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We investigate an approximation to early dynamics in relativistic heavy-ion collisions, where after formation
the partons are free streaming and around the proper time of 1 fm/c undergo a sudden equilibration described in
terms of the Landau matching condition. We discuss physical and formal aspects of this approach. In particular,
we show that initial azimuthally asymmetric transverse flow develops for noncentral collisions as a consequence
of the sudden equilibration. Moreover, the energy-momentum tensor from the free-streaming stage matches
very smoothly to the form used in the transverse hydrodynamics, whereas matching to isotropic hydrodynamics
requires a more pronounced change in the energy-momentum tensor. After the hydrodynamic phase statistical
hadronization is carried out with the help of THERMINATOR. The physical results for the transverse-momentum
spectra, the elliptic-flow, and the Hanbury-Brown–Twiss correlation radii, including the ratio Rout/Rside as well
as the dependence of the radii on the azimuthal angle (azHBT), are properly described within our approach. The
agreement is equally good for a purely hydrodynamic evolution started at an early proper time of 0.25 fm/c,
or for the free streaming started at that time, followed by the sudden equilibration at τ ∼ 1 fm/c and then by
perfect hydrodynamics. Thus, the inclusion of free streaming allows us to delay the start of hydrodynamics to
more realistic times of the order of 1 fm/c.
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I. INTRODUCTION

The heavy-ion data collected in the experiments at the
Relativistic Heavy Ion Collider (RHIC) suggest that the matter
produced in relativistic heavy-ion collisions equilibrates very
fast (presumably within a fraction of 1 fm/c) and its subsequent
behavior is very well described by the dynamics of a perfect
fluid [1–8]. The most common explanation of these features
is the assumption that the formed matter is a strongly coupled
quark-gluon plasma (sQGP) [9]. Another popular explanation
assumes that the plasma is weakly interacting; however, the
plasma instabilities lead to a fast isotropization of matter,
which in turn helps to achieve equilibration [10]. In this
scenario one argues that hydrodynamics is applicable already
at the time when the system is isotropic but not necessarily
equilibrated [11]. Yet another explanation is based on the
fully 3 + 1 dimensional parton cascade that includes inelastic
pQCD-based bremsstrahlung and its back reaction [12,13].

Differences in various theoretical approaches to the early-
stage dynamics reflect our lack of precise knowledge con-
cerning the mechanism of particle production and their
early evolution. Moreover, our recent calculation reproduc-
ing consistently and uniformly the hadronic spectra, the
elliptic flow, and the Hanbury-Brown–Twiss (HBT) correlation
radii [14] stresses the importance of the detailed shape of the
initial condition from which hydrodynamics starts. Hence, the
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uncertainty concerning the dynamics seems to be intertwined
with the uncertainty concerning the initial conditions. Clearly,
both the early dynamics and the initial conditions should be
eventually obtained from the early microscopic dynamics, such
as, e.g., the color glass condensate (CGC) theory [15–17]. In
practice, however, the modeling of the partonic stage at the
required precision is a very difficult task.

The partons produced in the earliest stage have mainly
longitudinal momenta, hence some time is needed to gen-
erate the transverse pressure. The phenomenon of building
the transverse momenta is naturally described in the CGC
framework [18]. In can also be achieved when the partons are
produced from the initial classical color fields [19–22].

The concept of early thermalization is especially intriguing.
The issue is complicated, as it is difficult to assess if the
initial gluon system, which is born very far from equilibrium,
has enough time to equilibrate before falling apart due to
expansion. In some cases, to obtain a consistent description
of the particle spectra and femtoscopy, the hydrodynamic
model requires the initialization time as short as 0.1 fm/c [23].
The commonly used argument for the early thermalization
phenomenon is that the spatial eccentricity, resulting from the
spatial transverse asymmetry of the colliding nuclei at nonzero
impact parameters and driving the formation of the elliptic
flow, decreases with time, hence, the experimentally observed
large values of v2 require an early onset of hydrodynamics
and, consequently, an equilibrated state. In this article we
carefully re-examine this point of view. We investigate in detail
an approximation to the early-stage dynamics in relativistic
heavy-ion collisions consisting of the free streaming (FS) of
partons followed by a sudden equilibration (SE) to a thermal-
ized phase, which subsequently undergoes a hydrodynamic
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evolution. The free streaming of partons has been frequently
considered in the modeling of the early stages of the nu-
clear high-energy collisions in the context of equilibration
(see, e.g., Refs. [10,24–29] and references therein). The
FS + SE approximation has been proposed by Kolb, Soll-
frank, and Heinz [28]. It has been further considered in
an investigation of the isotropization problem by Jas and
Mrowczynski [30], as well as elaborated in the context of the
early development of flow by Sinyukov, Gyulassy, Karpenko,
and Nazarenko [31–33].

The FS + SE approach assumes that after the formation
stage the partons are first free streaming and later, around
the proper time of 1 fm/c, undergo a sudden equilibration
described in terms of the Landau matching condition. We
discuss the physical and formal aspects of this approach,
which is the basic goal of this work. In particular, we
show that for noncentral collisions, where the system de-
velops spatial azimuthal anisotropy, an initial azimuthally
asymmetric transverse flow develops as a consequence of
FS + SE. Moreover, we show that the energy-momentum
tensor obtained from the free-streaming stage matches very
smoothly to the form needed for the transverse hydrodynamics,
where the longitudinal pressure vanishes [34]. The inclusion
of the partonic free streaming starting at the proper time of
about 0.25 fm/c followed by the sudden equilibration allows
us to delay the start of hydrodynamics to comfortable times
of the order of 1 fm/c. In the calcultations presented in
this article we use the isotropic perfect hydrodynamics, as
described in Ref. [14]. After the hydrodynamic phase the
statistical hadronization [35,36] is carried out with the help
of THERMINATOR [37]. The obtained physical results for the
transverse-momentum spectra, the elliptic flow, and the HBT
correlation radii, including the ratio Rout/Rside as well as the
dependence of the radii on the azimuthal angle (azHBT) [38],
are all properly described within our approach. Thus, the
approach consisting of FS + SE followed by hydrodynamics
from τ = 1 fm/c may be used to obtain the uniform description
of the soft hadronic data in a very similar way as in Ref. [14],
where the hydrodynamic evolution starts right away at the
early proper time of τ0 = 0.25 fm/c and no free streaming is
present.

The outline of the article is as follows: In the next section
we introduce the basic concepts, the physical interpretation,
and the kinematics of the FS + SE approach. In Sec. III the
structure of the energy-momentum tensor of free-streaming
particles is analyzed in detail to show how the asymmetric
flow is generated in this framework. The Landau matching
condition is worked out in Sec. IV, while the physical results
obtained with the hydrodynamic and statistical-hadronization
codes are presented in Sec. V. We conclude in Sec. VI.
Throughout the article we use the units where c = h̄ = 1.

II. FREE STREAMING FOLLOWED BY SUDDEN
EQUILIBRATION

A. Basic idea

The basic idea to idealize the early stage of evolution
of a system formed in heavy-ion collisions by a stage of

collisionless partonic FS followed by SE, and then by hydro-
dynamics, has been proposed by Kolb, Sollfrank, and Heinz
[28] several years ago in the context of the development of
azimuthally asymmetric flow. We visualize this approximation
in Fig. 1. The approach assumes a sudden but delayed
transition from a nonequilibrium initial state, consisting of
free-streaming partons, to a fully thermalized fluid. Since
then it has been generally thought that the approach, which
admittedly decreases the spatial asymmetry with time, leads
automatically to a reduction of the elliptic flow, which
hydrodymically develops from the azimuthal asymmetry of
the density profile. However, the mechanism is subtle. While
free streaming itself cannot generate azimuthal asymmetry
in the momentum distribution, according to the common
knowledge that interactions among produced particles are
needed to achieve this goal, the sudden equilibration preceded
by FS is in fact capable of developing azimuthally asymmetric
flow. The point is that SE is a dynamical act, where the
energy-momentum tensor of the system changes abruptly into
a diagonal form (in the reference frame comoving with the
fluid element). That way space-flow velocity correlations are
induced, which results in a collective elliptic flow, further
enhanced by the subsequent hydrodynamic evolution. We
discuss this crucial issue in a greater detail in the proceeding
sections, where we are equipped with the necessary formalism,
in particular in Sec. IV A.

At this point we wish to provide only a qualitative argument
for the development of flow in the FS + SE approach. Consider
an infinite slab shown in the left part of Fig. 2, which
emits particles isotropically from sources denoted by dots.
After some time particles reach the volume element indicated
by a box. For symmetry reasons their average velocity,
indicated by arrows, is perpendicular to the surface of the
slab. Now, matching to perfect hydrodynamics means that
we are going to treat the fluid element collectively. In other
words, one may imagine that the particles glue together
and move collectively in the direction perpendicular to the
slab. That way a correlation of position and flow velocity is
generated. In a more realistic situation of the right-hand side
of Fig. 2 one starts from an ellipsoidal distribution of sources.
In that case one gets a larger flow along the direction of
the shorter half-axis. A quantitative calculation is presented
in the following sections. The point we wish to make here is
the geometric origin of the azimuthally asymmetric flow in
the FS + SE approximation, which reflects the original spatial

FIG. 1. (Color online) Schematic history of a system formed at
midrapidity in relativistic heavy-ion collisions, consisting of partonic
free streaming, equilibration, hydrodynamics, freeze-out, and free
streaming of hadrons to detectors. In the top panel the equilibration as
well as freeze-out occur gradually, while in the approximate scheme
depicted in the lower panel they occur suddenly.
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FIG. 2. (Color online) Schematic view of the development of
azimuthally asymmetric flow from azimuthally asymmetric systems
in the FS + SE approach. Arrows next to volume elements indicate
the collective flow velocity.

asymmetry. As a result, for noncentral collisions the starting
condition of hydrodynamics, when delayed with FS + SE,
includes the azimuthally asymmetric initial flow velocity.

We remark that the inclusion of the nonzero transverse flow
at the starting point of hydrodynamics is one of the possible
ways to solve the RHIC HBT puzzle. This idea was first put
forward in Ref. [39] in the context of the thermal (hydro-
inspired) models. Then it was discussed in Refs. [32,33]. Quite
recently, the importance of the initial flow has been strongly
emphasized in Refs. [23,40].

B. Physical interpretation

The inclusion of free streaming in the modeling of the
early stages of the relativistic heavy-ion collisions (see
Refs. [10,24–29] and references therein) is based on the
phenomenon of asymptotic freedom. Densely packed high-
momentum partons may be treated as free. However, as the
system gets more dilute, the average distance between partons
grows, and as a result the strong coupling constant between
colored objects increases. These confinement effects would
make the partons in the system more likely to interact as the
time goes on, which changes the weakly interacting collection
of partons to a strongly coupled system. This asymptotic
freedom-confinement mechanism qualitatively resolves the
apparent paradox that a system that with time gets more
dilute becomes more and more likely to interact. Thus a
simple interpretation of the FS + SE approach is to simply
view it as an approximation to viscous hydrodynamics.
Indeed, instead of considering a complicated viscous system
far from equilibrium, where microscopically the scattering
cross section of partons has a finite value, one employs an
idealization, where initially the partons are free, and later
develop an infinite cross section, which results in a sudden
equilibration of the system. Certainly, the approach may work
when viscosity decreases with time, or equivalently, the cross
section increases.

C. Kinematics

Massless partons are formed at the initial proper time τ0 =√
t2
0 − z2

0 and move along straight lines at the speed of light
until the proper time when free streaming ends, τ = √

t2 − z2

(cf. Fig 3). We introduce the space-time rapidities η0 =
1
2 log t0−z0

t0+z0
and η = 1

2 log t−z
t+z

. Elementary kinematics, follow-
ing simply from the fact that the particles move along straight
lines with the velocity of light, links the positions of a parton
on the initial and final hypersurfaces and its four-momentum
pµ = (pT coshY, pT cos φ, pT sin φ, pT sinhY ), where Y and
pT are the parton’s rapidity and transverse momentum. We
find

τ sinh(η − Y ) = τ0sinh(η0 − Y ),

x = x0 + d cos φ, y = y0 + d sin φ,

d = t − t0

coshY

= τcosh(Y − η) −
√

τ 2
0 + τ 2sinh2(Y − η).

(1)

The same equations are derived in Ref. [31] through the use
of the collisionless Boltzmann equation. Due to Eqs. (1) the
phase-space densities of partons at the proper times τ0 and τ

are related,

d6N (τ )

dYd2pT dηdxdy
=

∫
dη0dx0dy0

d6N (τ0)

dYd2pT dη0dx0dy0

× δ

(
η0− Y −arcsinh

[
τ

τ0
sinh(η−Y )

])

× δ(x−x0−d cos φ)δ(y−y0−d sin φ).

(2)

D. Narrowing of the rapidity distribution with time

It is reasonable to assume for simplicity a factorized boost-
invariant form of the initial distribution of partons,

d6N (τ0)

dYd2pT dη0dx0dy0
= n(x0, y0)F (Y − η0, pT ), (3)

τ

τ0

− 2 − 1 0 1 2
z [fm]

0.5

1.0

1.5

t [fm]

FIG. 3. (Color online) Straight-line trajectory of the parton from
the proper time τ0 to the SE time τ .
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a=0.5

τ/τ0=1,2,4,10,40

− 2 − 1 1 2
Y−η

0.2

0.4

0.6

0.8

1.0

F(Y−η)

FIG. 4. (Color online) The sharpening with time of the rapidity
distribution of partons emitted at the space-time rapidity η0, resulting
from the free-streaming kinematics. The plotted functions are nor-
malized to unity at the origin. At large proper times τ the distribution
approaches δ(Y − η).

where n is their density in the transverse plane. Below we will
apply the profile obtained from the Glauber model as given by
GLISSANDO [41], as well as a simple Gaussian profile

n(x0, y0) = exp

(
− x2

0

2a2
− y2

0

2b2

)
, (4)

where a and b depend on the centrality (impact parameter) of
the collision.

When the emission profile F is focused near Y = η0, for
instance,

F ∼ exp[−(Y − η0)2/(2a2)], (5)

with the rapidity width parameter a ∼ 1, then the kinematic
condition (1) transforms it into a function of Y − η,

F ∼ exp

{
−arcsinh2

[
τ

τ0
sin(Y − η)

]/
(2a2)

}
. (6)

As the ratio τ/τ0 increases, the distribution (6) becomes more
and more peaked, as shown in Fig. 4. At large values of τ/τ0

the rapidity distribution is so sharply peaked around Y = η

that effectively

F ∼ δ(Y − η). (7)

We note that this form is frequently assumed right away as an
initial condition for subsequent evolution of the system. Here
it effectively follows from the kinematics of free streaming
and becomes better and better as τ increases.

With the form (7) Eq. (2) yields

d6N (τ )

dYd2pT dηdxdy
= n(x − �τ cos φ, y − �τ sin φ)

× δ(Y − η)f (pT ). (8)

where �τ = τ − τ0 and f (pT ) is a transverse-momentum
distribution of partons (note that d = �τ for Y = η). In the
calculations presented in the following sections τ/τ0 = 4. We
read off from Fig. 4 that with this ratio the spread in rapidity is
a fraction of unity, hence very narrow and the approximation
(7) is well justified.

III. DEVELOPMENT OF ASYMMETRIC FLOW

A. Energy-momentum tensor from free streaming

The energy-momentum tensor at the proper time τ , rapidity
η, and transverse position (x,y) is given by the formula

T µν

=
∫

dYd2pT

d6N (τ )

dYd2pT dηdxdy
pµpν

= A

∫ 2π

0
dφ n (x − �τ cos φ, y − �τ sin φ)

×

⎛
⎜⎜⎝

cosh2η coshη cos φ coshη sin φ coshη sinhη

coshη cos φ cos2 φ cos φ sin φ cos φ sinhη

coshη sin φ cos φ sin φ sin2 φ sin φ sinhη

coshηsinh η cos φ sinhη sin φ sinhη sinh2η

⎞
⎟⎟⎠ ,

(9)

where A is a constant coming from the pT integration, which
factorizes out as a consequence of the approximations adopted
earlier. Due to the assumed boost invariance the further
calculations may be carried out at η = 0, where we may drop
the fourth row and column containing zeros, and write

T µν = A

∫ 2π

0
dφ n (x − �τ cos φ, y − �τ sin φ)

×

⎛
⎜⎝

1 cos φ sin φ

cos φ cos2 φ cos φ sin φ

sin φ cos φ sin φ sin2 φ

⎞
⎟⎠ . (10)

B. Local rest frame

Next, at each point (x,y) we pass to a local reference frame
where the averaged three-momentum contained by particles in
a volume element vanishes. The four-velocity of boost needed
for the passage to this local rest frame is obtained from the
condition

T µν(x,y)uν(x,y) = ε(x,y)gµνuν(x,y), (11)

with

uµ = (1, vx, vy, 0)/
√

1 − v2, v =
√

v2
x + v2

y. (12)

Indeed, from the Lorentz covariance in the local rest frame
uν

RF(x,y) = (1, 0, 0) and Eq. (11) takes the form

T
µ0

RF (x,y) = ε(x,y)gµ0, (13)

thus

T 00
RF(x,y) = ε(x,y), T 0i

RF(x,y) = 0, (i = 1, 2, 3). (14)

Thus ε is simply the energy density of the system in the local
rest frame.

C. Energy-density and expansion velocity profiles

We plot sample profiles of ε and v for a noncentral collision
in Fig. 5. The plot corresponds to the proper time of τ = 1 fm,
with the starting proper time of free streaming at τ0 = 0.25 fm
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FIG. 5. Contour maps of the energy-density profile ε at the end of
the free-streaming evolution, normalized to unity at the origin (a), and
of the transverse velocity v =

√
v2

x + v2
y (b). The initial profile is from

Eq. (4) with a = 1.9 fm and b = 2.5 fm, corresponding to centrality
20–30% for the Au + Au collisions at RHIC. The initial and final
proper times of free streaming are τ0 = 0.25 fm and τ = 1 fm.

from the Gaussian profile of Eq. (4). The width parameters are
a = 1.9 fm and b = 2.5 fm, which corresponds to centrality
20–30% for the Au + Au collisions at the highest RHIC
energy. We note that both profiles are elongated along the
y axes. For the energy density it reflects the shape of the initial
density profile. For the velocity we also find a steeper rise
along the x axis than the y axis, with clear anisotropy, or the
space-velocity correlation, visible.

Figure 6(a) shows the sections of the energy-density profile
ε, normalized to its value at the origin at time τ0, i.e., ε0 =
ε(0, 0; τ = τ0), plotted as functions of the transverse radius
ρ =

√
x2 + y2 for several values of τ . The solid (dashed) lines

correspond to the in-plane (out-of-plane) directions. Certainly,
the system is more elongated in the out-of-plane direction. As
the proper time progresses, the system spreads out, and the
value of ε at the origin drops. The corresponding velocity of
flow is shown in Fig. 6(b). We note several features: the growth
of the velocity with τ , the nearly linear increase with ρ near
the origin, and, importantly, a stronger flow in the in-plane

direction. Thus the azimuthally asymmetric flow develops.
This feature will be explained in Sec. III D below.

We have repeated the above analysis for a Glauber-model
profile as obtained from the GLISSANDO simulations [41]. The
applied model is the so-called mixed model, with 85.5% of
wounded nucleons and 14.5% of binary collisions. The result
for the Glauber profile is shown in Fig. 7. Comparing it
to the Gaussian-profile case of Fig. 6, we note qualitative
similarities but also important differences. The flow near the
origin develops more slowly in the Glauber case, as a result
the drop of ε at the origin is also slower. We note that the
two initial energy-density profiles we compare are normalized
in the same way, as well as their second moments (the width
parameters) are equal, i.e.,∫

dx0dy0n(x0,y0) = const.,
∫

dx0dy0x
2
0n(x0,y0) = a2, (15)

∫
dx0dy0y

2
0n(x0,y0) = b2.

The difference shows at higher moments, with the Glauber
profile being more flat at the origin than the Gaussian. As we
have seen comparing Figs. 6 and 7, these subtle differences
make an impact on the flow profile and the strength of the
flow velocity. These issues were emphasized in Ref. [14],
where it was also shown that the obtained results, in particular
Rout/Rside, are better when the Gaussian profile is employed.

D. Small time- and gradient expansion

The qualitative features of the behavior presented above
may be understood in terms of the low �τ and low ρ

expansion. Expanding to lowest order in �τ ,

n(x − �τ cos φ, y − �τ sin φ)

= n(x,y) − ∂xn(x,y)�τ cos φ − ∂yn(x,y)�τ sin φ, (16)

and integrating over φ in Eq. (10), yields the energy-
momentum tensor in the form

T µν = A

⎛
⎜⎜⎝

n − 1
2�τ∂xn − 1

2�τ∂yn

− 1
2�τ∂xn

1
2n 0

− 1
2�τ∂yn 0 1

2n

⎞
⎟⎟⎠ . (17)

The solution of Eq. (11) gives to lowest order the eigenvector
u = (1,v), with the transverse velocity of the simple form

v(x,y) = −�τ

3

∇n(x,y)

n(x,y)
. (18)

For the Gaussian profile (4) this immediately results in the
Hubble flow

v(x,y) = �τ

3

( x

a2
,

y

b2

)
. (19)

This behavior is clearly seen in Fig. 6 near the origin. The va-
lidity of Eq. (18) requires the condition �τ |∇n(x,y)|/n(x,y)
� 1.
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FIG. 6. (Color online) Sections of the energy-density profile ε

(a) normalized to ε0 = ε(0, 0; τ0) at the origin, and of the velocity
profile v =

√
v2

x + v2
y (b), cut along the x axis (solid lines) and y axis

(dashed lines) and plotted vs. ρ = √
x2 + y2. The initial profile is

from Eq. (4) for centrality 20–30% at τ0 = 0.25 fm. The ε profiles
are for τ = τ0 = 0.25, 1, 2, and 4 fm (from top to bottom), while the
velocity profiles are for τ = 1, 2, and 4 fm (from bottom to top). We
note that the flow is azimuthally asymmetric and stronger along the
x axis.
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FIG. 7. (Color online) Same as Fig. 6 for the Glauber initial
conditions from GLISSANDO.

IV. LANDAU MATCHING

A. Matching to transverse and isotropic hydrodynamics

As already stated in Sec. III B, the boost of T µν with the
velocity found from Eq. (11) yields T

µν

RF , i.e., the energy-
momentum tensor in the local rest frame that satisfies the
conditions (14). In Fig. 8 we have overlaid over the energy
profile of Fig. 5 the explicit form of the matrix TRF/ε in a few
points. We note that TRF is very close to the diagonal form

T
µν

RF � ε

⎛
⎜⎝

1 0 0

0 1
2 0

0 0 1
2

⎞
⎟⎠ . (20)

In fact, for symmetry reasons TRF is diagonal along the x and y

axes, and away from them it develops only small nondiagonal
pieces. Also, the difference between T xx and T yy is small,
at the level of a few percentages. Interestingly, Eq. (20) has
precisely the structure of the energy-momentum tensor of the
perfect transverse hydrodynamics of massless particles [34],
with the transverse pressure equal to ε/2. Small departures
from this form, present in our case, have the same structure
as the shear tensor used to describe the viscosity effects in
transverse hydrodynamics [42]. We notice larger deviation
in Txx and Tyy than in Txy , the same effect as in viscous
hydrodynamics.

The Landau matching condition amounts to replacing
the free-streaming energy-momentum tensor to the form
from perfect hydrodynamics. One may match to the perfect
transverse hydrodynamics, where we replace

T
µν

RF → T
µν

2 ≡ ε

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (21)

1. 0 0
0 0.49 0
0 0 0.51

1. 0 0
0 0.49 0
0 0 0.51

1. 0 0
0 0.49 0
0 0 0.51

1. 0 0
0 0.48 0.016
0 0.016 0.52

1. 0 0
0 0.49 0.008
0 0.008 0.51

−4 −2 0 2 4

−4

−2

0

2

4

x [fm]

y
[fm

]

energy density

FIG. 8. Same as in Fig. 5 with the matrix TRF/ε shown in a few
points indicated by blobs.
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or to the perfect isotropic hydrodynamics, in which case

T
µν

RF → T
µν

3 ≡ ε

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
3 0 0

0 0 1
3 0

0 0 0 1
3

⎞
⎟⎟⎟⎟⎠ . (22)

Admittedly, the matching (21) requires only a minor modifi-
cation of the energy-momentum tensor, while (22) employs a
more significant change. This means that the free-streaming
approximation may be rather smoothly linked to the perfect
transverse hydrodynamics.

B. Early generation of elliptic flow

We interpret the Landau matching conditions (21) or (22)
as a dynamical act. It is not a mathematical replacement
implementing an approximation. Rather, it is a simplified
(recall Fig. 1) description of the interactions among partons
that occur instantaneously in the FS + SE approximation. The
sudden equilibration causes the development of early elliptic
flow. Following Ref. [28] we consider the measure

εp = 〈Txx〉 − 〈Tyy〉
〈Txx〉 + 〈Tyy〉 . (23)

The brackets indicate the space integration in the laboratory
frame. Until SE occurs, εp = 0, as without interactions the
elliptic flow cannot develop, with the momentum spectrum
being an uncorrelated sum over the emitting sources. At
the proper time τmatch SE interactions occur, producing as a
result the energy-momentum tensor of Eq. (21) or Eq. (22).
This act yields immediately a nonzero εp. The subsequent
hydrodynamic evolution may further increase the value of the
elliptic flow coefficient. The situation is depicted schematically
in Fig. 9(a).

To compute the value of εp generated by SE, we take T2 or
T3 from Eq. (21) or (22) and for each volume element we go
back from its local rest frame to the laboratory frame, which
is necessary to apply the definition (23). The result of this
procedure is shown in Fig. 9(b). We note that increasing the
value of τmatch results in a larger flow coefficient. Thus FS + SE
does generate elliptic flow. At the same plot we also show the
spatial eccentricity

ε = 〈y〉2 − 〈x〉2

〈y〉2 + 〈x〉2
, (24)

which obviously decreases with time. From the view-
point of hydrodynamics, this decrease of spatial asymmetry
is compensated by the generated asymmetric flow from
FS + SE.

V. THE FOLLOW-UP EVOLUTION

A. Hydrodynamics and THERMINATOR

The energy-momentum tensor obtained with the FS + SE
approximation is plugged into the hydrodynamic evolution.
Here we use the perfect isotropic hydrodynamics, thus the

τ0 τmatch

(a)

τ

∋

p

∋

∋

p

(b)

0.5 1.0 1.5 2.0
τmatch fm

0.00

0.05

0.10

0.15

0.20

0.25

FIG. 9. (Color online) The schematic development of the partonic
elliptic flow εp from the FS + SE approximation (a) and the value
of the generated momentum asymmetry εp plotted as a function of
the matching proper time (b). The dotted (dashed) line corresponds
to matching to isotropic (transverse) hydrodynamics, while the solid
line shows the results of hydrodynamics only, with no free streaming.
The top curve shows the spatial asymmetry ε. Same parameters as in
Fig. 5.

matching condition (22) is used. The equation of state uses
the lattice QCD simulations of Ref. [43] at high temperatures,
T > 170 MeV, the hadronic gas at T < 170 MeV, and a smooth
interpolation in the vicinity of 170 MeV. At the end of the
hydrodynamic phase THERMINATOR simulations are carried out
to implement the hadronic decays. Our scheme is described
fully in Refs. [14,44], so we provide no further details here.

B. Physical results and comparison to data

In the following we compare the results obtained with
hydrodynamics only (starting at the proper time τ0 = 0.25 fm)
and the results obtained with free streaming from τ0 to
τ = 1.0 fm, followed by SE and hydrodynamics. In each case
we start from the Gaussian profile (4). The results are shown
in Figs. 10 and 11 with darker lines indicating the calculation
with FS + SE and the lighter lines with hydrodynamics only.
We notice very similar results for the two considered cases,
not to mention the very good description of the data. Larger
free-streaming times (τ − τ0 ∼ 1.5 fm) spoil this agreement,
as the flow becomes too strong. As described in Ref. [14],
we have achieved a uniform agreement for soft physics
at RHIC. In particular, the transverse-momentum spectra,
the elliptic-flow, and the HBT correlation radii, including
the notorious ratio Rout/Rside, are all properly described.
The azimuthally sensitive HBT correlations [47–50] are also
correctly described within our framework. In Ref. [38] we
have shown that our model calculations reproduce the full
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FIG. 10. (Color online) The transverse-momentum spectra of
pions, kaons, and protons for c = 20–30% (upper panel) and the
elliptic flow coefficient v2 for c = 20–40% (lower panel). The darker
(lighter) lines describe the model results for the case with (without)
free streaming. Data from Refs. [45,46].

dependence of the HBT radii and their oscillations on the
transverse momentum and centrality.

The reproduction of the HBT results relies, as discussed
in detail in Ref. [14], on a combination of factors included
in our approach. The choice of the initial conditions for

FIG. 11. (Color online) The pion HBT radii Rside, Rout, Rlong,
and the ratio Rout/Rside for central collisions. The darker (lighter)
lines describe the results with (without) FS + SE. The data are from
Ref. [51].
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FIG. 12. (Color online) The freeze-out hypersurfaces for the
calculation with hydrodynamics only (top) and with FS + SE
followed by hydrodynamics (bottom). Same parameters as in
Fig. 5.

hydrodynamics, early start at proper times of a fraction of
fm/c, the realistic state-of-the-art equation of state, and the
use of statistical hadronization implementing the resonance
decays in a complete way are all relevant. It should be
stressed that the offered “solution” of the HBT puzzle comes
with a uniform description of other observables, such as the
transverse-momentum spectra and the elliptic flow coefficient,
v2. Our conclusions concerning the HBT puzzle have been
confirmed by Pratt [23]; however, the elliptic flow is not
considered in this analysis.

Usually, in perfect hydrodynamics the description of the
splitting of v2 of pions and protons requires longer evolution
times, or the use of hadronic afterburners [7,8,52], implement-
ing elastic hadron rescattering. However, when the evolution
times are longer, the HBT radii and the ratio Rout/Rside become
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way too large, which essentially constitutes the RHIC HBT
puzzle. In our approach of Ref. [14] this problem is avoided,
as the flow is generated very fast. Admittedly, the model
prediction for the v2 of protons, showed in the bottom part
of Fig. 10, should still be reduced by 20–30% to optimally
fit the data, hence there is some room for improvement, for
instance, by the application of afterburners. In our approach
the collision rate after freeze-out is not very large for the
obtained freeze-out hypersurfaces. It can be estimated from
the straight-line trajectory crossings to be about 1.5–1.7 elastic
collisions per pion. Hence the single-freeze-out scenario [35]
seems to be a proper approximation for the present case and
we do not expect large modifications of our results from the
use of afterburners.

It is also interesting to look at the freeze-out hypersurfaces
for the two considered cases, shown in Fig. 12. They have
very much similar shape and size, which explains again why
the two schemes give essentially the same results.

The practical and important observation following from the
presented study of physical observables is that the inclusion of
FS + SE may be used to delay the start of hydrodynamics. The
physical results are basically unaltered, as can be seen from
the comparison shown in Figs. 10 and 11, where the lighter
and darker curves practically overlap. The reason is that the
dispersion of the density profile with time, resulting in milder
hydrodynamic development of flow, is accompanied by the
buildup of the initial asymmetric flow.

VI. CONCLUSIONS

Our analysis has focused on modeling of the early stage
evolution within the FS + SE approach. We stress, however,
that our complete model (FS + SE + hydrodynamics +
statistical hadronization) describes consistently the essential
features of the soft hadron production at RHIC, including
the pT spectra, v2, and the pionic HBT radii, including their
azimuthal asymmetry. The main reasons for obtaining such
a good description, listed in Ref. [14], were identified with
the use of a realistic equation of state without the soft point,
the Gaussian initial condition including the fluctuations of

the initial eccentricity, as well as the inclusion of all known
hadronic resonances in the statistical hadronization. This
successful description of the RHIC data hints on a possible
solution of the RHIC HBT puzzle [14].

In this article we have analyzed the approximation for
the early-stage dynamics of relativistic heavy-ion collisions
that assumes the initial free streaming of partons followed by
the sudden equilibration (FS + SE approximation). Our main
findings are as follows:

(i) Our modeling of the initial stage is compatible with
the data describing the soft hadron production at the
highest RHIC energies.

(ii) The decrease with time of the initial spatial asymmetry
due to the free streaming is compensated by the effects
following from sudden equilibration, which lead to the
formation of the radial as well as elliptic flow at the
starting point for the hydrodynamic evolution.

(iii) The important result of the FS + SE approach is that
one may delay the initialization of the hydrodynamic
evolution. Interestingly, unless the duration of free
streaming is not larger than about 1.5 fm/c, its specific
value is irrelevant for the final physical observables.
Such insensitivity of the final results to the details of
the initial evolution indicates that the assumption of
the fast equilibration may be relaxed and replaced by a
model where thermalization processes and building of
the flow happen gradually. This issue of the persisting
early thermalization puzzle might be resolved at a
microscopic level only within an appropriate QCD-
based kinetic model.
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