, ridge particles show up as an

excess to the jet component in the region of small �η and
�φ ∼ 0 for passoc

t
<∼ 2 GeV. However, for passoc

t > 2–3 GeV,
the jet component dominates over the ridge component.
This variation of the relative strengths of the jet and ridge
components is reproduced well by the momentum-kick model.
The physical reason for the large contribution of the ridge
component around pt ∼ 1 GeV arises from fact that the ridge
momentum distribution is in fact the initial transverse momen-
tum distribution shifted by a momentum of about 1 GeV.

The range of �η examined by the PHENIX Collaboration
is relatively small. A much larger range of �η has been
investigated by the STAR and PHOBOS Collaborations. As
a function of �η, the jet component decreases rapidly away
from the peak at (�φ,�η) ∼ 0, whereas the ridge component
extends to regions of large |�η| and it dominates over the jet
component at |�η|, as observed by the STAR [5] and PHOBOS
Collaborations [17]. This feature in the variation in �η is also
reproduced by the momentum-kick model [25].

As the jet component in Au + Au collisions per trigger
is related to the associated particles in pp collisions, and
the characteristics of the associated particles in pp collision
change significantly as p

trig
t changes, so the jet component per

trigger in the Au + Au collision also changes its properties
significantly as p

trig
t changes. The temperature Tjet and the

number of these associated particles Njet increases linearly
with p

trig
t .

In contrast to the large variation of the properties of the
jet component as a function of p

trig
t , physical parameters

associated with the medium partons appears to be relatively
robust, independent of p

trig
t . The same set of medium property

parameters of a, T , and md apply to the medium parton
momentum distribution for all p

trig
t and passoc

t combinations.
They coincide also with those from STAR and PHOBOS mea-
surements [25]. The robust nature of these physical quantities
enhances their quality as basic properties of the produced
medium. The falloff parameter a = 0.5 for the distribution
(1 − x)a of Eq. (10) reveals that the early medium parton
rapidity distribution is relatively flat but not boost-invariant,
which would correspond to a = 0. The (1 − x)a distribution
with the kinematic limit of x = 1 indicates that the distribution
is in the shape of a rapidity plateau, as shown in Fig. 6(b)
of Ref. [25]. The temperature parameter T = 0.5 GeV shows
that it is a thermal-like distribution with a temperature between
those of a high-pt jet and the bulk matter. The quantity md =
1 GeV indicates a small modification of the thermal distribu-
tion at lower pt .

Similarly, the set of physical parameters that describe the
jet-medium interaction, qL and fR〈NK〉, appear also to be
robust as the same set can describe the ridge component
for all different p

trig
t and passoc

t combinations. The extracted
magnitude of the momentum kick is qL = 0.8 GeV per
jet-(medium parton) collision, and the number of jet-medium
parton collision for the most central collisions multiplied by
the survival factor is 3.

There is, however, a difference of about 20% in the values
of qL and fR〈NK〉 extracted from the PHENIX near-side ridge
data, compared to those extracted from the STAR near-side
ridge data. This difference may reflect the difference in
centrality selection and the degree of uncertainty in processing
the experimental data.

VI. THE NATURE OF THE SCATTERING BETWEEN THE
JET PARTON AND THE MEDIUM PARTON

We have extracted the relevant physical quantities from the
ridge data. We come to the second stage of our analysis to
find out the nature of the collision between the jet parton and
the medium parton. We also wish to correlate the extracted
physical quantities to those in relevant physical phenomena to
see whether they are consistent. We shall discuss the extracted
magnitude of the momentum kick qL in this section, the
extracted shape of the rapidity distribution in Sec. VII, and
the extracted number of kicked partons in Sec. VIII.

The extracted magnitude of the momentum kick qL is the
longitudinal momentum imparted by the jet parton onto the
medium parton per collision, along the jet direction. This
quantity qL is also the longitudinal momentum loss of the
incident jet parton in the parton-parton collision. We find
qL = 0.8 GeV for the present set of PHENIX data with 20%
centralitiy and qL = 1.0 GeV previously for the STAR ridge
data with 0–5% centrality. The average qL value from the two
measurements is qL = 0.9 GeV.

To study the scattering between the jet parton and the
medium parton, we relate the longitudinal momentum loss
qL of the jet to its momentum transfer squared t . The latter
quantity is related to the scattering correlation length a in
an elastic parton-parton collision, for which many pieces of
information have been obtained previously [46,47,50–60].

It is convenient to work in the medium rest frame in
which the average velocity of the medium partons is zero.
We consider the collision of an energetic jet parton a with an
medium parton b at rest, which represents an average parton of
the medium. For simplicity, we specialize to the case in which
all partons have the same rest mass m. The elastic scattering
of the jet parton a with the medium parton b leads to partons
c and d as

a + b → c + d. (18)

The square of the center-of-mass energy of the colliding
partons is

s = (a + b)2 = 2m2 + 2m
√

a2 + m2, (19)

where we have used the same label for a parton and its three-
and four-momentum. In the elastic scattering, the momentum
transfer squared t = (a − c)2 is

t = − 1
2 (s − 4m2)(1 − cos θ∗) (20)

where θ∗ is the scattering angle between c∗ and a∗ and the
superscript ∗ denotes quantities in the (a + b) center-of-mass
system. There is thus a relation between the scattering angle
θ∗ and the momentum transfer t . The maximum and minimum
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values of t are

tmax = 0, for θ∗ = 0,
(21)

tmin = −(s − 4m2), for θ∗ = π.

After the elastic parton-parton scattering, parton a becomes
parton c with the same energy and the magnitude of the three-
momentum,

|c∗| = 1
2

√
s − 4m2. (22)

The longitudinal component of c in the center-of-mass system
is

c∗
z (θ∗) = 1

2

√
s − 4m2 cos θ∗. (23)

Transforming back to the medium rest frame, one obtains the
longitudinal momentum cz of the final parton in the medium
rest frame to be

cz(θ
∗) = γ [c∗

z (θ∗) + βc∗
0], (24)

where the Lorentz transformation factors γ and β are γ =√
s/2m and β =

√
1 − γ −2. The final momentum of cz for the

case of θ∗ = 0 gives the initial longitudinal momentum of the
incident parton az = cz(θ∗ = 0). Therefore, the momentum
loss of the incident jet parton in the medium rest frame is

qL = cz(θ
∗ = 0) − cz(θ

∗) = − t

2m

√
s√

s − 4m2
. (25)

In the elastic parton-parton scattering, the longitudinal
momentum loss qL of the incident jet parton is equal to the
longitudinal momentum gain or momentum kick qL suffered
by the medium parton along the jet direction. Thus, for a given
incident parton with a definite parton-parton center-of-mass√

s, the knowledge of the magnitude of the momentum
kick qL will provide information on the momentum transfer
squared |t |.

In detecting a trigger of energy 4–6 GeV, the incident
jet parton has an energy of order 10 GeV, as the partons
loses about a few GeV in kicking a few medium par-
tons. For this incident parton momentum of order p

jet
t ∼

10 GeV in our present experimental setup,
√

s � m and
qL ∼ |t |/2m, which is independent of the parton energy. For
qL = 0.9 GeV extracted from the momentum-kick model, we
therefore obtain the squared momentum transfer t to have the
magnitude

|t | = 2mqL

√
s − 4m2

√
s

= 0.255 GeV2. (26)

As the longitudinal momentum gained by the medium parton
in the momentum-kick model is an average quantity, the
corresponding t in Eq. (26) should be considered as an average
value 〈|t |〉.

The extracted value of the (average) momentum transfer
squared |t | in the parton-parton collision is small, substantially
less than 1 GeV2. This suggests that the collision process is
nonperturbative. The parton-parton scattering should be more
appropriately described by the exchange of a nonperturbative
pomeron [50–60].

We would like to relate the (average) momentum transfer
squared t to a correlation length a by considering a parton-
parton collision profile function of the form

	(b) = 	0

2πa2
exp

{
− b2

2a2

}
, (27)

where 	0 is the scattering strength parameter. The scattering
amplitude is

f (qt ) = ik

2π

∫
dbeiqt ·b	(b) = ik

2π

	0a
2

2π
exp

{
−a2q2

t

2

}
.

(28)

As q2
t = −t − t2/(s − 4m2) ∼ −t , the elastic parton-parton

scattering differential cross section is

dσ

dt
∼ 	0a

4

8π2
ea2t . (29)

The average value of |t | is therefore

〈|t |〉 =
∫ tmax

tmin

|t |dσ

dt

/∫ tmax

tmin

dσ

dt
∼ 1

a2
, (30)

which allows us to infer the magnitude of the correlation length
a from the average value of momentum transfer squared 〈|t |〉.
From Eqs. (30) and (26), the magnitude of the longitudinal
momentum kick qL extracted from the ridge data corresponds
to a parton-parton scattering correlation length a of

a ∼ 1/
√

〈|t |〉 = 0.39 fm. (31)

Is this correlation length a compatible with measurements
of the same quantity in other descriptions of the parton-
parton elastic collision process? One can consider a model of
hadron-hadron collisions in which the partons of one hadron
collide with partons of the other hadron, as in the Chou-Yang
model [47]. In the original Chou-Yang droplet model [47], the
partons are assumed to be pointlike without any structure of
a correlation length. The Chou-Yang model of the pointlike
parton-parton scattering can be generalized to the case of
partons with a finite correlation length, with the parton-parton
scattering differential cross section assuming the form of
Eq. (29) [46,48,49]. The elastic hadron-hadron elastic differ-
ential cross section in the modified Chou-Yang model then
takes the form [46]

dσhadron−hadron

dt
= AF 2

p (t)F 2
t (t)|Aqq(t)|2, (32)

where A is a normalization factor; Fp(t) and Ft (t) are the
projectile and target hadron form factors, respectively; and
|Aqq(t)|2 is the quark-quark scattering matrix element taken to
have the same functional form as Eq. (29), [46,48,49]

|Aqq(t)|2 = ea2t . (33)

Experimental pp, π+p, and π−p elastic differential cross
sections at 200 GeV can be well described by

a =
{

0.33 fm for pp collisions;

0.25 fm for πp collisions.
(34)
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(see Fig. 14 and Table X of Ref. [46], where the correlation
length a is represented in terms of the “quark radius rq” with
rq = √

2a.)
It is of interest to inquire further whether the correlation

length (31) extracted from the ridge data is compatible with
the correlation length in the nonperturbative description of
the pomeron, for which much progress has been made in
recent years. The slow rise of the total hadron-hadron cross
sections with increasing energy as (

√
s)0.0808 in high-energy

hadron-hadron collisions suggests that the scattering process
is dominated by the exchange of a pomeron whose quantum
numbers are those of the vacuum [59,60,64]. The approximate
validity of the additive quark model, where the cross section
is proportional to the valence quark number, suggests that the
exchange of the pomeron takes place as the exchange between
single quark partons.

In QCD, it is natural to assume that the exchange of
the pomeron between constituent quark partons is just the
exchange of a cluster of two or more gluons to get the correct
quantum number of the vacuum [92–94]. In perturbative QCD,
the perturbative exchange of two gluons between quark partons
leads to a singularity of the elastic hadron-hadron scattering
amplitude at t = 0, and it does not reproduce the experimental
t dependence. The experimental differential cross section,
dσhadron−hadron/dt corresponds more properly to the hadron
form factors, as in Eq. (32), with the cluster of exchanged
gluons coupled to a single quark. It is more appropriate to
describe the exchange of the pomeron to be a nonperturbative
process and take into account nonperturbative properties of the
QCD vacuum.

The nonperturbative QCD vacuum can be described as
consisting of a gluon condensate of a color field strength
characterized by [95]〈

g2FC
µν(0)FC,µν(0)

〉
A

= M4
c , (35)

where the expectation value is taken with respect to the
nonperturbative vacuum and Mc = (0.9 ± 0.1 GeV) [96]. For
the description of the pomeron in the scattering process,
Landshoff and Nachtmann [50,51] generalized the concept
of the gluon condensate to the case of a gluon condensate with
a finite correlation length a associated with each colliding
parton, 〈

g2FC
µν(x)FC,µν(y)

〉
A

= M4
c f ((x − y)2/a2), (36)

where x − y is spacelike with (x − y)2 < 0. From hadron
spectroscopy and the total cross section at high energies, the
correlation length was estimated to be [51,53]

a ≈ 0.4 fm. (37)

A parton-parton scattering is then described as taking place by
the scattering of the parton on the condensate that is associated
with the collided partons, as in potential scattering.

The concept of correlators with a correlation length was
further developed in QCD in the model of stochastic vacuum
(MSV) [52]. In this model, the gluon condensate correlator is
assumed to be described by invariant functions D and D1 that
are normalized to D(0) = D1(0) = 1. They are given explicitly
in Refs. [54,56] and they fall off rapidly on a scale of the

TABLE V. Comparison of the correlation length a obtained from
various considerations.

Source Correlation References
length a (fm)

Momentum-kick model 0.39 Present investigation
Small |t | hadron-hadron dσ/dt 0.33 (pp) [46]
in modified Chou-Yang Model 0.25 (πp) [46]
Hadron spectroscopy & σtot ≈0.40 [51,53]
in stochastic vacuum model
Small |t | hadron-hadron dσ/dt 0.32 [56]
in stochastic vacuum model
Gluon correlators 0.22–0.48 [58]
in lattice gauge calculations

correlation length a. The correlators are separated into a part
of strength κ that is non-Abelian and a part of strength (1 − κ)
that is Abelian [54,55],〈
g2FC

µν(x)FD
ρσ (y)

〉
= δCD π2G2

6

{
κ(δµρδνσ − δµσ δνρ)D

[
(x − y)2

a2

]

+ (1 − κ)
1

2

[
∂

∂zµ

(zρδνσ − zσ δνρ) + ∂

∂zν

(zσ δνρ − zρδνσ )

]

×D1

[
(x − y)2

a2

]
, (38)

where C and D are color indices and π2G2/6 = M4
c . Dif-

ferential hadron-hadron cross sections for high-energy elastic
scattering have been analyzed and the experimental data can
be described well by using a condensate correlator with
parameters [56]

a = 0.32 fm,

κ = 0.74, (39)

and G2 = (0.529 GeV)4.

The properties of the gluon condensate can be further ex-
amined by lattice gauge calculations. The correlation length
parameter a, the non-Abelian parameter κ , and the gluon
condensate strength G2 in Eq. (39) obtained in quenched lattice
calculations [57,58] are compatible with those obtained in
hadron-hadron differential cross sections [56].

We can summarize the values of the correlation length a

in a parton-parton collision from different investigations in
Table V.

It is gratifying that the correlation length estimated from
the ridge data, a = 0.39 in Eq. (31), is compatible with
the value of a = 0.25–0.33 fm in Eq. (34), obtained in a
hadron-hadron elastic scattering in the modified Chou-Yang
model [46]; the value of a ≈ 0.4 fm in Eq. (37), obtained
from hadron spectroscopy and total cross sections in the
model of stochastic vacuum [53]; the value of a = 0.32 fm in
Eq. (39), obtained in the nonperturbative pomeron description
in the model of stochastic vacuum [56]; and the value of
a = 0.22–0.48 fm obtained in lattice gauge calculations [58].
The approximate agreement of the correlation length extracted
in the momentum-kick model (31) with many previous results
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supports the approximate validity of the magnitude of the
momentum kick qL in the present analysis.

Because of the small value of |t | < 1 GeV and the compat-
ibility of of the correlation length a with previous description
of the nonperturbative pomeron, we conclude that the parton-
parton scattering between the jet parton and the medium parton
arises from the exchange of a nonperturbative pomeron, in
the momentum range of p

trig
t < 10 GeV considered in the

near-side ridge measurements. Our ability to ascertain the
nature of the parton-parton scattering will help us select
the proper description to formulate the process of energy loss
for these jet partons.

VII. THE OCCURRENCE OF THE RAPIDITY PLATEAU

The initial momentum distribution of the medium partons in
Eq. (10), (1 − x)a exp{−

√
m2 + p2

t /T }/
√
m2

d + p2
t , gives an

early parton momentum distribution that has three prominent
features. First, it has a thermal-like transverse distribution
whose characteristic slope parameter T is between those of
the jet and the bulk inclusive matter. Second, the rapidity
distribution is relatively flat around y ∼ 0. Third, the rapidity
distribution is quite extended, reaching out to large rapidities.

Questions may be raised with regard to the occurrence of
the rapidity plateau in the early parton momentum distribution.
One immediate question is whether such a plateau structure
also occurs in the distribution of produced particles in related
phenomena. Theoretically, the rapidity plateau occurs in
elementary processes involving the fragmentation of flux tubes
[62–64] and in many particle production models such as mod-
els based on preconfinement [65], parton-hadron duality [66]
cluster fragmentation [67], string-fragmentation [68], dual-
partons [69], the Venus model [70], the RQMD model [71],
multiple collision model [72], parton cascade model [73,74],
color-glass condensate model [75], the AMPT model [76],
the Lexus model [77], and many other models. To investigate
the origin of the rapidity plateau in a quantum mechanical
framework, we can go a step further to use the physical
argument of transverse confinement to establish a connection
between QCD and QED2 [25,26]. One finds that a rapidity
plateau of produced particles is a natural occurrence when
color charges pull away from each other at high energies
[61–64] as in QED2 [78–81]. Experimental evidence for a
plateau in rapidity distributions along the sphericity axis or
the thrust axis has been observed earlier in π± production in
high-energy e± annihilation [82–86] and in pp collisions at
Relativistic Heavy Ion Collider (RHIC) energies [87].

To gain a new insight into the rapidity plateau structure
of the early partons, it is of interest to compare the shape
of the rapidity distribution of the early partons extracted in
the momentum-kick model with those from pp and central
Au + Au collisions at the same energy,

√
sNN = 200 GeV.

We plot in Fig. 2 these rapidity distributions normalized to the
rapidity at y = 0, after integrating over the pt distributions.
The data points are from the BRAHMS Collaboration [87] and
the solid curve is dN/dy extracted from the momentum-kick
model as given by Eq. (10). One observes that the rapidity
distributions for pp collisions have the greatest plateau width
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y
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1

dN
/d

y 

π+
 in pp

π-
  in pp

early parton 
π  in AuAu

BRAHMS Preliminary Data

dN/dy normalized to 1 at y=0

FIG. 2. (Color online) The data points are the pion rapidity
distributions for pp and Au + Au collisions from the BRAHMS
Collaboration. The solid curve is the early parton momentum
rapidity distribution extracted from the ridge data associated with the
near-side jet.

in y, while the early parton rapidity distribution has a slightly
narrower plateau width and is in between those of the pp

and Au + Au central collisions. This is consistent with the
evolution of the partons from a pp-like distribution to the early
parton distribution and eventually to the inclusive nucleus-
nucleus rapidity distribution that is closer to a Gaussian
shape than a plateau shape. The comparison indicates that the
rapidity distribution extracted here during the early moments
of jet-medium interactions is at an intermediate stage in the
dynamical evolution process. Such a viewpoint is further
supported by the observation that the pt slope parameter of
the early partons (the ridge particles) is in between those of
the jet and the inclusive central Au + Au distributions [3].

VIII. THE CENTRALITY DEPENDENCE OF
THE RIDGE YIELD

The momentum-kick model also provides information on
the number of attenuated kicked partons, fR〈Nk〉, for the
most central collisions. It is of interest to examine whether
these number of kick partons in the most central collision is
consistent with the centrality dependence of the ridge yield.
One can follow the trajectory of the jet, using the extracted
number of kicked partons as a normalization for the most
central collision and infer the ridge yield as a function of the
centrality, to investigate whether the momentum-kick model
can also describe the ridge yield at other centralities.

As the centrality dependence of the ridge yield has not been
investigated in connection with the PHENIX ridge data of
Ref. [14], we shall use the STAR centrality data [3] to discuss
the centrality dependence. We review here the description of
the centrality dependence in the momentum-kick model. We
wish to show here that the extracted number of partons kicked
by the jet is also consistent with other related phenomenon.

The momentum-kick model separates the ridge yield into
a geometrical factor part that depends on the average number
of kicked partons 2fR〈Nk〉/3 and another factor of differential
distribution EdF/dp in Eq. (2). The quantity 〈Nk〉 depends
on the centrality.
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We consider a jet source point at b0, from which a
midrapidity jet parton originates. The number of jet-(medium
parton) collisions along the jet trajectory, which makes an
angle φs with respect to the reaction plane, is [25]

Nk(b0, φs) =
∫ ∞

0
σdl

dNparton

dV
[b′(b0, φs)], (40)

where 0 < l < ∞ parametrizes the jet trajectory, σ is the jet-
(medium parton) scattering cross section, and dNparton(b′)/dV

is the parton density of the medium at b′ along the trajectory l.
Jet-(medium parton) collisions take place along different

parts of the trajectory at different l and involve the medium
at different stages of the expansion. They depend on the
space-time dynamics of the jet and the medium. Assuming
hydrodynamical expansion of the fluid in both the longitudinal
and transverse directions and focusing our attention on
midrapidity, we can determined the distribution of the number
of jet-(medium parton) collisions P (N ) as a function of the
transverse jet source point coordinate b0 and the azimuthal
angle φs [25]. We need to weight the number of kicked
medium particles by the local binary collision number element
db0 × dNbin/db0. The normalized probability distribution
P (N,φs) with respect to the number of ridge particles [or
jet-(medium parton) collisions] is

P (N,φs) = 1

Nbin

∫
db0

dNbin

db0
(b0)δ [N − Nk(b0, φs)] .

(41)

Thus, the number of ridge particle yield per trigger particle [or
the number of jet-(medium parton) collisions per trigger] at an
azimuthal angle φs , averaged over all source points of binary
collisions at all b0 points, is [25]

N̄k(φs) =
∫

NP (N,φs)e
−ζNdN

/ ∫
P (N,φs)e

−ζNdN,

(42)

where ζ is the exponential index in the ratio of the fragmen-
tation function after N jet-(medium parton) collisions relative
to the fragmentation function before any collision,

e−ζN = D(ptrig, pj − ∑N
n qn − �r )

D(ptrig, pj )
. (43)

where qn is the momentum loss at the nth jet-(medium
parton) collision and �r is the momentum loss owing to gluon
radiation. From these equations, we get the ridge yield N̄k(φs)
per trigger as

N̄k(φs) = 1

Nbin

∫
db0Nk(b0, φs)e

−ζNk

× dNbin

db0

/
1

Nbin

∫
db0e

−ζNk
dNbin

db0
. (44)

We get the jet quenching measure [25]

RAA(φs) = Ntrig

Nbin
=

∫
P (N,φs)e

−ζNdN

=
Nmax∑
N=0

P (N,φs)e
−ζN , (45)
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FIG. 3. The total yield of charged ridge particles per parton
(hadron) jet (a), and per photon jet (b), as a function of the number
of participants. In Fig. 3(a), the data points are from Ref. [3].

which can also be obtained as

RAA(φs) = 1

Nbin

∫
db0 exp{−ζNk(b0, φs)}dNbin

db0
. (46)

After N̄k(φs) and RAA(φs) have been evaluated, we can average
over all azimuthal angles φs and obtain the ridge particles [or
jet-(medium parton) collisions] per trigger

〈Nk〉 =
∫ π/2

0
dφsN̄k(φs)/(π/2), (47)

and

〈RAA〉 =
∫ π/2

0
dφsRAA(φs)/(π/2), (48)

which is usually expressed just as RAA.
In our previous analysis of the STAR ridge yield and

jet quenching, we find that assuming fR = fJ = 0.632, the
experimental data of the centrality dependence of RAA and the
centrality dependence of the ridge yield using hadron trigger
can be explained well when we use [25]

ζ = 0.20 and σ = 1.4 mb. (49)

The STAR data of ridge yield per trigger as a function of
the number of participants are shown in Fig. 3(a) and are
compared with the momentum-kick model results [25], for the
acceptance of the STAR Collaboration in Ref. [3]. Figure 3(a)
shows that the number of kicked partons extracted from the
most central collision lead us to a consistent description of the
centrality dependence of the ridge yield, an attenuation index ξ

that is consistent with the fragmentation and energy loss [25],
and a cross section of 1.4 mb. Note that such a cross section is
slightly smaller but is of the same order of magnitude, as πa2
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of the correlation length extracted from the momentum-kick
model in Eq. (31). As the total elastic-scattering cross section
is a product of the geometrical cross section and the strength
of the potential inside the correlated region [Eq. (116) of
Ref. [97]], the difference of the cross section in Eq. (49)
and πa2 may provide information on the depth of the
nonperturbative potential relative to which the parton scatters.

IX. RIDGE PARTICLE YIELD FROM A PHOTON JET

One can consider experiments with two transverse jets in
which one of the two jets is a photon jet on the near side
while the other jet is a strongly interacting parton on the away
side. The use of a near-side photon jet allows one to probe
the origin of the ridge particles as we discussed in Sec. I [89].
If the ridge arises from the medium as a result of the collision
of the near-side jet, as in the momentum-kick model, the
substitution of a photon jet for a hadron jet will lead to a
greatly reduced yield of the ridge particles. However, if the
ridge particles arise from “several extra particles deposited by
forward-backward beam jets into the fireball” [27] or from the
backsplash model [33], then the ridge particles yield will not
be significantly reduced.

We can make a quantitative estimate of the ridge yield in
the momentum-kick model for a photon jet that arises from
hard scattering. The number of ridge particles depends on the
jet-(medium parton) cross section and the attenuation index
ζ . For the high-pt photon jet, the photon jet-(medium parton)
cross section is

σ (photon − parton) =
(

αe

αs

)2

σ (parton − parton), (50)

where αe = 1/137 is the fine-structure constant. We can take
αs = 0.2 as the strong-interaction coupling constant. With
σ (parton − parton) ∼ 1.4 mb as given by Eq. (49), we can
estimate

σ (photon − parton) = 1.86 µb. (51)

As the average number of collisions is much less than 1, we
can take ζ = 0 in Eq. (44) without much error. One finds that
the ridge yield per photon trigger is then

〈Nk〉 = 1

Nbin

∫
dφs

(π/2)
db0Nk(b0, φs)

dNbin

db0
. (52)

We can evaluate Nk(b0,φs) by using Eq. (40) and the photon-
(medium parton) cross section of Eq. (51) and obtain the total
number of ridge particle yield per photon jet as a function of
the participant number shown in Fig. 3(b), for the acceptance
region as in Ref. [3]. The yield for the photon jet is about 0.002
per photon jet for the most central Au + Au collision, which
is small indeed. For all practical purposes, a high-pt photon
jet does not lead to significant production of ridge particles in
the momentum-kick model.

X. CONCLUSION AND DISCUSSIONS

Using the momentum-kick model, we examine the
PHENIX near-side ridge particle data for central Au + Au
collisions at

√
sNN = 200 GeV that cover the range of

pseudorapidity, |η| < 0.35, and a large number of p
trig
t ⊗ passoc

t

combinations. We find that the PHENIX data can be described
by the momentum-kick model.

With the successful analysis of the ridge data from STAR,
PHOBOS, and PHENIX Collaborations, it is of great interest
to find out whether the extracted physical quantities are
compatible with those in other relevant physical phenomena.
The most important quantity extracted is the (average) mag-
nitude of the longitudinal momentum kick qL along the jet
direction imparted on the medium parton by the jet parton
in a parton-parton collision. We find that such a quantity is
related to the momentum transfer squared t of the incident jet
parton. The magnitude of |t | is less than 1 GeV2, indicating
that the scattering is within the realm of nonperturbative QCD.
The scattering of the jet parton and a medium parton is
characterized by a correlation length of a = 0.39 fm.

On the theoretical side, the correlation length a in parton-
parton scattering has been previously obtained in many
previous analyses of hadron-hadron elastic differential cross
sections and the model the nonperturbative pomeron. The
modified Chou-Yang model [46], the model of the nonper-
turbative pomeron in terms of the stochastic vacuum [56], and
lattice gauge calculations of the gluon condensate correlator
in Refs. [56,58] give a correlation lengths in the range
0.25–0.37 fm, compatible with the magnitude of the cor-
relation length extracted in the momentum-kick model. It
is reasonable to conclude that the parton-parton scattering
between the jet parton and the medium parton arises from
the exchange of a nonperturbative pomeron.

It should be emphasized that our ability to ascertain
the nonperturbative nature of the parton-parton scattering is
important in helping us select the proper description for the
dynamics of the interaction of the jet and the medium. For
jet partons in the momentum range of p

jet
t < 10 GeV as

considered in measurements involving associated particles,
a plausible description needs to include the nonperturbative
aspects of the scattering between the jet parton and the medium
parton, if one wishes to describe the jet momentum loss and
the scattered medium partons properly.

We can examine further the shape of the rapidity plateau
in the early parton momentum distribution obtained here. The
presence of a rapidity plateau in early history of a central
nucleus-nucleus collision as inferred from the momentum-kick
model is not a surprising result, as the rapidity plateau structure
occurs in elementary process involving the fragmentation of
flux tubes [61–64,68] and in many particle production models
[65–77]. Experimental evidence for a plateau in rapidity
distributions has been observed earlier in π± production in
high-energy e+-e− annihilation [82–86] and in pp collisions
at RHIC energies [87]. A comparison of the plateau structure
of pp, central Au + Au, and early parton distributions in Fig. 2
places rapidity distribution extracted here as an intermediate
stage of the dynamical evolution process, just as indicated by
the intermediate value of the inverse slope of the ridge particles
between those of the jet and the inclusive particles.

The number of kicked partons extracted here also provide
the proper normalization to explore the centrality dependence
of the ridge yield, whereas the attenuation index ξ is
compatible with the estimates from fragmentation process of
the jet parton.
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It is of interest to propose the use of high-pt photon
jets to examine the associated particles. In the momentum-
kick model, the collision of a high-pt hadron jet with the
medium partons lead to the recoil of the medium partons that
subsequently materialize as ridge particles. However, for a
high-pt photon jet the photon-(medium parton) cross section is
greatly reduced, leading to a much smaller number of produced
ridge particles. Thus, a photon jet on the near-side will lead
to a very small yield of ridge particles. Such a feature may be
used to discriminate among different models.

In summary, we have analyzed PHENIX near-side ridge
data for central Au + Au collisions at

√
sNN = 200 GeV. We

found that the data can be described well by the momentum-
kick model and the extracted physical quantities provide
useful information on the nucleus-nucleus collision process.
Specifically, the scattering between the jet parton and the
medium parton arises from the exchange of a nonperturbative
pomeron for p

jet
t < 10 GeV. This, however, is only the first two

step in the theoretical analysis. The final third step consists of

the construction of theoretical models that can explain these
physical quantities. Another step is to connect the observed
physical quantities to other observables such as the momentum
distribution of the bulk matter at subsequent stages of the
nucleus-nucleus collision. The momentum-kick model can be
further improved with additional inclusion of other effects such
as the collective flow, a better description of the elementary
jet-(medium parton) collision processes, and perhaps a better
Monte Carlo tracking of the jet trajectory and kicked partons.
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