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Exceptional points in the scattering continuum

J. Okołowicz1 and M. Płoszajczak2

1Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, PL-31342 Kraków, Poland
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The manifestation of exceptional points in the scattering continuum of an atomic nucleus is studied using the
real-energy continuum shell model. It is shown that low-energy exceptional points appear for realistic values of
coupling to the continuum and, hence, could be accessible experimentally. Experimental signatures are proposed
which include the jump by 2π of the elastic scattering phase shift and a salient energy dependence of cross
sections in the vicinity of the exceptional point.

DOI: 10.1103/PhysRevC.80.034619 PACS number(s): 25.70.Ef, 03.65.Vf, 21.60.Cs, 25.40.Cm

I. INTRODUCTION

The structure of loosely bound and unbound nuclei is
strongly impacted by many-body correlations and nonper-
turbative coupling to the external environment of scattering
states and decay channels [1,2]. This is particularly important
in exotic nuclei where new phenomena, at the borderline of
nuclear structure and nuclear reactions, are expected. Some
of them, such as the halos [3], the segregation of time
scales in the context of non-Hermitian Hamiltonians [4], the
alignment of near-threshold states with decay channels [5],
and the resonance crossings [6,7], appear in various open
mesoscopic systems. Their universality is the consequence
of the non-Hermitian nature of an eigenvalue problem in open
quantum systems.

Resonances are commonly found in quantum systems in-
dependently of their interactions, building blocks, and energy
scales involved. Much interest is concentrated on resonance
degeneracies, the so-called exceptional points (EPs) [6]. Their
connection to avoided crossings and spectral properties of
Hermitian systems [8,9] as well as the associated geometric
phases have been discussed in simple models in considerable
detail [10]. The interesting question is their manifestation in
nuclear scattering experiments. Here, a much studied case
was the 2+ doublet in 8Be [11–15]. Based on this example,
von Brentano [16] discussed the width attraction for mixed
resonances, and Hernandéz and Mondragón [17] showed that
the true crossing of resonances can be obtained by the variation
of two parameters in the Jordan block of rank two. In this latter
analysis, it was shown that the resonating part of the scattering
matrix (S matrix) for one open channel and two internal states
is compatible with the two-level formula of the R-matrix
theory used in the experimental analysis of excitation functions
of elastic scattering 4He(α,α0)4He [15] and, hence, the 2+
doublet in 8Be may actually be close to the true resonance
degeneracy.

Properties of the atomic nucleus around the continuum
threshold change rapidly with the nucleon number, the
excitation energy, and the coupling to the environment of
scattering states. A consistent description of the interplay
between scattering and resonant states requires an open system
formulation of the nuclear shell model (see [1,2,18] for recent
reviews). The real-energy continuum shell model [19–21]

provides a suitable unified framework with the help of an
effective non-Hermitian Hamiltonian. In this work, for the
first time we focus on a realistic model of an unbound
atomic nucleus to see whether one or more EPs can appear
in the low energy continuum for sensible parameters of the
open quantum system Hamiltonian. In particular, we discuss
possible experimental signatures of the EPs and show the
evolution of these signatures in the vicinity of the EP. Finally,
on the example of spectroscopic factors we demonstrate the
entanglement of resonance wave functions close to the EP.

II. FORMULATION OF THE CONTINUUM SHELL MODEL

Let us briefly review the shell model embedded in
the continuum (SMEC) [21], which is a recent realization
of the real-energy continuum shell model. The total function
space of an A-particle system consists of the set of square-
integrable functions Q ≡ {ψA

i }, used in the standard nuclear
shell model (SM), and the set of embedding scattering
states P ≡ {ζ c

E}. These two sets are obtained by solving the
Schrödinger equation separately for discrete (SM) states (the
closed quantum system) and for scattering states (the environ-
ment). Decay channels ‘c’ are determined by the motion of
an unbound particle in a state lj relative to the A − 1 nucleus
with all nucleons on bounded single-particle (s.p.) orbits in the
SM eigenstate ψA−1

j . Using these function sets, one defines
projection operators:

Q̂ =
N∑

i=1

∣∣ψA
i

〉〈
ψA

i

∣∣; P̂ =
∫ ∞

0
dE|ζE〉〈ζE|

and projected Hamiltonians: Q̂HQ̂ ≡ HQQ, P̂H P̂ ≡ HPP ,
Q̂HP̂ ≡ HQP , P̂HQ̂ ≡ HPQ. Assuming Q + P = I, one
can determine the third set of functions {ω(+)

i } which contains
the continuation of any SM eigenfunction ψA

i in P , and
then construct the complete solution in Q + P [1]. Recently,
this approach has been extended to describe the two-proton
radioactivity with the two-particle continuum [22].

Open quantum system solutions in Q, which include
couplings to the environment of scattering states and decay
channels, are obtained by solving the eigenvalue problem for
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the energy-dependent effective Hamiltonian:

HQQ(E) = HQQ + HQP G
(+)
P (E)HPQ,

where HQQ is the closed system Hamiltonian, G
(+)
P (E) is

the Green function for the motion of a single nucleon in P
subspace and E is the energy of this nucleon (the scattering
energy). Index ‘+’ in G

(+)
P stands for the outgoing boundary

in the scattering problem. HQQ is non-Hermitian for unbound
states and its eigenstates |�α〉 are linear combinations of SM
eigenstates |ψi〉. The eigenstates of HQQ are biorthogonal; the
left |�α〉 and right |�ᾱ〉 eigenstates have the wave functions
related by the complex conjugation. The orthonormality condi-
tion in the biorthogonal basis reads 〈�ᾱ|�β〉 = δα,β . Similarly,
the matrix element of an operator Ô is Oαβ = 〈�ᾱ|Ô|�α〉.

The scattering function 	c
E is a solution of a Schrödinger

equation in the total function space:

	c
E = ζ c

E +
∑

α

aα�̃α,

where

aα ≡ 〈�α|HQP

∣∣ζ c
E

〉/
(E − Eα)

and

�̃α ≡ (1 + G
(+)
P HPQ)�α.

Inside of an interaction region, the dominant contributions
to 	c

E are given by eigenfunctions �α of the effective non-
Hermitian Hamiltonian [1]:

	c
E ∼

∑
α

aα�α.

For bounds states, eigenvalues Eα(E) of HQQ(E) are real and
Eα(E) = E. For unbound states, physical resonances can be
identified with the narrow poles of the S matrix [2,23], or
using the Breit-Wigner approach which leads to a fixed-point
condition [1,18,24]:

Eα = Re (Eα(E)) |E=Eα
; 
α = −2 Im (Eα(E)) |E=Eα

. (1)

Here it is assumed that the origin of Re(E) is fixed at the lowest
particle emission threshold.

An EP is a generic phenomenon in Hamiltonian systems.
In our case, the EP can appear as a result of the continuum-
coupling term HQP G

(+)
P (E)HPQ for energies above the first

particle emission threshold (E > 0). The eigenvalue degen-
eracies are indicated by common roots of two equations [6]:

∂ (ν)

∂E det[HQQ (E; V0) − EI ] = 0, ν = 0, 1. (2)

Single-root solutions of Eq. (2) correspond to EPs associated
with decaying states. The maximal number of those roots is
Mmax = n(n − 1), where n is the number of states of given
angular momentum J and parity π . In quantum integrable
models with at least two parameter-dependent integrals of
motion one finds also double-root solutions which correspond
to a nonsingular crossing of two levels with two different wave
functions. Hence, the actual number of EPs in these systems
is always smaller than Mmax [9].

The position of EPs in the spectrum of eigenvalues of HQQ

depends both on the chosen interaction and the energy E of
the system. In general, eigenvalues of the energy-dependent
effective HamiltonianHQQ(E) need not satisfy the fixed-point
condition (1) and hence need not correspond to poles of the
S matrix (resonances). In the following, we shall consider
uniquely the case where EPs are identical with double poles
of the S matrix.

III. EXCEPTIONAL POINTS IN THE SCATTERING
CONTINUUM OF 16Ne

Let us investigate properties of EPs on the example of 16Ne.
SM eigenstates in this nucleus correspond to a complicated
mixture of configurations associated with the dynamics of
the 16O core. Our goal is to see if EPs can be possibly
found in the scattering continuum of atomic nucleus at low
excitation energies and for physical strength of the continuum
coupling. SMEC calculations are performed in p1/2, d5/2, s1/2

model space. For HQQ we take the ZBM Hamiltonian [25]
which correctly describes the configuration mixing around
the N = Z = 8 shell closure. The residual coupling HQP

between Q and the embedding continuum P is generated
by the contact force: HQP = HPQ = V0δ(r1 − r2). For each
Jπ , the SM states |ψi(Jπ )〉 of the closed quantum system are
interconnected via the coupling to common decay channels
[15F(Kπ ) ⊗ plj ]J

π

E′ with Kπ = 1/2+, 5/2+, and 1/2− which
have the thresholds at E = 0 (the elastic channel), 0.67 MeV,
and 2.26 MeV, respectively. In the ZBM model space, these
are all possible one-proton (1p) decay channels in 16Ne.

The size of a non-Hermitian correction to HQQ depends
on two real parameters: the strength V0 of the continuum
coupling in HQP (HPQ) and the system energy E. The
range of relevant V0 values can be determined, for exam-
ple, by fitting decay widths of the lowest states in 15F.
For the present Hamiltonian, experimental decay widths of
the ground state 1/2+

1 and the first excited state 5/2+
1 in

15F are reproduced using V0 = −3500 ± 450 MeV fm3 and
V0 = −1100 ± 50 MeV fm3, respectively. The error bars in
V0 reflect experimental uncertainties of those widths. The
weak dependence of 1p decay widths on the sign of V0 is
generated by the channel-channel coupling and disappears in
a single-channel case.

Figure 1 shows energies E and strengths V0 which corre-
spond to Jπ = 1− EPs in the scattering continuum of 16Ne.
Decay channels [15F(Kπ ) ⊗ plj ]1−

E′ with Kπ = 1/2+, 5/2+,
and 1/2− have been included with proton partial waves:
p1/2, p3/2 for Kπ = 1/2+, p3/2, f5/2, f7/2 for Kπ = 5/2+, and
s1/2, d3/2 for Kπ = 1/2−. The number of 1− SM states is 3
and, hence, the maximal number of 1− EPs in SMEC could
be 6. Indeed, all of them exist at E < 20 MeV in a physical
range of V0 values (1100 MeV fm3 < |V0| < 3500 MeV fm3).
They have been found by scanning the energy dependence of
all eigenvalues over a certain range of V0, searching for all
real-energy crossings or width crossings (avoided crossings).
Once found, we have tuned V0 to find out whether these
crossings evolve into EPs at some combination of V0 and E.
One should stress that the passage through EP always occurs
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FIG. 1. The map of J π = 1− exceptional points in the continuum
of 16Ne as found in SMEC. For more details, see the description in
the text.

if, e.g., the real-energy crossing moves toward E = 0. Since
such a crossing cannot move into the region E < 0, therefore
it converts into an avoided crossing via the formation of an EP.

The lowest EP in Fig. 1 is seen at V
(cr)

0 =
−1617.4 MeV fm3 and E = 2.33 MeV. This EP corresponds
to a degeneracy of the first two 1− eigenvalues of HQQ for
V0 < 0.

Energy Ei and width 
i of 1−
1 and 1−

2 eigenvalues are
shown in Fig. 2 as a function of the scattering energy. For
E > 2.33 MeV, the widths of these two eigenvalues grow apart
very fast. E1(E) (solid line) and E2(E) (dotted line) cross again
for E � 3.2 MeV. At this energy, 
1 and 
2 are different and,
hence, the corresponding eigenfunctions are different as well.

The upper part of Fig. 2 shows the phase shifts δlj for
p + 15F elastic scattering as a function of the proton energy
for p1/2 (dashed-dotted line) and p3/2 (dashed line) partial
waves. In the partial wave p1/2, the elastic scattering phase shift
exhibits a jump by 2π at the EP with Jπ = 1−. This unusual
jump in the elastic scattering phase shift is an unmistakable
and robust signal of a double-pole of the S matrix (EP) which
persists also in its neighborhood, as shall be discussed below.

Figure 3 shows the elastic and inelastic cross sections for
15F(p,p′) in the vicinity of an EP. The solid line represents
a sum of different partial contributions of both parities with
J � 5 whereas the dashed line shows the resonance part of the
1− contribution in these cross sections. The cross sections are
plotted as a function of the center-of-mass scattering energy
for V

(cr)
0 = −1617.4 MeV fm3. The elastic cross section at

the EP shows a characteristic double-hump shape [26] with
asymmetric tails in energy. The inelastic cross section in
this case exhibits a single peak. Both inelastic channels
[15F(5/2+) ⊗ plj ]1−

E′ and [15F(1/2−) ⊗ plj ]1−
E′ are opened at

the EP. A substantial background contribution to both cross
sections comes from broad resonances, mainly 0+ and 2+.
A sharp peak at E � 1.65 MeV corresponds to an ordinary
resonance 2−.

The above discussion of the double poles of the S matrix
(EPs) and their manifestation in the many-body scattering
continuum concerns 1− states. The same analysis for Jπ =

0

π

2π

δ l
j [r
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FIG. 2. The upper plot exhibits the elastic scattering phase shifts
δp1/2 (dashed-dotted line) and δp3/2 (dashed line) for p + 15F reaction
in 1− partial waves at around the EP (the double-pole of the S matrix)
with J π = 1−. Lower plots show real and imaginary parts of 1−

1 (solid
line) and 1−

2 (dotted line) eigenvalues of the effective Hamiltonian
HQQ(E) as a function of the scattering energy E. For other details,
see the description in the text.
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FIG. 3. Elastic and inelastic cross sections in the reaction
15F(p,p′) as a function of the proton energy E at around the EP
(the double-pole of the S matrix) with J π = 1− for 1− resonances
only (dashed line) and for all resonances with J � 5 (solid line). For
more details, see the description in the text.
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FIG. 4. The elastic scattering phase shifts δp1/2 for the p + 15F
reaction in 1− partial waves at around the EP (the double pole
of the S matrix) with J π = 1− at V

(cr)
0 = −1617.4 MeV fm3

(solid line). Different curves correspond to different strength V0

of the continuum coupling: V0 = −1800 MeV fm3 (long-dashed
line), −1700 MeV fm3 (dashed-dotted line), −1500 MeV fm3 (short-
dashed line), and −1430 MeV fm3 (dotted line).

0+, 2+ states of 16Ne gives qualitatively similar results. Also
in these two cases, the number of EPs is maximal but only
a fraction of them appears in the relevant range of E and V0

values.

A. Behavior of scattering wave functions in the vicinity of the
exceptional point

A true crossing of two resonant states is accidental and,
hence, improbable in nuclear scattering experimentation. In
this section, we will investigate the behavior of scattering states
in the vicinity of an EP (the double pole of the S matrix) as
the observation of such a situation is more plausible.

Figure 4 exhibits the phase shifts δlj for p + 15F elas-
tic scattering as a function of the proton energy for
various values of the strength V0(V0 = −1800 MeV fm3

(long-dashed line), −1700 MeV fm3 (dashed-dotted line),
−1617.4 MeV fm3 (solid line), −1500 MeV fm3 (short-
dashed line), and −1430 MeV fm3 (dotted line) of the residual
coupling HQP = HPQ = V0δ(r1 − r2) between Q and P
subspaces. The characteristic change by a 2π of the elastic
phase shift is seen in a broad interval −1800 MeV fm3 � V0 �
−1500 MeV fm3 of the continuum coupling strength.

Figures 5 and 6 show energies Ei and widths 
i of 1−
1 and

1−
2 eigenvalues as a function of the scattering energy for two

values of V0 : −1700 MeV fm3 (Fig. 5) and −1700 MeV fm3

(Fig. 6).
The case shown in Fig. 5 corresponds to a subcritical

coupling where two resonances cross freely in energy and
repel in width [27]. In this regime, the scattering energy E

corresponding to the closest approach of 1− eigenvalues in the
complex plane (E � 2.47 MeV) is higher than the scattering
energy corresponding to the EP at a critical coupling V

(cr)
0 =

−1617.4 MeV fm3. Nevertheless, the elastic scattering phase
shift shows the jump by 2π at the position of the EP and not
at the point of the closest approach of eigenvalues.

Figure 6 shows the situation corresponding to an overcrit-
ical coupling where two resonances exhibit level repulsion in
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FIG. 5. The same as in Fig. 2 but in the subcritical regime of
coupling (V0 = −1560 MeV fm3). For more details, see the caption
of Fig. 2 and the description in the text.
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FIG. 6. The same as in Fig. 2 but in the overcritical regime of
coupling (V0 = −1680 MeV fm3). For more details, see the caption
of Fig. 2 and the description in the text.
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FIG. 7. The same as in Fig. 3 but in the subcritical regime of
coupling (V0 = −1560 MeV fm3). For more details, see the caption
of Fig. 2 and the description in the text.

energy and a free crossing of their widths [27]. In this case, the
point of the closest approach of 1− eigenvalues in the complex
plane is found at the scattering energy (E = 2.13 MeV) which
is lower than the corresponding energy for the EP. Again, the
elastic scattering phase shift shows the jump by 2π at the
position of the double pole.

From these two examples, one can see that the characteristic
jump by 2π of the elastic scattering phase shift remains a
robust signature of the EP in all close-to-critical regimes
of the coupling to the continuum: the subcritical coupling
(|V0| < |V (cr)

0 |), the critical coupling (|V0| = |V (cr)
0 |), and

the overcritical coupling (|V0| > |V (cr)
0 |), where real and/or

imaginary parts of two eigenvalues coincide.
The next two figures show the elastic and inelastic cross

sections for 15F(p,p′) in the vicinity of the EP with Jπ = 1−
in the subcritical (Fig. 7) and overcritical (Fig. 8) regimes of
the continuum coupling. The curves shown by solid lines in
Figs. 7 and 8 represent a sum of different partial contributions
of both parities with J � 5. The curves shown by dashed
lines exhibit the resonance part of 1− contribution in these
cross sections. The qualitative features of the cross sections
for the subcritical (V0 = −1560 MeV fm3) and overcritical
(V0 = −1680 MeV fm3) couplings remain the same as for the
critical coupling (see Fig. 3). In both cases, one sees a double-
hump shape in the elastic cross sections and a single-hump
shape in the inelastic cross section. One observes also a strong
asymmetry in the widths and heights of two peaks and a small
shift of the position of the interference minimum in between
the two peaks with respect to the energy which the EP is found
for a critical coupling.

B. Entangled eigenstates of the effective Hamiltonian

Complex and biorthogonal eigenstates of the effective
non-Hermitian Hamiltonian provide a convenient basis in
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FIG. 8. The same as in Fig. 3 but in the overcritical regime of
coupling (V0 = −1680 MeV fm3). For more details, see the caption
of Fig. 2 and the description in the text.

which the resonant part of the scattering function can be
expressed. These eigenstates are obtained by an orthogonal
and, in general, nonunitary transformation of SM eigenstates
[1] which is a consequence of their mixing via coupling to
common decay channels. The same coupling is responsible
for the entanglement of two eigenstates involved in building
of an EP, as illustrated in Fig. 9 on the example of spectroscopic
factors.

Figure 9 exhibits the real part of the spectroscopic factor
Re(S2) = Re(〈16Ne(1−

n )|[15F(1/2+
1 ) ⊗ p(0p1/2)]1−〉2) in 16Ne

in three regimes of the continuum coupling: (a) the subcrit-
ical regime (V0 = −1560 MeV fm3), (b) the critical regime
(V (cr)

0 = −1617.4 MeV fm3), and (c) the overcritical regime
(V0 = −1680 MeV fm3). The solid (short-dashed) lines show
the spectroscopic factors for �(1−

1 )(E) (�(1−
2 )(E)) eigenval-

ues of the effective Hamiltonian HQQ(E) as a function of
the scattering energy E. For a critical coupling [plot (b)], the
spectroscopic factors for �(1−

1 ) and �(1−
2 ) wave functions

diverge at the EP (the double pole of the S matrix) but
their sum (long-dashed line in Fig. 9) remains finite and
constant over a whole region of scattering energies surrounding
the EP. In that sense, �(1−

1 ) and �(1−
2 ) resonance wave

functions form an inseparable doublet of eigenfunctions with
entangled spectroscopic factors. This entanglement is a direct
consequence of the energy dependence of coefficients bαi :

|�α〉 =
∑

i

bαi(E)|ψi〉,

in a decomposition of HQQ(E) eigenstates in the basis of SM
eigenstates.

One may notice that the energy dependence of Re(S2) in the
vicinity of the double pole for 1−

1 and 1−
2 eigenstates is quite

different in all three regimes of the continuum coupling. In
particular, in the overcritical regime of coupling, an EP yields
entangled states in a broad range of scattering energies. The
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FIG. 9. p1/2-spectroscopic factor 〈16Ne(1−
n )|[15F(1/2+

1 ) ⊗
p(0p1/2)]1−〉 for 1−

1 and 1−
2 eigenvalues of the effective Hamiltonian

at around the double pole of the S matrix. For more details, see the
discussion in the text.

strongest entanglement is found at the scattering energy which
corresponds to the point of the closest approach of eigenvalues
in the complex plane for all regimes of coupling. Obviously, the
entanglement of resonance eigenfunctions in the vicinity of an
EP is a generic phenomenon in open quantum systems which
is manifested in matrix elements and expectation values for
any operator which does not commute with the Hamiltonian.

IV. CONCLUSIONS

In conclusion, we have shown in SMEC studies of the
one-nucleon continuum that EPs exist for realistic values of the
continuum coupling strength. In the studied case of 16Ne, few
of those EPs appear at sufficiently low excitation energies to be
seen in the excitation function as individual peaks associated
with a jump by 2π of the elastic scattering phase shift. The
occurrence of an EP leaves also characteristic imprints in its
neighborhood, i.e., for avoided crossing of resonances. In all
close-to-critical regimes of the continuum coupling where real
and/or imaginary parts of the two eigenvalues coincide, one
finds qualitatively similar features of the elastic scattering
phase shift and the elastic cross section as found for the
critical coupling at around the EP (the double pole of the
S matrix). This gives a real chance that EPs or their traces
may actually be searched for experimentally in the atomic
nucleus. The well-known case of 2+ doublet in 8Be, where
resonance energies and widths are 16623 ± 3 keV, 107 ±
0.5 keV, and 16925 ± 3 keV, 74.4 ± 0.4 keV, respectively [15],
nearly satisfies the resonance conditions in the close-to-critical
regime of couplings. Various situations in this regime have
been studied experimentally in the microwave cavity [27].

Avoided crossing of two resonances with the same quantum
numbers provide the valuable information about the configura-
tion mixing in open quantum systems. As the formation of any
EP in the scattering continuum depends on a subtle interplay
between the internal Hamiltonian (HQQ) and the coupling
to the external environment of decay channels, its finding
provides a stringent test of an effective nucleon-nucleon
interaction and the configuration mixing in the open quantum
system regime. Such tests are crucial for a quantitative
description of atomic nuclei in the vicinity of drip lines.
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