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Higher-order QED calculation of ultrarelativistic heavy-ion production of µ+µ− pairs
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A higher-order QED calculation of the ultraperipheral heavy-ion cross section for µ+µ− pair production at the
Relativistic Heavy Ion Collider and the Large Hadron Collider is carried out. The so-called Coulomb corrections
lead to an even greater percentage decrease of µ+µ− production from perturbation theory than the corresponding
decrease for e+e− pair production. Unlike the e+e− case, the finite charge distribution of the ions (form factor)
and the necessary subtraction of impact parameters with matter overlap are significant effects in calculation an
observable ultraperipheral µ+µ− total cross section.

DOI: 10.1103/PhysRevC.80.034901 PACS number(s): 25.75.−q, 12.20.Ds

I. INTRODUCTION

In recent years sufficient progress has been made in eval-
uating higher-order QED corrections to e+e− pair production
in ultraperipheral heavy-ion collisions to allow a meaningful
comparison with data. The comparison of calculated e+e−
pair production rates [1] with STAR data [2] provides the
first evidence of higher-order QED effects at the Relativistic
Heavy Ion Collider (RHIC). The analogous higher-order
corrections to µ+µ− pair production are now of interest with
the anticipated program of ultraperipheral heavy-ion collisions
at the Large Hadron Collider (LHC) [3]. In particular it has
been suggested by Kharlov and Sadovsky (see Ref. [3]) that
because muon pairs are easy to detect (in the ALICE detector)
and simple to calculate (in perturbation theory) they can be
used as a luminosity monitor at the LHC. And a recent article
by Hencken, Kuraev, and Serbo has presented approximate an-
alytical calculations indicating that the higher-order Coulomb
corrections to µ+µ− pair production are small [4]. However, in
this article I will present less approximate numerical calcula-
tions showing that higher-order QED corrections to the µ+µ−
rates are not small (and thus would require inclusion, e.g., in
calculations to obtain a meaningful luminosity measurement).
I will further argue that an additional reduction in µ+µ− rates,
relatively insignificant in the analogous e+e− process, arises
from unitarity corrections necessitated by the exclusion of ion
trajectories with nuclear overlap.

In Sec. II I discuss the method used here to calculate
higher-order QED lepton pair production with heavy ions.
Section III considers the differences between rates for e+e−
and µ+µ− pair production in the usual impact-parameter-
independent calculation: how they scale and the relatively
larger effect of the heavy-ion form factor for the µ+µ−
pairs. Section IV introduces the impact-parameter-dependent
representation necessary for consideration of unitarity effects,
especially the exclusion of ion overlap trajectories. A summary
of the results for computed total µ+µ− pair production cross
sections at RHIC and LHC is presented in Sec. V.

II. HIGHER-ORDER QED: METHOD OF CALCULATION

The method employed in this article for higher-order
µ+µ− pair production is an extension of previous work on

higher-order e+e− pairs. A broad review of issues involved
in the e+e− pair calculations has been presented in a recent
review [5], and a discussion of the factorization of the
different electromagnetic processes and the applicability of the
semiclassical description is found in Ref. [6]. Here I review
the history relevant to the present calculations.

The possibility of accurate higher-order e+e− pair calcula-
tion originated with the realization that in an appropriate gauge
[7], the electromagnetic potential of a relativistic heavy ion is
to a very good approximation a delta function in the direction
of motion of the heavy ion times the two-dimensional solution
of Maxwell’s equations in the transverse direction [8,9]. This
led to the closed form solution of the time-dependent Dirac
equation for lepton pair production [10–12]. However, this
original solution needed to be corrected for the following
reason. One apparent consequence of the original solution
was that rates for pair production in the exact solution agreed
with the corresponding perturbation theory result. It was
subsequently pointed out by Ivanov, Schiller, and Serbo [13]
that this heavy-ion conclusion was contrary to the well-known
fact that photoproduction of e+e− pairs on a heavy target
shows a negative (Coulomb) correction proportional to Z2

that is well described by the Bethe-Maximon theory [14].
These authors went on to compute large Coulomb corrections
to the pair total cross section by considering higher-order
Feynman diagrams in a leading logarithm approximation. Lee
and Milstein [15,16] came to essentially the same result for
the Coulomb corrections. They pointed out that the original
Dirac equation solution involved an integral over the transverse
spatial coordinates that was not well regularized. Lee and
Milstein constructed an appropriate regularized transverse
integral in the low-transverse-momentum (k) approximation
that could be solved analytically to obtain the Coulomb cor-
rections. They also noted that replacing the original transverse
potential −2iZα ln(ρ) with 2iZαK0(ρω/γ ) gives a properly
regularized expression for the original transverse integral

F (k) = 2π

∫
dρρJ0(kρ){exp[2iZαK0(ρω/γ )] − 1}, (1)

that goes over into the correct lowest-order expression

F0(k) = 4iπZα

k2 + ω2/γ 2
. (2)
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in the perturbative limit. The modified Bessel function
K0(ρω/γ ) = − ln(ρ) plus constants for small ρ and cuts off
exponentially at ρ ∼ γ /ω, where γ is the relativistic boost
of the ion producing the photon and ω is the energy of the
photon. I previously carried out numerical calculations using
these expressions and obtained results identical to those of
Lee and Milstein in their small k limit [17]. In my previous
cross-section calculations [18,19] and in what follows, Eq. (1)
is used for the higher-order calculations and Eq. (2) for lowest
order.

For impact-parameter-dependent cross sections the calcu-
lations presented here make use of the methods of calculating
e+e− pair probabilities previously described [19]. The impact-
parameter- (b) dependent amplitude presents a particular
numerical challenge because it involves a rapidly oscillating
phase exp(ik · b) in the integral over the transverse momentum
k transferred from the ion to the lepton pair. The usual method
of evaluating the perturbative impact-parameter-dependent
probability is to first square the amplitude and then integrate
over the sum and difference of k and k′. Here I have integrated
before squaring, and I deal with the rapid oscillations with the
piecewise analytical integration method previously described
[19]. In that previous b-dependent calculation of the total cross
section for e+e− production, half of the contribution comes
from b > 5000 fm and contributions up to b = 106 fm are
considered. Due to the large values of b contributing, that
calculation was somewhat crude. However, integration over
b reproduced the known cross sections calculated with the
b-independent method or calculated from the very accurate
analytical Racah formula [20] to about 3%. It can also be noted
that the computed perturbative b-dependent probabilities in
that article were in relatively good agreement with calculations
in the literature [21] available for b < 7000 fm.

III. SCALING OF µ+µ− WITH e+e− CROSS SECTIONS

Let us begin by reviewing the scaling of µ+µ− cross
sections from the corresponding e+e− cross sections. For point
charge heavy ions (no form factor) if length is expressed in
terms of 1/ml and energy in terms of ml then the total lepton
pair cross section σ (µ+µ−) is identical to σ (e+e−).

A form factor g(k) may be defined that modifies the
expressions for F (k) in Eqs. (1) and (2). If one assumes a
simple form factor

g(k) = 1

1 + k2/�2
(3)

where for Au or Pb

� � 80 MeV = 160 me = 0.75 mµ, (4)

then Eq. (2) for the perturbative limit becomes

F
f

0 (k) = 4iπZα

(k2 + ω2/γ 2)(1 + k2/�2)
. (5)

k is cut off at the low end when k2 � (ω/γ )2. In the
perturbative case for e+e− pairs it has been shown that
the effect of the form factor seems to be present only where the
impact parameter is of the same size as the nuclear radius [22].

However, the situation is different for µ pairs. At the high
end the form factor cuts off when k2 � �2. The form factor
contributes if �2 is comparable to or less than (ω/γ )2, the
cutoff of k without the form factor. Assume that at this high
end cutoff without the form factor k � 100ω/γ � ω for RHIC.
Clearly for µ pair production the sum of the ωs for the two
virtual photons must be greater than twice the mass of the
muon. Thus for even the lowest-energy µ pairs (corresponding
to large impact parameters) at least one ω > mµ and the form
factor is important. However, the form factor is relatively
insignificant for the total σ (e+e−) and contributes only at
electron energies some two orders of magnitude above the
electron mass, comparable to the value of �. Without a form
factor

σ (µ+µ−)

σ (e+e−)
=

(
me

mµ

)2

= 2.34 × 10−5. (6)

But with a form factor the perturbation theory result calcula-
tions give

σ (µ+µ−)

σ (e+e−)
= 0.61 × 10−5 = 0.26 ×

(
me

mµ

)2

(7)

for RHIC and

σ (µ+µ−)

σ (e+e−)
= 1.16 × 10−5 = 0.50 ×

(
me

mµ

)2

(8)

for LHC.
To include a form factor in the eikonalized expression

with Coulomb corrections Eq. (1) then the most obvious
prescription is to apply the form factor to the transverse
potential:

Ff (k) = 2π

∫
dρρJ0(kρ) {exp[2iZαg(k)K0(ρω/γ )] − 1}.

(9)

This expression obviously goes into the correct perturbative
limit Eq. (5). A simpler expression is to take the form factor
only to first order but the Coulomb corrections to higher order

Ff 0(k) = 2πg(k)
∫

dρρJ0(kρ) {exp[2iZαK0(ρω/γ )] − 1}.
(10)

Again, this expression obviously goes to the correct perturba-
tive limit Eq. (5). This is the expression that will be used in
this article. A discussion of the validity of this approximation
is given in Appendix A.

For simplicity in calculation and simplicity in comparing
with Ref. [4], the form factor g(k) Eq. (3) has also neglected
any dependence on longitudinal momentum. Including a
longitudinal-momentum dependence would make a small
reduction in cross section values, about 5% for RHIC and
1% for LHC, as discussed in Appendix B.

I have previously calculated [18] that there is a 17%
reduction at RHIC and a 11% reduction at LHC in the exact
total σ (e+e−) from the perturbation theory result. For the
σ (µ+µ−) here the corresponding reduction from perturbation
theory is even greater, 22% at RHIC and 14% LHC. The
present perturbative σ (µ+µ−) calculations are in fairly good
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agreement with the calculations of Hencken, Kuraev, and
Serbo [4], but the present exact cross-section calculations are
in disagreement with their argument that Coulomb corrections
are relatively insignificant for µ pairs.

So far the calculations presented have been performed in
the impact-parameter-independent representation. There is an
additional reduction that comes into play for an observable
σ (µ+µ−) that arises from unitarity considerations, and one
must make use of the impact-parameter representation dis-
cussed in the following section.

IV. IMPACT PARAMETER AND UNITARITY

The perturbative (Born) cross section and corresponding
cross sections with higher-order Coulomb corrections dis-
cussed in the previous section correspond to an inclusive
cross section, constructed from a probability corresponding
to the number operator for a given process. If one considers
an exclusive cross section, e.g., exciting a µ pair and nothing
else in a heavy-ion reaction, then one must consider unitarity
corrections for competing processes in an impact-parameter
representation as will be seen below. For µ pair production the
main unitarity corrections arise in principle from competing
e+e− pair production, Coulomb dissociation of the heavy ions,
and nuclear processes at ion-ion overlap.

Hencken, Kuraev, and Serbo have observed that while
unitarity corrections are small for e+e− cross sections they
are large for corresponding µ+µ− pair production [4]. The
perturbative Born cross section for e+e− production, corre-
sponding to an inclusive cross section, is little increased from
the exclusive cross section. The perturbative Born cross section
for µ+µ− production also corresponds to the inclusive cross
section, but the exclusive cross section is significantly reduced
by unitarity corrections due to the simultaneous production
of e+e− pairs along with the µ+µ− pairs. Lee and Milstein
have recently developed a quasianalytical procedure to include
the higher-order Coulomb corrections in calculating the impact
parameter dependence the e+e− pair production [23]. Based on
their procedure Jenschura, Hencken, and Serbo have updated
the consideration of the e+e− pair unitarity corrections [24].

In practice some unitarity corrections are relevant to what is
actually measured and some are not. While it is an enlightening
theoretical exercise to consider e+e− pair unitarity corrections
to µ pair rates, in practice the dominant contributions of soft
e+e− pairs are of an energy scale orders of magnitude too small
to be observed in an experiment designed to observe µ pairs.
However, when calculating µ pair rates in an impact-parameter
representation, a correction must be made to exclude the lowest
impact parameters of ion-ion overlap, where the dominant
processes are nuclear.

If one assumes independence of the various heavy-ion
reaction processes, then the probability of a reaction leading
to a final state differing from the incoming channel is given
by the usual Poisson distribution. If P (b) is the sum of the
probabilities for producing an excited state by a heavy-ion
reaction at a given impact parameter b

P (b) = �iPi(b), (11)
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FIG. 1. Unitarity reduction factor for relevant processes in the
calculation of exclusive µ pair production at RHIC: dashed line =
nuclear collisions; dotted line = Coulomb excitation of one of the
heavy ions; solid line = nuclear collision or Coulomb excitation;
diamonds = e+e− pair production.

where each Pi(b) is the inclusive probability of a specific final
state i, then the exclusive probability for a given final state
P u

i (b) is

P u
i (b) = Pi(b) exp[−P (b)], (12)

and the probability of remaining in the initial state is

P u
o (b) = 1 − exp[−P (b)]. (13)

Figure 1 shows the unitarity reduction factor exp[−P (b)] in
Eq. (12) evaluated for the probabilities of various processes for
the case of Au+Au at RHIC. In agreement with the previously
discussed above work in the literature [4,23,24] the unitarity
effect of e+e− pair production (diamonds) is significant for low
and intermediate impact parameters. Following the methods of
Refs. [25,26] I have also calculated the unitarity reduction
factor exp[−P (b)] for Coulomb dissociation and nuclear
dissociation.

It is instructive to compare the impact-parameter depen-
dence of the contribution to µ pair production and e+e−
pair production at RHIC. Figure 2 shows the distribution
for for µ pairs and Fig. 3 for e+e− pairs. In both figures
dashes correspond to perturbation theory and the solid line
the higher-order calculation. The shift in scale mentioned
in the previous section is evident. Comparing the region of
e+e− reduction shown in Fig. 1 with the regions of dominant
cross-section contribution for µ pairs (Fig. 2) and e+e− pairs
(Fig. 3) makes evident the reasoning of Hencken, Kuraev, and
Serbo [4] that unitarity corrections are small for e+e− cross
sections and large for µ+µ−. Also clearly the region of nuclear
collisions (dashed line in Fig. 1) would provide no reduction
of the e+e− pair cross section (Fig. 2) but would slightly
reduce the µ pair cross section (Fig. 1). It is obvious that even
with a momentum-dependent form factor there is significant
contribution to the µ pair cross section here in the region
of ion-ion overlap. This contribution must be eliminated for
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FIG. 2. Impact parameter dependence of contribution to total
cross section for µ pair production at RHIC: dashed line =
perturbation theory; solid line = higher-order calculation.

ultraperipheral collisions and leads into the discussion in the
rest of this section.

As noted above, what states are considered in the unitarity
consideration can be determined or defined by the energy
scale of the detected particles. For example, when considering
µ+µ− pair production, one might not consider the dominant
soft e+e− pairs as part of the excited spectrum for purposes
of unitarity normalization. This might be a reasonable defini-
tion corresponding to the experimental detection conditions.
However, to construct a calculated cross section corresponding
to the observed pair production events without any other
final-state particles arising from ion-ion overlap, one should
include only ultraperipheral impact parameters.

In terms of a b- (impact parameter) dependent amplitude
M(k, b) exp(ik · b) an appropriate nonunitarized probability
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FIG. 3. Impact-parameter dependence of contribution to total
cross section for e+e− pair production at RHIC: dashed line =
perturbation theory; solid line = higher-order calculation.

can be written

Pi(b) =
∣∣∣∣
∫

d2kMi(k, b) exp(ik · b)

∣∣∣∣
2

. (14)

Let Pi(b) be a nonunitarized probability for exciting a µ+µ−
pair and Pj (b) the corresponding probability for a nuclear
reaction. Then define a partially exclusive cross section as one
that excludes nuclear interaction only

σi =
∫ ∞

0
d2bP u

i (b) =
∫ ∞

0
d2bPi(b) exp[−Pj (b)]. (15)

Because the nuclear interactions occur only below some b0 =
R1 + R2, it is convenient to express this cross section as a
difference

σi =
∫ ∞

0
d2bPi(b) +

∫ b<b0

0
d2bPi(b){exp[Pj (b) − 1]}.

(16)

The first term can be evaluated as was done before without a
specific impact parameter representation [18]. The second term
can then be evaluated using the method of Ref. [19]: because b
is limited to the lowest impact parameters the exp(ik · b) factor
is still numerically tractable even though k scales up by a factor
of mµ/me as compared to the e+e− case. A similar trick to
subtract the nuclear interaction at small impact parameters has
previously been used [27].

V. NUMERICAL RESULTS

Table I summarizes the total cross section results for µ+µ−
pair production at RHIC. In the first row the b-independent
perturbative cross section for σ (µ+µ−) is 211 mb and the cross
section with higher-order effects is 164 mb. As previously
noted in Sec. III, this reduction of 22% from perturbation
theory is greater than the 17% reduction in the exact σ (e+e−)
from the perturbation theory seen in Ref. [18]. The second
row shows the results from integrating the b-dependent
computation of the cross section shown in Fig. 2. The numbers
in parentheses correspond to the negative of the second
right-hand term of Eq. (16). A rough check can be done by
comparing the results of the b-dependent and b-independent
calculations of the total µ+µ− production cross section. Even
though the b-dependent becomes more inaccurate beyond the
low impact parameters it still reproduces the b-independent
results to about 10%. The lowest impact parameters have
the greatest accuracy and we calculate the higher-order cross
section from the overlap impact parameters to be subtracted
off as 20 mb. Thus the final computed best cross section (third

TABLE I. RHIC: Au + Au, γ = 100, µ+µ− total cross section.

Results (mb) Perturb. Exact

b-independent formulation 211 164
b integration (ion overlap) 232 (36) 181 (20)
b-independent minus ion overlap 175 144
Hencken et al. (γ = 108) 230 230
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TABLE II. LHC: Pb + Pb, γ = 2760, µ+µ− total cross section.

Results (b) Perturb. Exact

b-independent formulation 2.43 2.09
b integration ion overlap 0.13 0.06
b-independent minus ion overlap 2.29 2.03
Hencken et al. (γ = 3000) 2.60 2.60

row) is 144 mb, a 32% reduction from the perturbation theory
calculation.

Table II shows calculations of colliding Pb + Pb ions at the
LHC. The perturbative µ+µ− production cross section shown
in the first row is 2.43 b and higher-order effects reduced it by
14% to 2.09 b. Again this reduction is greater than the 11%
reduction in the exact σ (e+e−) from the perturbation theory
result [18]. Due to the higher values of transverse momentum
transferred from the virtual photons in this LHC case it
was not feasible to compute the b-dependent cross-section
contributions throughout the entire impact parameter range.
However, in the region of ion overlap the impact parameter was
small enough that the rapidly oscillating phase exp(ik · b) in
the integral over the transverse momentum k transferred from
the ion to the lepton pair remained tractable and Eq. (16) could
be used. The additional reduction from exclusion of overlap
impact parameters was 0.06 b for a best value of 2.03 b, an
overall 16% reduction from perturbation theory.

The present perturbative σ (µ+µ−) calculations are in fair
agreement with the calculations of Hencken, Kuraev, and
Serbo [4], but the present exact cross-section calculations are
in disagreement with their argument that Coulomb corrections
are relatively insignificant for µ pairs. In this work I have
shown that unlike the case for e+e− pair production, the finite
size of the colliding nuclei provides an important modification
for both the perturbative and higher-order calculated total cross
sections σ (µ+µ−). The form factor reduces the higher-order
calculation by an even greater percentage than it does for
perturbation theory. Furthermore, making the necessary elim-
ination of interactions where the ions overlap further reduces
the higher-order cross section from perturbation theory.
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APPENDIX A: HIGHER-ORDER FORM FACTOR EFFECTS

As noted in Sec. III, to include a form factor in the eikon-
alized expression for the transverse integral with Coulomb
corrections, the most obvious prescription is to apply the form
factor to the transverse potential, leading to Eq. (9):

Ff (k) = 2π

∫
dρρJ0(kρ){exp[2iZαg(k)K0(ρω/γ )] − 1}.

(A1)

But including the form factor in the transverse potential is
equivalent to letting the coupling constant Zα run as a function
of k, analogous to the situation in QCD. To do this makes
the numerical integration of Eq. (1) more complicated and
has not been done in this article. However, by a relatively
simple modification of the b independent expression for the
higher-order cross section one can put an upper limit on the
modification to higher-order effect of using the more proper
Eq. (9) rather than the expression Eq. (10) used throughout
this this article.

The numerical integration of Eq. (1) is most conveniently
carried out after a change of variables to ξ = kρ and

F (k) = 2π

k2

∫
dξξJ0(ξ ){exp[2iZαK0(ξω/γ k)] − 1}. (A2)

This integral is carried out for various values of the parameter
kγ /ω. F actually has a two-dimensional parametrization in
kγ /ω and k, but the 1/k2 dependence trivially factors out of the
integral. Likewise the additional k dependence in expression
Eq. (10) used in this article factors out trivially. However,
the additional k dependence in the more exact expression
Eq. (9) does not factor out trivially, leading to the additional
complication.

To put a limit on the error incurred by using the expression
Eq. (9) rather than Eq. (10), I begin by recalling that the
organization of the b-independent computer code used in
Ref. [18] involves a difference

|
F (k)2| = |F (k)|2 − |F0(k)|2 (A3)

between the squared value of the higher-order expression
Eq. (1) and that of the perturbative expression, Eq. (2). Because
the effect of the form factor g(k) is the same as reducing the
value of Z as a function of k at large k (like running coupling in
QCD) then evaluation of Eq. (A2) for various values of Z may
be used as a proxy for the higher-order dependence on g(k).
That is, for a given Z if the form factor is reduced from unity by
some percentage then it is equivalent to no form factor and just
reducing Z by the same percentage. Numerical calculations of
|
F (k)2| show that it scales as Z4 for low values of Z and a
little less than Z4 as Z is increased. This scaling is consistent
with the integral over (A3)

G =
∫

d2k

(2π )2
k2[|F (k)|2 − |F0(k)|2] (A4)

in Lee and Milstein’s analysis of higher-order Coulomb
corrections [15,16], which takes the analytical form

G = −8π (Zα)2[Reψ(1 + iZα) + γEuler], (A5)

where ψ(1 + iZα) is the digamma function and γEuler is
Euler’s constant. This expression may be alternatively ex-
pressed as

G = −8π (Zα)2f (Zα), (A6)

where f (Zα) is the same function that was presented by Bethe,
Maximon, and Davies [14] for Coulomb corrections to e+e−
photoproduction on heavy nuclei and takes the form

f (Zα) = (Zα)2
∞∑

n=1

1

n(n2 + (Zα)2)
. (A7)
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G obviously scales as Z4 for low values of Z and a little less
than Z4 as Z is increased.

The expression Eq. (A3) modified with the lowest-order
implementation of the form factor utilized in this article takes
the form

|
Ff 0(k)2| = |Ff 0(k)|2 − ∣∣Ff 0
0 (k)

∣∣2

= g(k)2(|F (k)|2 − |F0(k)|2). (A8)

If one consider the analogous expression with the form factor to
higher order, then replacing the g(k)2 dependence of Eq. (A7)
with g(k)4 suggested by the Z4 scaling seen in the difference
without a form factor,

|
Ff (k)2| = |Ff (k)|2 − ∣∣Ff

0 (k)
∣∣2

= g(k)4(|F (k)|2 − |F0(k)|2), (A9)

should slightly overstate the higher-order effect of the form
factor in Coulomb corrections.

Recalculation of the exact b-independent RHIC Au + Au
cross section of Table I with the g(k)4 form factor scaling of
Eq. (A9) gives 171 mb, a 19% reduction from perturbation
theory in comparison with the 164-mb 22% reduction using
the more approximate g(k)2 of Eq. (A8). Likewise for Pb +
Pb at LHC the exact calculation with g(k)4 gives 2.12 b, a
13% reduction from perturbation theory in comparison with
the 2.09 b 14% reduction with g(k)2.

Both recalculations make only a small change from the
lowest-order treatment of the form factor in this article. And
because it is far from trivial to implement the more proper
higher-order treatment of the form factor of Eq. (9), especially
in b-dependent calculations, I have not done so in this article.
It seems that once the k-dependent cutoff of the form factor is
put in, sharpening the cutoff by an additional squaring has
a relatively small effect. Even with the higher-order g(k)4

scaling calculations, the reduction from perturbation theory in
σ (µ+µ−) are still larger than the reductions in the analogous
exact σ (e+e−) without a form factor from perturbation theory.

APPENDIX B: LONGITUDINAL FORM FACTOR EFFECTS

One might include longitudinal form factor effects by
modifying Eq. (3) to make g(k) a function of k2 + ω2/γ 2

rather than simply a function of k2:

g(k) = 1

1 + (k2 + ω2/γ 2)/�2
. (B1)

I have recalculated b independent cross sections using Eqs. (5),
(10), and (B1) in place of (3), and I find a 5% reduction for both
the perturbative and higher-order computations for RHIC but
only a corresponding 1% reduction for LHC. The 5% reduction
for RHIC is equivalent to calculations without a longitudinal
factor, but with the value of � reduced from 80 to 75.5 MeV.
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